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Simple Summary: Each patient responds uniquely to treatment, which makes personalized ultra-
fractionated stereotactic adaptive radiotherapy (PULSAR) a promising strategy that delivers high-
dose radiation at extended intervals for tailored adaptation. Currently, treatment modifications
mainly rely on physicians’ assessments of tumor size changes. Our study aims to develop a more
objective multiomics-based approach for predicting treatment outcomes in PULSAR, including
radiomics, dosiomics, and delta features. By leveraging multiomics analysis and machine learning,
we intend to transition the adaptation and decision-making process from empirical judgments to a
more data-informed strategy, allowing clinicians to swiftly respond to changes in tumor behavior
and provide more personalized treatment for each patient.

Abstract: Objectives: This retrospective study aims to develop a multiomics approach that integrates
radiomics, dosiomics, and delta features to predict treatment responses in brain metastasis (BM)
patients undergoing PULSAR. Methods: A retrospective study encompassing 39 BM patients with
69 lesions treated with PULSAR was undertaken. Radiomics, dosiomics, and delta features were
extracted from both pre-treatment and intra-treatment MRI scans alongside dose distributions. Six
individual models, alongside an ensemble feature selection (EFS) model, were evaluated. The classifi-
cation task focused on distinguishing between two lesion groups based on whether they exhibited a
volume reduction of more than 20% at follow-up. Performance metrics, including sensitivity, speci-
ficity, accuracy, precision, F1 score, and the area under the receiver operating characteristic (ROC)
curve (AUC), were assessed. Results: The EFS model integrated the features from pre-treatment
radiomics, pre-treatment dosiomics, intra-treatment radiomics, and delta radiomics. It outperformed
six individual models, achieving an AUC of 0.979, accuracy of 0.917, and F1 score of 0.821. Among
the top nine features of the EFS model, six features came from post-wavelet transformation and
three from original images. Conclusions: The study demonstrated the feasibility of employing a
data-driven multiomics approach to predict treatment outcomes in BM patients receiving PULSAR
treatment. Integrating multiomics with intra-treatment decision support in PULSAR shows promise
for optimizing patient management and reducing the risks of under- or over-treatment.

Keywords: PULSAR; brain metastases; multiomics; outcome prediction; decision-making

1. Introduction

Brain metastases (BMs) are the most common type of intracranial tumors, affecting
20 to 40% of patients with systemic cancer [1–4]. Surgical intervention and radiotherapy
have become the primary treatment options, as many chemotherapeutic agents cannot
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effectively cross the blood–brain barrier [5]. While surgical resection provides immediate
relief from mass effects, it is often inadequate for eliminating multifocal microscopic disease.
Stereotactic radiosurgery (SRS) employs highly focused radiation; however, its efficacy
decreases with increasing tumor size and carries a greater risk of neurotoxicity [4–6]. The
field has progressively transitioned toward fractionated stereotactic radiotherapy (fSRT)
and staged stereotactic radiosurgery (SSRS) for larger brain metastases with the aim of
improving local tumor control while reducing the risk of adverse radiation effects [7–10].
Nonetheless, the determination of optimal fractionation and intervals remains an active
area of research [4].

At our institution, we implemented a similar approach to SSRS called personalized
ultra-fractionated stereotactic adaptive radiotherapy (PULSAR), in which high-dose radia-
tion is delivered at two- to four-week intervals. These extended intervals (weeks or months)
allow for the enhanced recovery of normal tissues while providing sufficient time for the
tumor and tumor microenvironment (TME) to undergo significant changes [11,12]. This
enables more effective adaptation to the evolving tumor characteristics. Additionally, there
is growing interest in the potential synergistic effects between PULSAR and checkpoint
blockade inhibitor immunotherapy [11].

To fully realize the potential of PULSAR, early decision-making is critical (Figure 1).
The current process relies heavily on physician expertise, with treatment plans often ad-
justed based on gross tumor volume (GTV) changes observed in intra-treatment MRI
scans [13–15]. However, this simple metric may not accurately reflect the overall treat-
ment outcome. Therefore, developing a more objective and quantitative method to guide
decision-making in PULSAR is essential [16,17]. To address this, our study employed a
multiomics approach to predict treatment outcomes. In contrast to most previous studies
that focus solely on pre-treatment imaging, our investigation integrated radiomics and do-
siomics features extracted at multiple time points (i.e., a delta mode) to enhance predictive
accuracy—an important aspect of PULSAR [18–24].
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Figure 1. Comparison of workflows between (A) fractionated stereotactic radiotherapy (fSRT) and
(B) PULSAR. PULSAR includes an intra-treatment MRI assessment to evaluate the change in GTV
(increased, unchanged, or decreased), enabling more personalized treatment and timely adjustment.

