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Abstract: Plastic food packaging causes massive pollution in the environment via resource extraction,
gas emissions, and the enduring plastic waste accumulation. Hence, it is of crucial importance to
discover sustainable alternatives in order to protect ecosystems and conserve precious resources.
Recently, seaweed has been emerging as a promising sustainable solution to plastic pollution. Sea-
weed is a fast-growing marine plant that is abundant in tropical coastlines and requires minimal
resources to cultivate. In addition, seaweed is rich in valuable polysaccharides such as alginate,
fucoidan, carrageenan, agar, and ulva, which can be extracted and processed into biodegradable
films, coatings, and wraps. This ability allows the creation of an alternative to plastic food packages
that are completely biodegradable, made from renewable resources, and do not linger in landfills
or oceans for centuries. In this context, this review discusses the main classification of seaweed,
their production and abundance in the world, and provides a summary of seaweed-based materials
developed in the last 2–5 years for potential usage in the food packaging sector.

Keywords: bioplastic; seaweed films; seaweed packaging; seaweed companies

1. Introduction

Plastic food packaging presents a major problem on multiple fronts, making it cru-
cial to find replacements. The most significant concern is plastic’s harmful effect on the
environment. Traditional plastics are derived from fossil fuels and are not biodegradable.
This means they can take hundreds of years to break down, accumulating in landfills and
littering landscapes [1]. Even worse, plastic waste often finds its way into oceans, harming
marine life through entanglement, ingestion, and the creation of microplastics that pollute
the food chain [2]. Improperly disposed plastic packaging can leach harmful chemicals into
the soil and water. In addition, some types of plastics, when heated or degraded, can release
chemicals that may disrupt hormones or even be carcinogenic [3]. This raises concerns
about potential health risks associated with food stored in plastic packaging, especially
when heated in microwaves. The production of plastic packaging relies heavily on fossil
fuels, a non-renewable resource. This constant demand contributes to resource depletion
and the environmental consequences of extracting and refining fossil fuels. While some
plastic packaging is recyclable, the recycling process itself can be complex and inefficient.
Furthermore, not all types of plastic are readily recyclable, leading to a significant portion
ending up in landfills or the environment.
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As the world confronts the ever-worsening issue of plastic pollution, seaweed repre-
sents immense potential as a sustainable raw source for bioplastics, since it is an abundant
and fast-growing marine resource. Unlike traditional plastics derived from fossil fuels, sea-
weed bioplastics are biodegradable, as they are naturally broken down by microorganisms
without leaving behind harmful microplastics that threaten ecosystems [4].

The advantages of seaweed bioplastics extend beyond biodegradability. Namely, spe-
cific types of seaweed are rich in polysaccharides that can be extracted and processed into
bioplastic films and containers [5,6]. Furthermore, some seaweed species possess inherent
antimicrobial properties, which could translate to bioplastics with built-in resistance to bac-
teria and mold growth [7,8]. In addition, seaweed cultivation requires minimal freshwater
and land, making it a low-impact solution compared to traditional agriculture. Moreover,
seaweed farms can act as carbon sinks, helping to mitigate climate change.

However, challenges remain in scaling up seaweed bioplastic production. Refining the
extraction and processing techniques is crucial to ensure cost-effectiveness and competition
with conventional plastics. Numerous studies are being conducted to enhance the me-
chanical and water vapor barrier properties of seaweed bioplastics to match the durability
of their petroleum-based counterparts. Despite these hurdles, the possibilities offered by
seaweed for reducing the plastic pollution are undeniable. With continued research and
investment, seaweed bioplastics could play a pivotal role in creating a cleaner and more
sustainable future.

In light of the above facts, this manuscript aims to provide a comprehensive overview
of the last 5 years of seaweed-based food packaging production. It will describe the main
parameters that define the quality of seaweed-based materials, their potential and already
existing commercial application, and the regulations and safety of these materials for use
in the food packaging sector.

2. The Seaweed Revolution

Seaweed, as a broad spectrum of marine algae, can be classified into three different
groups based on their color, cell structure, and pigments (see Figure 1): (a) green seaweed
(Chlorophyta), (b) red seaweed (Rhodophyta), and (c) brown seaweed (Phaeophyta). Each
group has unique characteristics and offers different benefits [9]. A diverse array of sea-
weed species, encompassing approximately 900 green, 4000 red, and 1500 brown varieties,
exists in nature. Approximately 221 species are currently harvested worldwide, including
32 Chlorophytes, 64 Phaeophyceae, and 125 Rhodophytes [10]. They can contain different
distributions of minerals, proteins, and diverse polysaccharides in cell walls, providing
beneficial biological properties [11]. The most widely farmed species among three different
types of seaweed globally and their chemical composition are displayed in Table 1. As
it can be seen from the table, the chemical composition of seaweed varies significantly
among the three main types: brown, red, and green. In general, the protein content in
seaweed varies between 3 and 45%, and the carbohydrate content varies between 4 and
67%. In addition, seaweed is known to be a material with low lipid content, usually below
8%. Brown seaweed is generally characterized by its high carbohydrate content. Red
seaweed typically contains low-to-moderate levels of protein (except in case of Porphyra
that contain 45% of proteins) and carbohydrates, with variations depending on the species,
whereas green seaweed exhibits higher protein and lipid content compared to brown and
red seaweed. These differences in chemical composition are influenced by various factors,
including variation in species, environmental, and cultivation conditions.
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Table 1. The most widely farmed brown, red and green species in the world [12,13] and their chemical
composition [10,14–18].