2. Materials and Methods
2.1. PULSAR Treatment, Study Population, and Data Acquisition

Figure 1 provides a workflow comparison between fSRT and PULSAR for patients
with BMs undergoing radiosurgery utilizing Gamma Knife Icon™ (Elekta AB, Stockholm,
Sweden). The patient initially undergoes a pre-treatment MRI scan, followed by the first
treatment course comprising three fractions/pulses (5 to 6 Gy per fraction/pulse) with a
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two-day interval between fractions. After two to four weeks, the second course is delivered
according to the intra-treatment MRI scans, with adjustments for changes in tumor volume
and/or the presence of vasogenic edema. The plan may be adjusted to target a smaller
GTV if it has shrunk or to accommodate an increasing target size through a dose boost or
surgical intervention.

The retrospective study involved the examination of 39 BM patients who underwent
PULSAR treatment at UTSW. The cohort comprised 69 lesions treated from 1 November
2021 to 1 May 2023, with both single and multiple BMs. Table 1 summarizes detailed demo-
graphic and clinical profiles, including age, gender, lesion number, and treatment specifics.
Comprehensive initial and intra-treatment data were collected from patients undergoing
PULSAR, encompassing MRI images, 3D dose maps (RTdose), and radiotherapy contour
structure files (RTstructure). All collected images were acquired using axial (AX) MRI
sequences with T1-weighted enhancement, ensuring a consistent and standardized basis
for radiomic analysis. This approach minimized variations and potential discrepancies that
could arise from different imaging modalities or sequences, thereby ensuring the accuracy
of subsequent deltaomics calculations in the PULSAR cohort. Additionally, tumor volumes
in follow-up MRI images were evaluated one to three months after PULSAR treatment.
Treated BMs were manually contoured on these follow-up scans using the Research Velocity
4.1 platform (Varian Medical Systems, Inc., Palo Alto, CA, USA). A thorough comparison
of pre-, intra-, and post-treatment images for each lesion was conducted by a research
assistant and subsequently reviewed by an experienced physician. For all patients in this
study, no new lesions were detected during the treatment intervals or at follow-up.

Table 1. Patient demographics and lesion characteristics in PULSAR treatment. * Threshold for
change, defined as a 20% GTV reduction.

Characteristics Value

Patient Information
Age (range) 61 (28–84)

Total Patients (Male: Female) 39 (14:25)
Lesion Information

Single brain metastases 26
Multiple brain metastases 43

Total Lesions (Decreased: Non-Decreased) * 69 (55:14)
Lesion size

Initial Tumor Volume (mm3) 3666.3 (14.5–37607.6)
3D Diameter (mm) 25.5 (3.7–79.8)
Delivered Dose and Fractionation by Lesion Count (Gy, Fx)

30 Gy, 5 Fx 57
27.5 Gy, 5 Fx 2
25 Gy, 5 Fx 9
24 Gy, 4 Fx 1

2.2. Data Processing and Multiomics Feature Extraction

Pre-processing steps involved an image resolution adjustment and co-registration
(MRI image, RTstructure, RTdose). The 3D MRI images, 3D dose maps, and 3D GTVs were
co-registered. Subsequently, they were re-sampled to standardize voxel sizes to a uniform
1 × 1 × 1 mm3, ensuring accuracy and consistency in feature extraction. Feature extraction
was divided into the following two parts: (1) radiomics features: 1st radiomics features
(from pre-treatment MRI) and 2nd radiomics features (from intra-treatment MRI) were
extracted using PyRadiomics, with each scenario yielding 851 features and (2) dosiomics
features: 3D dose maps were treated in the same manner as MRI images, with the extraction
of 1st dosiomics features and 2nd dosiomics features using PyRadiomics, also yielding
851 features per scenario [25]. These features encompassed various categories, including
intensity, shape, texture, and wavelet filters, providing a comprehensive evaluation of
tumor and dose characteristics. Furthermore, delta radiomics and delta dosiomics features
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were computed by subtracting the first radiomics/dosiomics features from the second
radiomics/dosiomics features after normalization.