Seaweed Species Major Seaweed Producing Countries Protein, % Lipid, % Carbohydrate, % Fiber, %

Brown Seaweed
Laminaria Japan, Korea, China, Norway, Canada, US, Chile 8–15 1 48 36–37
Sacharina Japan, Korea, China 7–8 1–2 52 10–41
Undaria Japan, Korea, China 12–23 1–5 45–51 16–51

Sargassum China, Philippines 8–16 0.5–1.4 4–68 7–8
Lessonia Chile, Argentina, Peru 13 0.6–1.7 38–48 7–23

Macrocystis US, Canada, Mexico, Chile 11–14 0.3–0.7 42–75 5–18
Red Seaweed

Kappapchycus Philippines, Tanzania, Indonesia, Malaysia, Vietnam 3–7 1 8–65 8–9
Euchema Philippines, Tanzania, Indonesia, Malaysia, Vietnam 5–6 0.2 63–67 6

Gracilaria Chile, Argentina, South Africa, Japan, Indonesia,
Philippines, China, India 12 0.3 74 25

Gellidium Japan, China, Korea, Chile South Africa, Portugal,
Morocco 9–14 0.1–2 33–40 16

Porphyra Japan, Korea, China 31–44 2 44 12–35
Green Seaweed

Ulva Japan, China, Korea 10–26 0.6–2 36–56 29–55

Caulerpa Indonesia, Australia, Thailand, Philippines, India,
France, Spain 12–19 0.9–7.7 49–59 3–12

Codium Australia, Indonesia, Thailand, Philippines, Spain 8–11 0.5–1.5 39–67 5

Foods 2024, 13, x FOR PEER REVIEW 3 of 23 
 

 

Table 1. The most widely farmed brown, red and green species in the world [12,13] and their chem-
ical composition [10,14–18]. 

Seaweed  
Species 

Major Seaweed Producing Countries Protein, % Lipid, % Carbohydrate, % Fiber, % 

Brown Seaweed 
Laminaria  Japan, Korea, China, Norway, Canada, US, Chile 8–15 1 48 36–37 
Sacharina  Japan, Korea, China 7–8 1–2 52 10–41 
Undaria  Japan, Korea, China 12–23 1–5 45–51 16–51 

Sargassum  China, Philippines 8–16 0.5–1.4 4–68 7–8 
Lessonia  Chile, Argentina, Peru 13 0.6–1.7 38–48 7–23 

Macrocystis  US, Canada, Mexico, Chile 11–14 0.3–0.7 42–75 5–18 
Red Seaweed 

Kappapchycus 
Philippines, Tanzania, Indonesia, Malaysia, Vi-

etnam 3–7 1 8–65 8–9 

Euchema Philippines, Tanzania, Indonesia, Malaysia, Vi-
etnam 

5–6 0.2 63–67 6 

Gracilaria  
Chile, Argentina, South Africa, Japan, Indonesia, 

Philippines, China, India 12 0.3 74 25 

Gellidium  
Japan, China, Korea, Chile South Africa, Portu-

gal, Morocco 9–14 0.1–2 33–40 16 

Porphyra  Japan, Korea, China 31–44 2 44 12–35 
Green Seaweed 

Ulva  Japan, China, Korea 10–26 0.6–2 36–56 29–55 

Caulerpa  
Indonesia, Australia, Thailand, Philippines, India, 

France, Spain 
12–19 0.9–7.7 49–59 3–12 

Codium  Australia, Indonesia, Thailand, Philippines, Spain 8–11 0.5–1.5 39–67 5 

 
Figure 1. Different types of seaweed. 
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try continues to expand, with seaweed-derived products finding their way into a wide 
range of sectors. Seaweed is used as a food ingredient in Asian culture not only for hu-
mans but also as a nutritional feed in aquaculture, providing essential nutrients and 
unique flavors [19,20]. It is also utilized in the pharmaceutical industry to improve health, 
due to its recognized high antioxidant and anti-inflammatory properties [21–24]. Addi-
tionally, seaweed-based products have found applications in cosmetics, and agriculture 
[25–29]. The versatility of seaweed and its growing popularity as a sustainable resource 
contribute to the continued expansion of the seaweed industry. 
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lecting seaweed directly from natural marine environments. However, overharvesting, or 
improper harvesting techniques can disrupt marine ecosystems and deplete seaweed 
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Due to its high nutritional value, seaweed has been used by humans for centuries for
various purposes. In traditional cultures, seaweed has been consumed as food, used in
medicinal practices, and employed in industrial applications. Today, the seaweed industry
continues to expand, with seaweed-derived products finding their way into a wide range of
sectors. Seaweed is used as a food ingredient in Asian culture not only for humans but also
as a nutritional feed in aquaculture, providing essential nutrients and unique flavors [19,20].
It is also utilized in the pharmaceutical industry to improve health, due to its recognized
high antioxidant and anti-inflammatory properties [21–24]. Additionally, seaweed-based
products have found applications in cosmetics, and agriculture [25–29]. The versatility of
seaweed and its growing popularity as a sustainable resource contribute to the continued
expansion of the seaweed industry.

In general, all seaweed supply come from two sources: wild harvesting and culti-
vation (i.e., aquaculture) [30]. Wild harvesting is a traditional method, which involves
collecting seaweed directly from natural marine environments. However, overharvesting,
or improper harvesting techniques can disrupt marine ecosystems and deplete seaweed
populations. Hence, although wild harvesting can be cost-effective, it can also have envi-
ronmental implications if not managed sustainably [31]. On the other hand, cultivation
represents seaweed farming, or mariculture, in controlled environments. This method
offers greater control of seaweed growth conditions, such as temperature, light, and nu-
trient availability [32]. In addition, the cultivation of seaweed in specific locations using
sustainable practices can help to reduce pressure on wild populations and ensure a more
reliable supply. Additionally, aquaculture can enable the production of specific seaweed
varieties with desired characteristics that are tailored to meet market demands.
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Currently, almost all seaweed supply comes from aquaculture, cultivated in land-
based ponds and near-shore systems. Factors like water temperature, nutrient availability,
and light intensity are carefully monitored to optimize growth. Seaweed production
offers several benefits, including providing a sustainable source of food, pharmaceuticals,
and industrial materials, contributing to coastal economies and promoting biodiversity.
According to FAO 2022, 99.5% of farmed seaweed is produced in East and Southeast
Asia (35 million tons); China holds the first place with 61% of global seaweed production,
and Indonesia holds the second place with 26% [33]. Red seaweed is the most widely
cultivated, with a global production of 18,251,474 tons. Brown seaweed is the second most
produced, with a global annual production of 16,393,764 tons. Lastly, green seaweed is the
least produced, with a global annual production of 73,407 tons [33]. The leading global
producers of seaweed are presented in Figure 2. The main exporters of seaweed, according
to reports, are Korea (Republic of, USD 254 million), Indonesia (USD 225 million) and Chile
(USD 106 million), whereas the main importers of seaweed are China (USD 443 million),
the rest of Asia (USD 318 million), and Europe (USD 245 million) [34].
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3. General Food Packaging Requirements

Food packaging films play a key function in maintaining food quality, safety, and
prolonging their shelf life. The selection of the right packaging film depends on the type of
food and the various physical–chemical properties of the selected package [35,36]. The most
important criteria for food packaging are barrier property and mechanical stability. Barrier
property ensures effective resistance against oxygen, moisture, and gases in order to prevent
and slow down the spoilage, oxidation, and microbial growth. Additionally, the film must
possess sufficient mechanical stability to withstand the transportation and storage time.
The industrial standard that food packaging material needs depending on different types
of food is presented in Table 2. As it can be seen, food that contains high moisture requires
packages with higher moisture and oxygen permeability (MTR and OTR, respectively)
when compared to dry food. In fact, the package needs to allow some moisture exchange
with the environment to prevent dehydration and the loss of freshness of food with high
moisture content. Moreover, fresh food like fruits and vegetables continue to respire after
harvest, producing moisture and carbon dioxide. Hence, adequate moisture permeability
allows these gases to escape, preventing condensation and the spoilage of the food product.
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The MTR and OTR values for dry food varies between 0.093 and 30 g/m2 day, and 0.068
and 26 cm3/m2 day bar, respectively. On the other hand, these values for food with high
moisture content range between 0.40 and 100 g/m2 day and 0.59–10,000 cm3/m2 day bar,
respectively [37]. According to the industrial internal standards, the tensile strength of food
packaging materials should be above 7 MPa, and the elongation at break should be above
40% [38]. Besides mechanical stability, the seal ability is also an important parameter to
maintain food product integrity and prevent leakage. For products that require visibility,
transparency or a clear viewing window is essential. In cases where the product undergoes
heating processes, such as cooking or pasteurization, the film must exhibit heat resistance
to avoid melting or degradation. Finally, the film should be resistant to chemicals that may
come into contact with the food, such as acids or oils.

Table 2. Barrier and mechanical requirements of commercial synthetic food packages for different
types of food; thickness was approximately between 15 and 25 µm [37–39].

Food Product Shelf Life,
Months

MTR,
g/m2 Day (23 ◦C,

RH = 85%)

OTR,
cm3/m2 Day Bar

(23 ◦C, RH = 75%)
TS, MPa e, % Commercial Packages

Low Moisture Food

Nuts, snacks 3–12 0.093–3.0 0.16–9.6 20–80 100–600 Laminates of PP with EVOH,
PP; Metallization of PP

Coffee 12–18 0.61–1.1 0.87–1.3 30–80 40–600 PP or PET metallized or AL
foil laminates

Other dried foods 12–24 0.14–1.7 0.068–0.82 30–80 100–600 Laminates of PP or PET
with EVOH

Oils >12 <30 2.6–26 45–75 40–600 PET
High Moisture Food

Cheese 2 50 86–345 20–40 100–1000 PP, HDPE
Fat 3 5.2–9.2 6.8–80 30–40 100–600 PP

Retorted food 3–36 0.40–7.6 0.59–5 30–80 100–600 Laminates of PET or PP with
EVOH or polyamide

Fruits, vegetables,
and salads 0.25 10–4000 10,000–200,000 7–40 200–900 LDPE, PP

Meat and meat-
based products 0.25–0.5 2–100 20–10,000 45–75 40–100 PS and PET trays

Food packaging films must comply with regional and international regulations regard-
ing food contact materials. Particularly, the film should not release any harmful substances
into the food. This requirement becomes even more important in the case of biobased
materials, where the regulations are still not completely clear and implemented. In the last
decade, there has been an increased necessity to introduce biodegradable or compostable
food packaging materials into the market to reduce plastic accumulation in nature and their
negative impact on the environment. Moreover, the film’s production process should con-
sider environmental factors like energy consumption and resource use. Nevertheless, the
film should be compatible with existing packaging machinery and processes to minimize
production costs [40,41].

4. Seaweed-Based Food Packaging

Seaweed has gained increasing attention as a promising raw material for the develop-
ment of sustainable food packaging due to its numerous advantages. Its renewable nature,
biodegradability, edibility, and good oxygen/grease barrier property make it an attractive
alternative to traditional plastic packaging [42,43]. However, seaweed is highly sensitive
to moisture, which can affect the quality, shelf life, and functionality of seaweed-based
materials [44]. To overcome these limitations, researchers are exploring various modifica-
tion techniques, including blending with other biobased polymers, chemical treatments,
and the incorporation of nano-fillers and polyphenols [44–46]. These modifications aim to
enhance the performance and versatility of seaweed-based packaging in different forms,
making it a more viable option for various food products.
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For example, seaweed pulp can be blended with other biobased polymers and fillers,
and processed by extrusion, compression molding, or injection molding to obtain materials
for potential use as trays or cups with enhanced strength, flexibility, or biodegradabil-
ity [47,48]. For specific food products, seaweed may be used to extract valuable polysaccha-
rides that can be further converted into thin films and coatings by 3-d printing, compression
molding, electrospinning, or the casting method (see Figure 3). The obtained seaweed-
based films can be applied as coatings to fruits, vegetables, and other perishable food to
extend their shelf life, reduce moisture loss, and prevent microbial spoilage [49]. Moreover,
seaweed-derived coatings can be applied to enhance the properties of paper or other pack-
aging materials due to their high oxygen and grease barrier [50]. These coatings can also be
formulated as active food packaging to deliver bioactive compounds, such as antioxidants
or antimicrobials, enhancing the nutritional value and safety of the food product [51]. On
the other hand, some seaweed-based films can be designed as intelligent packaging by the
incorporation of natural functional sensors or pH indicator in order to monitor the quality
and freshness of food [52].
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Overall, seaweed-based packaging offers a wide range of versatility, allowing for the
creation of various packaging formats and applications. The choice of seaweed packaging
material depends on the specific product requirements, including its shelf life, and the
necessary barrier properties. On the other hand, the final properties of seaweed-packaging
materials are strongly influenced by seaweed type and origin [4,44]. Namely, different
seaweed species have a varying moisture content, different distribution of polysaccharides,
proteins, and bioactive components in cell walls, and different shelf life, which directly
impacts the susceptibility to spoilage. Hence, the following sections obtain the summarized
data from the literature related to the modifications and physical–chemical properties of
food packaging material, classified by the seaweed type and origin.