2.3. Multi-Level Feature Selection

Given the high dimensionality of the radiomics and dosiomics feature sets, a multi-
level feature selection strategy was implemented in three sequential steps. The first step was
the filtering method, based on the Spearman’s correlation coefficients between each feature
and the volume change. The top 50% of features with the highest absolute correlation
values were retained for further analysis. The second step was the LASSO (least absolute
shrinkage and selection operator) regression embedded method, which introduced an L1
regularization penalty term to the loss function for reducing the number of features [26].
The third step was recursive feature elimination combined with a support vector machine
(SVM) classifier to rank features based on their importance and iteratively remove the least
important ones [27,28]. To minimize potential bias and overfitting in feature selection, we
conducted the above three steps with multiple train–test splits. For each split, feature
selection was conducted solely on the training folds, and the top nine features were
recorded. Finally, the nine most frequently occurring features were identified.

2.4. Predictive Model and Performance Evaluation

The model predicts if a lesion is going to show a volume reduction of ≥20% at follow-
up. Several studies suggest a significant correlation between a reduction in volume of 20%
or greater and the improvement of neurological signs and symptoms, reproducible when
interpreted by different clinicians [13–15]. The same criterion was adopted to categorize
lesions, framing it as a classification problem. Lesions with a follow-up tumor volume
equal to or greater than 80% of their initial volume were classified as “non-decreased
volume” (Group A), while those below the threshold were classified as “decreased volume”
(Group B). We trained six individual models, comprising pre-treatment images (“1st ra-
diomics”), intra-treatment images (“2nd radiomics”), the change between pre-treatment
and intra-treatment radiomics (“delta radiomics”), pre-treatment dose distributions (“1st
dosiomics”), intra-treatment dose distributions (“2nd dosiomics”), and the change between
pre-treatment and intra-treatment dosiomics (“delta dosiomics”). Each model, utilizing
the nine most frequent features identified in Section 2.3, was fitted using a support vector
machine (SVM) for classification. Due to the small size of the dataset (as well as being
imbalanced), each model was trained and validated via stratified 5-fold cross-validation,
maintaining the ratio between the two groups as constant in each fold. To assess the
robustness and stability of each model, the 5-fold cross-validation was iterated 50 times.
Performance metrics, including sensitivity, specificity, accuracy, precision, F1 score, and
AUC, were calculated for each iteration. Aggregated metrics across 50 iterations, such as
mean values, standard deviations, and 95% confidence intervals, were used to evaluate the
overall performance and performance fluctuations.

2.5. Ensemble Feature Selection (EFS)

To fully leverage the information available at the intra-treatment time point, which
includes the pre-treatment image, intra-treatment image, and pre-treatment dose, an EFS
strategy was implemented to combine the most critical features from four scenarios, namely
1st radiomics, 2nd radiomics, delta radiomics, and 1st dosiomics. Similar to the approach
used for developing individual models, an ensemble model was developed, and the
same quantitative analysis was conducted. To interpret the output of the SVM models
probabilistically, Platt scaling was used to evaluate the prediction probability of each
lesion [29].
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3. Results
3.1. Treatment Response

Volumetric analysis demonstrates a complex response to PULSAR treatment among
lesions. Figure 2 shows six representative lesions, each demonstrating the change in tumor
volume at three time points. The dynamics suggest that intra-treatment evaluations alone
do not adequately reveal the treatment outcome.
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Figure 2. Six lesions illustrate the temporal evolution of GTV at various treatment stages. In Group A
(lesions with red contours), three lesions exhibit non-decreased GTV at follow-up compared to the
initial, but they display different GTV changes at the intra-treatment time point, with intra-treatment
assessments of (A) decreased, (B) unchanged, and (C) increased GTV. In contrast, Group B (lesions
with blue contours) depicts three lesions with a decreased GTV at follow-up compared to the initial,
with intra-treatment variations categorized as (D) decreased, (E) unchanged, and (F) increased GTV.

To quantify GTV change, Figure 3 maps out the volumetric dynamics of all 69 lesions
at pre-treatment, intra-treatment, and follow-up time points, with the initial tumor volume
normalized to one for each lesion. The analysis stratifies the lesions into the following
two subsets based on a threshold of 4000 mm3: 36 large lesions (Figure 3A) and 33 small
lesions (Figure 3B). Among the large lesions, five out of thirty-six exhibit an increase in
intra-treatment volume, with the highest ratio of 1.18, and eight lesions display a ratio
in a range between 0.8 and 1.0. The intra-treatment volume for the small lesions has a
single case showing a ratio of 1.06, and the other 11 lesions are between 0.8 and 1.0. When
examining the last column in the heatmaps (follow-up GTV), for the subset of large lesions,
six lesions exhibit an increase, with the largest ratio of 2.06, while three lesions achieve
a moderate reduction in volume, with the ratio between 0.8 and 1.0. In the small lesion
subset, three lesions show minimal change, with ratios ranging from 0.8 to 1.0, while two
lesions increase in size, with the largest ratio being 2.28.
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Figure 3. Lesion volumetric changes examined at three time points (pre-treatment, intra-treatment,
and follow-up) for two subsets, namely lesions smaller than 4000 mm3 (A) and those larger than
4000 mm3 (B). The line graphs on the left display the relative GTV changes for each lesion during
PULSAR. The accompanying heatmaps on the right provide a detailed quantitative representation of
these changes, with color intensity reflecting the relative increase or decrease in tumor volume.