4.1. Brown Seaweed

Brown seaweed is the largest group of seaweeds, known for its large and complex
structures like kelp. Their brown color comes from a pigment called fucoxanthin, which
masks the green chlorophyll underneath. Brown seaweed is a crucial component of marine
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ecosystems, providing nourishment and habitat for numerous species. Brown seaweed
species typically grows in colder waters. Optimal growth conditions for these algae lie
within a temperature range of approximately 20 ◦C or lower. While brown seaweeds can
be encountered in warmer waters, their suitability for valuable polysaccharide production
and food applications is often compromised under such conditions. Brown algae is rich in
valuable polysaccharides, particularly alginate and fucoidan. These naturally occurring
biopolymers act as the building block for brown algae-based food packaging films [53].

4.1.1. Alginate

Alginate is mostly contained in the following genera of seaweed: Laminaria, Sargassum,
Ascophyllum, Macrocystis, and Ecklonia. Alginate is composed of two main building blocks:
mannuronic acid (M) and guluronic acid (G). The M and G units are linked together through
1,4-glycosidic bonds. A unique aspect of alginate is its heterogeneity. Unlike some starches
or cellulose where the sugar units are all the same, alginate can have varying sequences
of MM, GG, and MG units along its chain. This sequence variation (M/G ratio and block
structure) can influence the final properties of the alginate. The mannuronic acid are
linked through β [1–4] linkage, hence these M-block segments have a linear and flexible
conformation, whereas the guluronic acid are linked by α [1–4] linkage, creating a steric
hindrance around the carboxyl groups. Alginate has ability to create 3-dimensional gels in
the presence of divalent cations. The strength and rigidity of the gel can be controlled by
factors like the concentration of alginate and divalent cations, as well as the M/G ratio [54].
For example, a higher concentration of calcium ions and alginate leads to more rigid gels.
In addition, it is believed that only G segments interacts with divalent ions in crosslinking
reactions [55,56]. Alginate solutions can be cast into thin films upon drying. These films
can be flexible or more rigid depending on the processing parameters and the presence of
other components [25].

Yun and Liu studied the influence of mandarin peel powder on the physical–chemical
properties of alginate-based films. The mandarin peel powder rich in pectin and polyphe-
nols provided high antimicrobial and antioxidant activity to alginate films. The water vapor
permeability (WVP) and tensile strength values, depending on type of mandarin peel, were
5.38–8.31 × 10−11 g/m s Pa and 4.87–7.90 MPa, respectively. In addition, the obtained
films demonstrated a delay in corn oil oxidation [57]. Rahman and Chowdhury developed
an alginate–guar gum sensor film for humidity. Namely, the fluorescence intensity of
films changed when exposed to a different relative humidity. This ability allowed the
monitoring of the freshness of food products like bread [58]. Zhang et al. developed a
coating film based on alginate and carboxymethyl chitosan crosslinked with citric acid for
the preservation of strawberries. The WVP and tensile strength values of obtained films
were 2.74 × 10−2 g/m day kPa and 1.024 MPa, respectively. In addition, the obtained
coating film could preserve the shelf life of strawberries for up to 8 days at 25 ◦C, 19 days
at 5 ◦C, and 48 days at 0 ◦C [59].

Capar investigated the influence of vitis vinifera leaf extract and quercetin on the
performances of alginate films. It was shown that vitis vinifera leaf extract caused only
a slight improvement in the mechanical stability of alginate films (17 MPa) compared
to quercetin (16 MPa); however, it had a significant impact on antioxidant activity (51%
for alginate–vitis vinifera extract, 36% for alginate-quercetin). All films degraded in soil
completely after 30 days [60]. On the other hand, Li et al. incorporated pterostilbene
in pectin-alginate matrix. Although pterostilbene improved the antioxidant activity and
moisture resistance of films, its addition led to decreased tensile strength [61]. Wang
et al. obtained the highest tensile strength (5.3 MPa), antioxidant activity (99%), and water
vapor barrier (0.13 × 10−10 g/m s Pa) with the incorporation of 8 wt% of tea polyphenols
in alginate–konjac glucomannan film. Moreover, the film showed high efficiency in the
preservation of beef and apples through the inhabitation of the microbial activity, which
consequently led to a delay in food spoilage [62]. Akhtar et al. noticed that the addition of
15 wt% of phycocyanin into alginate–carboxymethyl cellulose films caused an enhancement
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in the water vapor barrier, tensile strength, and ABTS antioxidant activity, reaching values of
5.91 × 10−10 g/m s Pa, 40.25 MPa, and 80%, respectively [63]. Guo et al. obtained alginate–
beetroot extract films incorporated with 10% of carboxylated cellulose nanocrystals, a tensile
strength of 55.74 MPa, and ABTS antioxidant activity of 98%. Moreover, the films discolored
during the storage of pork when the TVB-N value was above 18.0 mg/100 g, suggesting
that the developed film could be efficiently used for the detection of pork spoilage [64].
Santons and Martins demonstrated that adding an onion peel and butterfly pea flower
extract inclusion into the alginate matrix led to an enhancement in the mechanical stability
by 70% and water vapor barrier by 15% when compared to the control alginate film [65].
Devi et al. studied the influence of onion peel extract on alginate-based films to monitor the
freshness of milk. The obtained films had an antioxidant activity of 81% and demonstrated
an efficient detection of milk spoilage during storage at 20 ◦C for 48 h [66].

Aristizabal-Gil et al. demonstrated that the incorporation of ZnO nanoparticles into
the alginate matrix at different concentrations up to 5 g/L led to increased WVP from
3.5 × 10−9 g/m s Pa (control film) to 7.2 × 10−9 g/m s Pa. This effect was more evident
with rising levels of ZnO particles in the film. On the other hand, there was a slight increase
in TS, from 78 MPa to 82 MPa, when 0.5 g/L of ZnO nanoparticles was added in the
alginate matrix, whereas there was a further increase in the nanoparticle concentration
and tensile strength dropped down to 62 MPa. It is interesting to note that ZnO/CaO
nanoparticles promoted a better WVP barrier (with incorporation of 5 g/L nanoparticles,
WVP = 4.4 × 10−9 g/m s Pa, but promoted an even higher mechanical destabilization
(TS = 54 MPa) [67]. On the other hand, Aziz and Salama investigated alginate-based films
incorporated with aloe vera and ZnO nanoparticles. It was shown that the tensile strength
increased from 17.1 MPa (control alginate film) to 37.64 MPa (composite film), whereas
the WVP decreased from 21.53 mm/m2 day kPa (control film) to 6.22 mm/m2 day kPa
(composite film). Moreover, the composite film demonstrated high antibacterial activity
towards S. aureus in the efficiency range with commercial synthetic antibiotic ampicillin
and towards E. coli in the efficiency range of synthetic antibiotic gentamicin. Nevertheless,
the coating prolonged the tomato shelf life to 16 days, preventing spoilage [68].

4.1.2. Fucoidan

The most abundant sources of fucoidan include species like Laminaria, Fucus, and
Undaria pinnatifida, commonly known as kelp. Fucoidan is characterized by its complex
and heterogeneous structure. It is composed of repeating units of fucose, a type of sugar,
linked together by glycosidic bonds. The fucose residues can be sulfated at different posi-
tions, contributing to the molecule’s overall negative charge. Additionally, fucoidan often
contains other sugar residues such as galactose, xylose, and mannose, further increasing its
structural complexity. The degree of sulfation, branching, and the presence of other sugars
vary depending on the algal species and extraction method, resulting in a diverse range
of fucoidan structures [69,70]. Unlike some other polysaccharides like agar or alginate,
fucoidan does not exhibit strong gelling properties under typical conditions. The low
viscosity of fucoidan and the presence of sulfate groups interfere with the formation of the
ordered network structure required for gelation.

James et al. performed a co-extraction of alginate and fucoidan from Ascophyllum
nodosum seaweed in a glycerol/choline chloride solvent, and the co-extract was used for
the further development of biobased films. The fucoidan content in films varied between
0 and 100%. The authors obtained an increased WVP and moisture sensitivity values,
decreased tensile strength, and increased fucoidan content in films [71]. In addition, Gomaa
et al. showed that the presence of fucoidan decreased the water vapor barrier and oxygen
barrier of alginate–fucoidan blend films, but improved the antioxidant activity [72]. On
the other hand, Wang et al. blended fucoidan with chitosan and added anthocyanins
obtained from coleus grass (Plectranthus scutellarioides) leaves. The addition of fucoidan
in the chitosan matrix led to a reduction in the WVP and OP values, tensile strength, and
elongation at break. This effect was further promoted for the WVP, OP, and elongation at
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break with the inclusion of a higher content of anthocyanin. However, the tensile strength
significantly dropped down with anthocyanin presence in the film. On the other hand,
the extract combined with fucoidan provided high antimicrobial and antioxidant activity,
and was able to detect the spoilage of salmon during the storage time [73]. Liang et al.
showed that the inclusion of CA improved mechanical stability, but decreased the water
vapor barrier property of chitosan-fucoidan films. These films also had high antibacterial
activity, high response to pH, and provided good preservation of litchis during the 8 days
of storage [74].

4.2. Red Seaweed

Red seaweed is known for its vibrant red color, owing to the phycoerythrin and
phycocyanin pigments. These pigments allow red seaweed to absorb blue and green
light, enabling them to thrive in deeper waters where sunlight penetration is lower. Red
seaweed species are prevalent in colder waters in regions such as Nova Scotia, Canada, and
Southern Chile. Additionally, they can be found in more temperate climates, as evidenced
by their presence along the coasts of Morocco and Portugal. Furthermore, tropical waters,
including Indonesia and the Philippines, also harbor useful red seaweed species. Red
seaweed exhibits a diverse range of shapes and sizes, and it has been investigated as a
filler for different biobased thermoplastic materials, such as polylactic acid, thermoplastic
starch, poly(butylene succinate), and polybutylene adipate terephthalate, produced by
reactive extrusion, compression molding, or solvent casting to improve biodegradability
and mechanical stability [18,75–77]. Additionally, red seaweed is a valuable source of
agar and carrageenan, which are used in various food and industrial applications. These
complex polysaccharides can be extracted and processed to create bioplastics with unique
properties. Carrageenan, for instance, forms gels with varying textures depending on its
type, offering versatility in final product design. Agar, known for its gelling and thickening
properties, can be mixed with other biopolymers to improve the strength and functionality
of films.

4.2.1. Agar

Agar is mostly derived from the genera Gracilaria and Gelidium. Agar is composed
of two molecules: agarose and agaropectin. Agarose is the essential substance that gives
agar its gel-forming characteristics. It is a linear polymer composed of D-galactose and
3,6-anhydro-α-L-galactose repeating units linked by 1,3-β-glycosidic and 1,4-α-glycosidic
bonds. Agaropectin is a more heterogeneous component of agar. It contains the same basic
sugar residues as agarose but also includes additional components such as sulfate and
pyruvate groups. The specific ratio of agarose to agaropectin in agar varies depending
on the algal species and extraction methods, influencing the final properties of the agar
product [78].

Agar is known for its strong gelling properties. Unlike alginate, which requires
divalent cations, agar forms gels through a process called thermal gelation. When heated
in water, the agar molecules form hydrogen bonds with each other, creating a three-
dimensional network that traps water molecules, resulting in a gel. The strength and
rigidity of the gel depend on the concentration of agar and the presence of other solutes.
One unique feature of agar gels is their thermo-reversibility. Agar gelation involves the
transformation of a hot aqueous agar solution into a solid gel upon cooling. This allows
for the easy processing and shaping of agar before it sets into a gel upon cooling. The key
to this transformation lies in the structure of agar, a polysaccharide composed primarily
of agarose. As the solution cools, agarose molecules begin to form a three-dimensional
network through the establishment of hydrogen bonds between their constituent sugar
units. This intricate network entraps water molecules, resulting in the formation of a firm,
translucent gel. The strength and properties of the gel are influenced by factors such as
agar concentration, cooling rate, and the presence of other substances [79].
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Martinez-Sanz et al. used agar-based extracts from Gelidium sesquipedale to obtain
the films. The physical–chemical properties of obtained films were compared with ones
made by commercial agar. The presence of impurities in agar extract films provoked a
higher plasticization effect when compared to commercial agar films. In addition, a longer
heat extractive treatment allowed the release of higher amount of polysaccharide, thus
providing more ductile, but less resistant films. On the other hand, the WVP values ranged
between 0.66 and 0.76 × 10−13 kg/s m Pa, regardless of the extraction method [80].