3.2. Performances of Individual Models

Fourteen lesions are classified into Group A and 55 lesions into Group B. Each model
incorporates the top nine features after feature selection. The ROC curves for the six in-
dividual models are presented in Figure 4A and performance metrics are summarized in
Table 2. Table 3 presents the pairwise p-values calculated using Welch’s t-test with Bon-
ferroni correction for inter-model comparison, examining whether a significant difference
exists between two models. Figure S1 shows the comparison between fivefold and threefold
cross validation. Figure S2 illustrates the correlation among multiple features for each
model, with the heatmaps providing an intuitive view of the relationships between the
selected features.

In Figure 4A, the first dosiomics model exhibits the lowest AUC of 0.705, with a low
precision of 0.285. The second dosiomics model exhibits the second-lowest AUC (0.725)
and a low precision (0.319). Such inferior performance suggests the limitations of a model
solely based on dosiomics. Two models based upon MRI image data, the first radiomics
and the second radiomics models, outperform the above two counterparts, achieving AUC
(0.748)/precision (0.344) and AUC (0.883)/precision (0.605), respectively. Compared to the
first dosiomics model, the first radiomics model demonstrates improved performance, with
significantly higher specificity, accuracy, AUC, and precision (p-values < 0.002, Table 3).
The first radiomics and second dosiomics models demonstrate comparable performance,
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with no significant differences found between them. Among the four individual models
based on single time points mentioned above, the second radiomics model yields the
best performance.

The delta radiomics and delta dosiomics models show comparable performance, both
outperforming the single time point models. The delta radiomics model excels in sensitivity
(0.903 vs. 0.802), while the delta dosiomics model has higher specificity (0.836 vs. 0.872).
Both models have a similar accuracy (0.850 vs. 0858), AUC (0.944 vs. 0.942), precision (0.632
vs. 0.661), and F1 score (0.720 vs. 0.694). The relative change in dose distribution provides
valuable insights for classification. By leveraging temporal changes in radiomics features,
the two delta models more effectively capture tumor evolution and treatment response.
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Figure 4. (A) ROC curves for six individual models. For each model, the plot shows the aggregated
training (solid line) and test (dashed line) ROC curves generated from 50 iterations of 5-fold strat-
ified cross-validation. The mean AUC with a 95% confidence interval is reported for each model.
(B) Performance evaluation of the EFS model. The left panel displays the coefficient values of the
nine selected features. The middle panel presents the correlation of the nine features. The right panel
shows the ROC curve.
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Table 2. Performance metrics of different models.

1st Radiomics 2nd Radiomics Delta Radiomics 1st Dosiomics 2nd Dosiomics Delta Dosiomics Ensemble Feature
Selection (EFS)

Sensitivity 0.503 ± 0.271
(95% CI: 0.469–0.537)

0.755 ± 0.266
(95% CI: 0.722–0.789)

0.903 ± 0.174
(95% CI: 0.882–0.925)

0.559 ± 0.271
(95% CI: 0.525–0.592)

0.538 ± 0.309
(95% CI: 0.499–0.577)

0.802 ± 0.242
(95% CI: 0.772–0.832)

0.907 ± 0.169
(95% CI: 0.886–0.928)

Specificity 0.745 ± 0.128
(95% CI: 0.729–0.761)

0.854 ± 0.102
(95% CI: 0.841–0.867)

0.836 ± 0.117
(95% CI: 0.822–0.851)

0.636 ± 0.141
(95% CI: 0.618–0.654)

0.713 ± 0.129
(95% CI: 0.697–0.729)

0.872 ± 0.102
(95% CI: 0.860–0.885)

0.920 ± 0.085
(95% CI: 0.909–0.931)

Accuracy 0.696 ± 0.107
(95% CI: 0.682–0.709)

0.833 ± 0.090
(95% CI: 0.822–0.844)

0.850 ± 0.094
(95% CI: 0.838–0.862)

0.621 ± 0.112
(95% CI: 0.607–0.635)

0.677 ± 0.111
(95% CI: 0.664–0.691)

0.858 ± 0.086
(95% CI: 0.847–0.869)

0.917 ± 0.072
(95% CI: 0.908–0.926)