Da Rocha et al. studied the influence of fish protein hydrolysate (PH) and clove
essential oil (CEO) on the physical–chemical properties of agar films. The tensile strength
of both films (agar-PH and agar-CEO films) were lower than for the control agar film. It
was interesting to note that the PH inclusion led to an increased elongation at break (42.7%)
and solubility (48.86%) of films when compared to the control agar film (elongation at
break = 22.4%, and solubility = 21.95%). On the contrary, agar-CEO films demonstrated
a significant drop down in the elongation at break (3%) but kept a similar solubility
percentage like control films. WVP values increased in both cases, with respect to the
control film, and ranged around 3.3–3.7 × 10−8 g mm/cm2 h Pa. In addition, both films
were tested as packages for fish filet, and agar-CEO films provided better fish preservation,
which was evidenced by the reduced pH and total volatiles and the slowed-down growth
of microorganisms when compared to the control films [81].

Radovanovic et al. developed agar films with the in situ generation of a nano-Cu
phosphate and nano-Cu carbonate phase inside the biopolymer matrix. The release of Cu
ions into food simulants from both agar-based films over a seven-day period fell within the
established specific release limits for this metal. Furthermore, both composite films showed
high antibacterial activity towards E. coli and S. aureus food pathogens, and enhanced water
vapor barrier and mechanical stability, when compared to the agar control film. However,
Cu-carbonate phase provided films with higher mechanical stability (TS = 39 MPa) and
a better water vapor barrier (1.94 × 10−10 g/m s Pa) than the Cu-phosphate phase [82].
On the other hand, Kumar et al. showed that the incorporation of ZnO nanoparticles into
the agar matrix caused a decrease in tensile strength from 51 MPa (control film) to 20 MPa
(composite film). Despite lower mechanical stability, composite film preserved the grapes,
keeping them fresh up to 21 day stored at room temperature [83].

Wang et al. used bacterial nanocellulose from 1 to 10 wt% to improve the physical–
chemical properties of agar films. The lowest water solubility (18.55%), lowest WVP
(6.88 × 10−11 g/m s Pa), and highest tensile strength (44.51 MPa) was obtained for agar
films that contained 10 wt% of bacterial nanocellulose [84]. Zhao et al. blended agar
with different biopolymers such as gelatin, gellan gum, carrageenan; modified it with
cellulose nanocrystals as a reinforcement additive; and additionally crosslinked it with
calcium ions. The best physical–chemical properties were demonstrated by composite films
of agar–gellan gum crosslinked with Ca2+ and reinforced with 0.375 mg/g of cellulose
nanocrystals. The tensile strength of film was 65 MPa, and the WVP was 5.82 × 10−11 g/m
s Pa. In addition, the composite film preserved the shelf life of strawberries by reducing
the weight loss and respiration intensity during 7 days of storage time [85].

4.2.2. Carrageenan

Carrageenan is a linear polymer and it is mainly composed of α-D-galactopyranose (Gal),
3,6-anhydro-α-L-galactopyranose (LA), and β-D-galactopyranose 6-sulfate (S-Gal) [86]. The
sugar units in carrageenan are linked together by 1,3-β-glycosidic bonds, similar to the
main chain linkages in agar. However, the presence of the LA unit can create branches in the
carrageenan molecule. The defining characteristic of carrageenan is the presence of sulfate
ester groups (SO3

−) attached to the galactose units. These sulfate groups can be located at
positions 2, 3, 4, or 6 on the sugar ring, depending on the specific carrageenan type. The
number and position of these sulfate groups significantly influence the final properties
of the carrageenan. Based on the sulfation pattern (number and position), carrageenan
can be broadly classified into three main types: (a) Kappa-carrageenan, which contains



Foods 2024, 13, 3212 11 of 22

one sulfate group per disaccharide unit, is extracted mostly from Kappaphycus alvarezii
seaweed; (b) Iota-carrageenan, which contains two sulfate groups per disaccharide unit,
is mostly extracted from Eucheuma denticulatum seaweed; (c) and Lambda-carrageenan,
which contains 3 sulfate groups per disaccharide unit, is mostly extracted from Gigartina
or Chondrus seaweed [87]. In addition, 3, 6-anhydrobridges are present in kappa- and
iota-carrageenan, but not in lambda-carrageenan.

The presence of sulfate groups allows carrageenan to interact with various cations,
affecting its functionality. For example, carrageenan exhibits gelling properties, but the
type and strength of the gels depend on the specific carrageenan. Kappa-carrageenan
interacts strongly with potassium ions, while iota-carrageenan interacts with calcium ions.
Kappa-carrageenan forms strong, rigid gels, whereas iota-carrageenan forms weaker, more
elastic gels. Lambda-carrageenan typically does not form gels on its own [88]. Similar to
agar, some carrageenan gels (particularly kappa-carrageenan) exhibit thermos-reversibility.
They can be melted upon heating and reformed into gels upon cooling. The versatility
in gel formation allows for tailoring carrageenan-based bioplastics to specific packaging
needs. Currently, due to specific chemical structure, the kappa-carrageenan is the most
studied carrageenan.

Yadav and Chiu developed carrageenan composite films loaded with 1–7 wt% of
cellulose nanocrystal, with an increased water contact angle of 72%, enhanced water vapor
barrier of 4.69 × 10−11 g/s m Pa, and improved tensile strength of 53 MPa, in comparison
to pristine carrageenan films [89]. Wan Yahaya et al. investigated cellulose nanofibers as a
reinforcement additive and butylated hydroxyanisole (BHA) as a strong antioxidant to im-
prove the physical–chemical properties of carrageenan films [90]. The inclusion of cellulose
nanofiber increased the tensile strength of film from 35 MPa (control plasticized carrageenan
film) to 45 MPa (composite film), but with inclusion of BHA in the composite film from 0.1
to 0.4 wt%, the tensile strength significantly dropped down to 10 MPa. Moreover, the BHA
presence up to 0.3 wt% decreased the wettability of carrageenan and carrageenan–cellulose
nanofiber films. On the other hand, acorn was used to improve the sealing ability of
carrageenan films [91]. The obtained film had a maximum glue and heat synergic sealing
strength of 5.09 N/15 mm at 0.3 MPa for 1 s (115 ◦C). However, the introduction of acorn
decreased the water vapor barrier and the thermal and antimicrobial properties of the film.
Despite lower physical properties, the film was able to extend the shelf life of beef tallow
by significantly minimizing peroxide development within 75 days of storage. In order to
decrease the solubility and water vapor transmission of carrageenan films, ZnO and/or
SiO2 nanoparticles were introduced in the biopolymer matrix and additionally blended
with fish gelatin [92]. It was demonstrated that nanoparticles had a synergic effect with
fish gelatin on the water-related properties of carrageenan films. The WVP values ranged
between 1.34 and 2.67 × 10−10 g/m s Pa. However, blending composite films with fish
gelatin reduced the tensile strength from 28 MPa (carrageenan/nanoparticles) to 17–24 MPa
(carrageenan/nanoparticles/fish gelatin). On the other hand, the increased concentration
of silver nanoparticles in carrageenan matrix led to a significant drop in opacity from
74% (carrageenan control film) to 1.30% (nanocomposite film) [93]. The tensile strength of
obtained nanocomposite films was around 39 MPa, and WVP between 1 × 10−9 g/m s Pa
and exhibited full biodegradation in soil after 4 weeks of exposure. In addition, the films
increased the shelf life of strawberries and cheese.

Avila et al. incorporated jaboticaba extract in the carrageenan matrix to obtain active
food packaging films [94]. The inclusion of the jaboticaba extract led to a reduction in
the tensile strength value from 7.72 MPa (control carrageenan film) to 3.4 MPa (film with
extract) and in water vapor permeability from 1.89 × 10−11 g/m s Pa (control film) to
1.34 × 10−11 g/m s Pa. The presence of anthocyanins in the extract caused a color change
in films at different pHs, hence demonstrating its ability to be used as an indicator in
food packaging films. Liu et al. investigated the freshness of milk by carrageenan films
modified with mulberry extract. The incorporation of 4 wt% of extract increased the tensile
strength and antioxidant activity of films. The prepared films were able to efficiently detect
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the deterioration of milk stored at 40 ◦C during 8 h via the change in film color [95]. On
the other hand, Riahi et al. added extracts from sweet potato peel combined with the
TiO2-doped carbon dots into the carrageenan matrix to monitor the shelf life of shrimps.
The obtained films showed 100% antioxidant activity and UV barrier, and high antibacterial
activity towards E coli and L. monocytogenes after only 3 h of incubation [96]. Sangeetha
et al. studied carbon dots combined with the coconut husk lignin as a pH color indicator to
obtain carrageenan intelligent films for the monitoring of milk freshness [97]. Carbon dots
provided good oxygen barrier stability in the films, reaching a value of 83.3 cm3/m2 day
and moderate tensile strength of 35 MPa. The obtained films showed excellent response in
an acidic environment via the color change under UV light, thus being able to track the
spoilage of milk during this time. Mirzaei et al. monitored the freshness of chicken meat by
carrageenan–quercetin and carrageenan/eucalyptus leaf extract [98]. It was shown that
eucalyptus leaf extract provided better mechanical stability, antimicrobial efficiency toward
food pathogens, and color change at different pH when compared to quercetin, thus giving
intelligent film sensors with higher efficiency for chicken spoilage detection. Carrageenan
was blended with konjac glucomannan and additionally incorporated with thymol and
peppermint oil. The obtained films had high antioxidant and antibacterial activity toward E.
coli, L. monocytogenes, and S. aureus due to the synergic effect of the two oils. Moreover, films
extended the shelf life of strawberries stored at 4 ◦C up to 16 days [99]. The introduction
of cymbopogon winterianus essential oil into the carrageenan matrix provided films with
high antibacterial activity towards L. monocytogenes, 100% of antioxidant activity, and a
high contact angle (>90 ◦C) [100]. The tensile strength of films decreased from 46.15 MPa
(control nonmodified carrageenan film) to 20.75 MPa (carrageenan–essential oil film).

4.3. Green Seaweed

Green seaweed is the most closely related to land plants and shares many similarities
in terms of pigments and cell structure. They obtain their green color from chlorophyll,
similar to land plants. Green seaweed is particularly abundant in temperate and tropical
regions. While brown and red seaweed has gained much attention for their potential use in
bioplastics and food packaging sector, green seaweed should not be overlooked. Certain
green seaweeds such as Ulva (sea lettuce) show potential for the development of bioplastic
films. These bioplastics may offer functionalities like film-forming and gelling properties,
paving the way for innovative packaging solutions. In addition, green seaweed biopolymers
can be blended with other biopolymers like alginate or carrageenan from brown and
red seaweed, respectively. This blending can create composite materials with improved
strength, water resistance, and functionality for diverse food packaging applications.

Ulvan

Ulvan is mostly extracted from the genera Ulva, Monstroma, and Enteromorpha. Ulvan
is an anionic heteropolysaccharide polysaccharide built from repeating units of sugar
molecules linked together through 1,4-glycosidic bonds. The primary sugar moieties in
ulvan are rhamnose, glucuronic acid, iduronic acid, cellulose, xylose, xyloglucan, glucose,
glucuronan, arabinose, mannose, and galactose [101,102]. Generally, ulvan backbone is
composed of repetitive sequences of α-L-rhamnose-3-sulfate-1,4-β-D-glucuronic acid and
α-L-rhamnose-3-sulfate-1,4-α-D-iduronic acid [103].

A defining characteristic of ulvan is the presence of sulfate ester groups (SO3
−) at-

tached to the glucuronic acid and iduronic acid units. The number and position of these
sulfate groups can vary depending on the specific Ulva species and environmental factors.
This variation in sulfation contributes to the diverse functionalities of ulvan. Addition-
ally, ulvan exhibits excellent film-forming properties [104]. Depending on the degree of
sulfation and processing conditions, ulvan can be capable of gelation when exposed to
divalent cations. This allows for the creation of hydrogels or more rigid gels, depending
on the desired application [105]. In addition, ulvan has been recognized as a chemical
with high biological activity due to its specific sugar composition, conformation, con-
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tent of sulfate groups, low molecular weight, and antioxidant [106,107], anti-tumor [108],
immune-stimulating [109], anti-viral activity [110].