AUC 0.748 ± 0.143
(95% CI: 0.731–0.766)

0.883 ± 0.107
(95% CI: 0.870–0.896)

0.944 ± 0.061
(95% CI: 0.936–0.951)

0.705 ± 0.157
(95% CI: 0.685–0.724)

0.725 ± 0.158
(95% CI: 0.705–0.744)

0.942 ± 0.062
(95% CI: 0.934–0.950)

0.979 ± 0.039
(95% CI: 0.974–0.984)

Precision 0.344 ± 0.197
(95% CI: 0.319–0.368)

0.605 ± 0.232
(95% CI: 0.577–0.634)

0.632 ± 0.197
(95% CI: 0.607–0.657)

0.285 ± 0.140
(95% CI: 0.268–0.302)

0.319 ± 0.182
(95% CI: 0.296 –0.341)

0.661 ± 0.224
(95% CI: 0.633–0.689)

0.786 ± 0.201
(95% CI: 0.761–0.811)

F1 Score 0.389 ± 0.193
(95% CI: 0.365–0.413)

0.640 ± 0.199
(95% CI: 0.615–0.665)

0.720 ± 0.151
(95% CI: 0.701–0.739)

0.366 ± 0.162
(95% CI: 0.346–0.386)

0.386 ± 0.205
(95% CI: 0.361–0.412)

0.694 ± 0.186
(95% CI: 0.671–0.718)

0.821 ± 0.147
(95% CI: 0.803–0.839)

Table 3. Pairwise comparison of model performance metrics. * Significant difference identified based on Welch’s t-test with Bonferroni correction.

1st Ra-
diomics

vs.
2nd Ra-
diomics

1st Ra-
diomics

vs.
Delta

Ra-
diomics

1st Ra-
diomics

vs.
1st Do-
siomics

1st Ra-
diomics

vs.
2nd Do-
siomics

1st Ra-
diomics

vs.
Delta
Do-

siomics

1st Ra-
diomics

vs.
EFS

2nd Ra-
diomics

vs.
Delta

Ra-
diomics

2nd Ra-
diomics

vs.
1st Do-
siomics

2nd Ra-
diomics

vs.
2nd Do-
siomics

2nd Ra-
diomics

vs.
Delta
Do-

siomics

2nd Ra-
diomics

vs.
EFS

Delta
Ra-

diomics
vs.

1st Do-
siomics

Delta
Ra-

diomics
vs.

2nd Do-
siomics

Delta
Ra-

diomics
vs.

Delta
Do-

siomics

Delta
Ra-

diomics
vs.

EFS

1st Do-
siomics

vs.
2nd Do-
siomics

1st Do-
siomics

vs.
Delta
Do-

siomics

1st Do-
siomics

vs.
EFS

2nd Do-
siomics

vs.
Delta
Do-

siomics

2nd Do-
siomics

vs.
EFS

Delta
Do-

siomics
vs.

EFS

Sensitivity <0.002 * <0.002 * 0.022 0.176 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * 0.041 <0.002 * <0.002 * <0.002 * <0.002 * 0.829 0.428 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 *
Specificity <0.002 * <0.002 * <0.002 * 0.006 <0.002 * <0.002 * 0.070 <0.002 * <0.002 * 0.047 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 *
Accuracy <0.002 * <0.002 * <0.002 * 0.063 <0.002 * <0.002 * 0.045 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * 0.328 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 *

AUC <0.002 * <0.002 * <0.002 * 0.079 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * 0.758 <0.002 * 0.158 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 *
Precision <0.002 * <0.002 * <0.002 * 0.140 <0.002 * <0.002 * 0.170 <0.002 * <0.002 * 0.007 <0.002 * <0.002 * <0.002 * 0.127 <0.002 * 0.022 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 *
F1 Score <0.002 * <0.002 * 0.152 0.882 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * <0.002 * 0.088 <0.002 * 0.221 <0.002 * <0.002 * <0.002 * <0.002 * <0.002 *
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3.3. Ensemble Feature Selection (EFS) Model

The EFS model comprises nine features identified from a pool of features originating
from four scenarios (first radiomics, second radiomics, delta radiomics, and first dosiomics).
The correlation heatmap of these nine features, shown in Figure 4B, demonstrates minimal
inter-feature correlation. Detailed descriptions (e.g., names, types, weights in the SVM) are
summarized in Table 4, where the weight coefficients (in a descending order) reflect their
respective influence along with the z-score. The ROC curve of the EFS model is depicted in
Figure 4B, exhibiting an AUC of 0.979, sensitivity (0.907), specificity (0.920), accuracy (0.917),
precision (0.786), and F1 score (0.821). While the EFS model has a sensitivity comparable
to that of the delta radiomics model, the EFS model achieves superior performance in all
other metrics (Table 2). The ROC comparison of different models, as well as one example of
the confusion matrices from a single iteration of the fivefold cross-validation, are provided
in Figures S1 and S3, respectively.

Table 4. Summary of the EFS features. * Significant difference identified based on the Mann–Whitney
U test.

Abbreviation Multi-Omics
Type

Wavelet
Filtering/Original

Feature
Class Feature Name

Feature
Weight

Coefficient

Feature Values (Z-Score)

Group A Group B p-Value

F1 Delta
Radiomics Original shape Least Axis Length −1.34382 −0.231 ± 0.233 0.059 ± 0.468 <0.05 *

F2 1st Dosiomics Wavelet-LHL glszm Low Gray Level
Zone Emphasis −1.23960 −0.58 ± 0.867 0.148 ± 0.994 <0.05 *

F3 2nd Radiomics Wavelet-LHH glcm Correlation −1.17479 −0.577 ± 0.584 0.147 ± 1.043 <0.05 *

F4 2nd Radiomics Original glrlm Long Run Low Gray
Level Emphasis −0.78866 −0.444 ± 0.195 0.113 ± 1.098 <0.05 *

F5 Delta
Radiomics Wavelet-HHH gldm

Large Dependence
High Gray Level

Emphasis
−0.32663 −0.597 ± 0.951 0.152 ± 0.765 <0.05 *

F6 Delta
Radiomics Wavelet-HHH glszm Gray Level

NonUniformity −0.43211 −0.379 ± 0.674 0.096 ± 0.497 <0.05 *

F7 1st Radiomics original glcm MCC 0.51466 0.146 ± 0.812 −0.037 ± 1.054 0.486

F8 Delta
Radiomics Wavelet-LLH firstorder Median 0.69508 0.558 ± 1.214 −0.142 ± 1.086 0.064

F9 Delta
Radiomics Wavelet-HLL firstorder Kurtosis 1.09794 0.254 ± 0.831 −0.065 ± 0.326 0.181

3.4. Multiomics Feature Interpretation

The probability scores obtained using the method of Platt scaling are presented in
Figure 5A, which demonstrates the varying degrees of discrimination among models.
Higher values for Group A and lower values for Group B indicate better separability
between the two classes. The mean probability scores for Group A versus Group B
are as follows (from top to bottom in Figure 5A): 0.322 ± 0.070 vs. 0.187 ± 0.090 for
the first radiomics model, 0.510 ± 0.167 vs. 0.145 ± 0.132 for the second radiomics
model, 0.614 ± 0.167 vs. 0.129 ± 0.098 for the delta radiomics model, 0.350 ± 0.255 vs.
0.176 ± 0.056 for the first dosiomics model, 0.356 ± 0.132 vs. 0.170 ± 0.101 for the sec-
ond dosiomics model, 0.565 ± 0.204 vs. 0.103 ± 0.093 for the delta dosiomics model, and
0.720 ± 0.196 vs. 0.073 ± 0.053 for the EFS model. Figure 5B visualizes the feature space us-
ing UMAP dimensionality reduction. The nine features from the EFS model are visualized
using UMAP projection in a three-dimensional space to illustrate the separation between
the two groups, with an SVM hyperplane serving as the decision boundary between the
two groups.
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4. Discussion 

Figure 5. (A) Probability scores for lesions obtained across different models. The horizontal axis
represents the lesion index, and the vertical axis represents the probability score of a lesion under
different models. The models (from top to bottom) are 1st radiomics, 2nd radiomics, delta radiomics,
1st dosiomics, 2nd dosiomics, delta dosiomics, and the EFS model. The EFS model shows the most
effective separation between the two groups. (B) UMAP visualization of the EFS model’s nine features,
projected into a three-dimensional space to illustrate the separation between Group A and Group
B lesions. An SVM hyperplane serves as the decision boundary between the groups. (C) A lesion
(contour in blue) with decreased GTV at follow-up compared to the initial. (D) A lesion (contour
in red) with non-decreased GTV at follow-up compared to the initial. Panels include initial MRI,
intra-treatment MRI, initial dose map, intra-treatment dose map, and wavelet-transformed images.

Figure 5C,D display results for two lesions, featuring MRI and dose maps alongside
wavelet-transformed images to aid in understanding the multiomics feature extraction.
Table 4 outlines the nine features of the EFS model, primarily derived from radiomics
features post-wavelet transformation (only three features directly from the original images).
The 3D discrete wavelet transform decomposes volumetric images into multi-resolution
components, capturing both fine and coarse details, with “L” representing low-pass and
“H” representing high-pass filtering [30]. Features F2 and F9, with the highest weight
coefficients within the SVM model (F2: −1.24, F9: 1.10), are elaborated on below.

Feature F2, known as low gray-level zone emphasis (LGLZE), quantifies the preva-
lence of low gray-level size zones and reflects the spatial uniformity in dose maps. The
LGLZE value is 0.35 for a decreased GTV (Figure 5C) and 0.61 for a non-decreased GTV
(Figure 5D). A lower LGLZE value suggests fewer low-dose regions within the tumor,
potentially correlating with a favorable treatment response. Feature F9, derived from
Kurtosis calculated in the delta mode based on radiomics, provides insights into evolving
tumor heterogeneity during treatment. The lesions in Figure 5C,D exhibit delta Kurtosis
values of 0.21 and 0.36, respectively. A smaller delta Kurtosis value indicates a reduction in
lesion volume after treatment, whereas a larger delta Kurtosis value suggests an increase
in volume.
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4. Discussion

This preliminary study investigates the use of multiomics to predict treatment out-
comes and support decision-making in PULSAR, using BMs as a case study. By integrating
delta multiomics with SVM classification, we aim to improve predictive accuracy. As
expected, the EFS model, which combines features from pre-treatment radiomics, pre-
treatment dosiomics, intra-treatment radiomics, and delta radiomics, outperforms six
individual models. In addition to PULSAR, our proposed framework can be applied to
other forms of fSRT and SSRS.

The perspective on extending treatment time intervals continues to be a subject of de-
bate, given the complex challenge of balancing adverse effects with effective tumor control.
Both PULSAR and SSRS require careful personalization, given the significant variability
in individual patient responses to treatment. While some patients may experience tumor
reduction, others may demonstrate tumor growth. In addition, it is crucial to distinguish
between pseudo-progression and true progression to guide subsequent treatment deci-
sions. Additional factors, such as tumor radioresistance and characteristics associated with
systemic therapy, further complicate treatment options. These variations highlight the
necessity of closely monitoring each patient’s progress and adjusting treatment strategies as
required. By employing a multiomics analysis and machine learning, we aim to transition
the decision-making process from empirical judgments to a more data-driven approach,
ensuring that each patient receives tailored treatment.

A notable characteristic of PULSAR is the availability of intra-treatment MRI im-
ages after a prolonged interval, which allows for the effective utilization of deltaomics.
This capability is critical in the development of the EFS model, which demonstrates en-
hanced performance compared to traditional radiomics models that rely exclusively on
pre-treatment data. This observation is consistent with prior research findings [22–24]. In
constructing the EFS model, we assessed the contributions of various feature sets but chose
to exclude features linked to the second dosiomics and delta dosiomics models for two
pragmatic reasons. First, from a decision-making perspective, delta dosiomics and second
dosiomics data would not be accessible prior to a physician’s new dose prescription and
treatment plan formulation. Second, the performance of delta dosiomics is largely com-
parable to that of delta radiomics, suggesting that the added advantages of incorporating
delta dosiomics may be minimal. This analysis of different models raises the following
two relevant questions: (1) how does the integration of delta radiomics features improve
performance? (2) What additional insights can dosiomics provide?

For the first question, we believe that delta radiomics features effectively capture the
evolution of anatomical characteristics within GTV. The inclusion of temporal changes
enhances predictive accuracy, as evidenced by the improved performance of both delta
radiomics and second radiomics in comparison to first radiomics. In simpler terms, as-
sessing treatment response is most effective when conducted after the treatment has been
administered. Although Gao et al. [24] did not monitor dynamic changes during treatment
as our PULSAR study did, they investigated radiomics features derived from longitudinal
diffusion-weighted imaging (DWI) to predict post-treatment tumor necrosis. Their findings
indicated that delta features calculated from pre- and post-treatment scans were more
predictive than static features. Similarly, Wang et al. [23] explored the prognostic signifi-
cance of delta radiomics features in predicting treatment response and clinical outcomes,
including overall survival and disease-free survival. Their study also demonstrated that
delta radiomics features outperformed single-time-point radiomics models.

For the second question, dosiomics features derived from 3D dose distributions may
offer advantages over traditional dose–volume histogram (DVH) analyses [20,31]. By
providing a detailed pixel-wise representation of the radiation dose, dosiomics effectively
captures patient-specific dose heterogeneity within the treatment target [32]. Our findings
indicate that delta dosiomics surpasses both second and first dosiomics, suggesting that
changes in pre- and post-treatment dose maps—likely in low dose regions and dose fall-off
areas—yield valuable insights. However, it is important to note that features from delta
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radiomics and delta dosiomics may overlap, allowing either feature set to be utilized for
classification with comparable accuracy.

In this study, we focused extensively on feature selection and minimizing redundancy.
To facilitate a fair comparison among different models while adhering to the guideline of
maintaining a feature-to-observer ratio of at most 4:1, we selected the top nine features
for each model [33]. The initial raw feature set consisted of 851 features, which posed a
considerable challenge, as outlined in Section 2.3. Traditional feature selection techniques
commonly utilize a two-sample t-test to identify features with the lowest p-values or em-
ploy multi-tiered approaches like Lasso regression and Welch’s t-test [34,35]. Our analysis,
detailed in Table 4, reveals that only six of the nine selected features have significant
p-values below 0.05 when assessed using the Mann–Whitney U test. The remaining three
features, though individually not statistically significant, have positive SVM coefficients (F7,
F8, and F9). This indicates that these features, despite their high p-values—attributable to
either a small sample size or other factors—continue to make meaningful contributions to
the model’s classification performance when combined with other features. Additional clar-
ification on how fivefold cross-validation and frequency-based feature selection collectively
mitigate overfitting and bias is provided in Figure S4.

In the EFS model, the top nine features were identified, as detailed in Table 4. While
features such as tumor size or shape (F1) are straightforward, others derived from texture
matrices and wavelet filtering present more complex interpretations. These features may
be associated with tissue heterogeneity or dosiomics gradients, with the wavelet trans-
form enabling multi-resolution decomposition and noise reduction [30,36]. Evaluating
their sensitivity to variations in imaging protocols across different institutions needs to be
another important area of research. The next phase of our study will focus on enhancing
interpretability by establishing correlations between these features and other pathological
and clinical characteristics. Notably, integrating delta changes in biomarkers that indicate
responses to immunotherapy into the prediction model may leverage synergistic effects,
thereby capitalizing on another unique benefit of PULSAR treatment [11,37,38]. Further-
more, while the current focus is on features extracted from within the GTV, significant
insights may also emerge from the peritumoral region. For instance, gradient maps in
the lesion’s periphery could serve as promising indicators of treatment response [39,40].
Additionally, exploring CNN-based autoencoders holds potential for feature extraction
and may yield more interpretable results than traditional multiomics approaches.

Our study has several limitations that warrant further investigation. First, the small
and retrospective patient cohort, a consequence of the early phase of the PULSAR trial,
resulted in a limited number of cases that met the stringent recruitment criteria. The imbal-
anced dataset and lack of a fully independent validation dataset pose additional challenges.
Efforts should be directed toward increasing the cohort size and enhancing the robustness
of the predictions. Second, tumor size was chosen as the predictive outcome, with a 20%
threshold established for classifying two groups based on the existing literature [13–15,41].
Further research is needed to assess how changes in tumor volume correlate with local
control and other important clinical outcomes in the treatment of brain metastases. Ad-
ditional clinical evidence is also required to validate the significance of a 20% change as
a meaningful threshold; alternative thresholds (e.g., 30%, 50%) may be explored as well.
Additionally, tumor necrosis may complicate tumor volume measurements. A tumor may
appear to shrink due to necrosis, which does not necessarily indicate the complete eradica-
tion of viable cancer cells. Finally, the focus should not be solely on tumor volume change.
Long-term outcomes such as overall survival, disease progression, and quality of life after
treatment should also be considered.

5. Conclusions

Not all cancers are the same, and each patient responds differently to treatment. Using
brain metastases as a case study, we developed a multiomics approach that integrates
radiomics, dosiomics, and delta features for outcome prediction. The EFS model exhibits
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superior performance compared to six individual models, highlighting the significance of
incorporating both pre-treatment and intra-treatment data in a delta mode. Our proposed
framework can serve as a valuable tool for both PULSAR and other forms of fSRT/SSRS.
Its potential clinical benefits include facilitating more timely and personalized treatment
plan updates and reducing the risks associated with under- or over-treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16193425/s1, Figure S1: Performance comparison between
5-fold cross-validation and 3-fold cross-validation. Figure S2: Correlation heatmaps showcasing
the final nine features selected for each predictive model after a comprehensive multi-level feature
selection process. Figure S3: Confusion matrices from a single iteration of 5-fold cross-validation for
the ensemble feature selection (EFS) model. Figure S4: Illustration of stratified 5-fold cross-validation
along with frequency-based feature selection for mitigating overfitting and bias.
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