Guidara et al. investigated the influence of different plasticizers on the physical–
chemical properties of ulvan films. In all cases, the water solubility, water vapor permeabil-
ity (range 1.28–4 × 10−8 g mm/cm2 h Pa), transparency (range from 1 to 7%), elongation
at break (range 8–40%), and UV protection of ulvan films increased with an increase in
plasticizer content from 1 to 2% w/v, whereas the tensile strength of films was reduced
(range 0.5–3.5 MPa). The ulvan films prepared with glycerol showed higher transparency
and mechanical stability than those made with sorbitol [111].

Manikandan and Lens showed that ulvan films plasticized with xylitol and citric
acid caused growth of gut-friendly microbiota and a reduction in food pathogens such
as E. coli and S. aureus. In addition, the authors demonstrated that the seaweed biomass
residues of Ulva spp. after ulvan extraction could be used for the efficient synthesis of
polyhydroxyalkanoates and the production of films [112].

Amin showed that the incorporation of silver nanoparticles into the ulvan matrix had a
synergic effect in terms of high antibacterial activity toward several food pathogens. Moreover,
the films demonstrated high antioxidant activity with IC50 of 1.128 µg/mL and a moderate-
to-high water vapor permeability with a value 1.18 × 10−8 g mm/cm2 h Pa) [113]. Ganesen
et al. demonstrated that the presence of carrageenan improved the tensile strength of ulvan
films (49 MPa) but led to a higher water vapor permeability (9.96 × 10−8 g/m s Pa). In
addition, they concluded that low-molecular-weight ulvan provided films with higher
antioxidant activity, whereas high-molecular-weight ulvan provided films with higher
mechanical stability [114]. On the other hand Gomaa et al. showed that ulvan enhanced
the UV barrier properties and antioxidant activity of cellulose films, significantly impacted
oxygen barrier properties, and also promoted higher water vapor permeation [115]. In
addition, Kazemi et al. showed that blending ulvan with gelatin and incorporating a
small amount of beeswax (up to 7%) led to a significantly higher water vapor permeability
barrier compared to other studies, reaching a value of 1.86 × 10−10 g/m s Pa. However, the
obtained films had a lower tensile strength in comparison to other reported studies (only
6.23 MPa), but high elongation at break (89%) [116].

4.4. Comparison of Properties of Seaweed-Based Films from Different Families

Table 3 provides a comprehensive analysis of seaweed-based food packaging materials,
depending on the type of seaweed, and highlighting their versatility and potential appli-
cations for protection of different type of foods. As it can be seen, brown, red, and green
algae were studied to create edible, active, and intelligent films mostly for the protection of
fruits, meat, seafood, and dairy products. The data reveal that among the three different
types of seaweed, films based on red seaweed have the most consistent WVP barrier, with
an order of 10−4 to 10−6 g/m day Pa. In the case of brown seaweed-based packages,
alginate exhibits a lower WVP barrier (10−2 to 10−5 g/m day Pa) than fucoidan (10−5 to
10−7 g/m day Pa), whereas the order of the WVP for green algae films is from 10−3 to
10−6 g/m day Pa. However, there are not enough fucoidan-based and ulvan-based studies
reported in the literature to be able to make further conclusions. Seaweed-based packaging
materials demonstrate low-to-moderate WVP barrier properties, regardless of the type of
seaweed when compared to commercial food packaging materials. As mentioned, most
seaweed-based packages have a water vapor barrier in the range of orders between 10−3

to 10−5 g/m day Pa, whereas these values for the common commercial food packaging
of dry products are in the order of 10−7 to 10−9 g/m day Pa and in some special cases of
fruits, 10−5 to 10−8 g/m day Pa (see Table 1). Hence, among all the tested types of food,
seaweed-based materials might be potentially used only as edible or active coatings for
fruits, whereas for meat, oils, and dairy products, they need an improvement in the water
vapor barrier by 1 to 5 orders, and for preservation of dry food, they need an improvement
by 2 to 5 orders.
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Table 3. The summary of different seaweed-based food packaging materials for different type of food
and their water vapor barrier and mechanical stability.

Type of Food
Packaging Film Formulations Food Product WVP,

g/m Day Pa
TS,

MPa e, % References

Brown Seaweed
Edible film Alginate–cinnamaldehyde emulsion Strawberry 5.5 × 10−2 62 17 [117]
Edible film Alginate–wheat gluten–soy hull nanocellulose Banana 1.6 × 10−4 60 188 [118]
Edible film Alginate–thymol Fresh cut apple 4.4 × 10−3 28 3 [119]
Edible film Alginate–chitosan–QDs@ZIF-8 nanoparticles Kiwifruit 3.0 × 10−3 30 8 [120]
Edible film Alginate–gelatin–Ag Tangerine 3.4 × 10−5 46 17 [121]
Active film Alginate–aloe vera–ZnO particles Tomato 6.2 × 10−3 38 22 [68]
Edible film Alginate–citric acid. Cheese 6.8 × 10−3 11 20 [122]
Active film Alginate–konjac glucomannan–tea polyphenols Minced beef 1.7 × 10−5 5 80 [62]

Intelligent film Alginate—cellulose nanocrystals–beetroot extract Pork - 55 40 [64]

Intelligent film Alginate–purple onion extract and butterfly pear
flower extract

Shrimp and
beef 3.7 × 10−3 25 5 [65]

Intelligent film Fucoidan–chitosan–coleus grass leaves Salmon 1.4 × 10−5 36 23 [73]
Edible film Fucoidan–chitosan–cinnamaldehyde Lichi 8.3 × 10−7 21 120 [74]

Red Seaweed
Edible film Agar–Zno particles Green grape - 29 33 [83]
Edible film Agar–natamycin Strawberry 3.5 × 10−5 15 30 [123]
Edible film Agar–gelatin–carbon dots Tomato 6.9 × 10−5 75 16 [124]
Active film Agar–gelatin–Cu/Zn nanoparticles Pork 6.1 × 10−5 55 12 [125]
Active film Agar–alginate–ginger essential oil Beef 2.6 × 10−4 - - [126]
Edible film Carrageenan–peppermint and thymol oil Strawberry 1.4 × 10−6 34 22 [99]
Edible film Carrageenan–sodium carboxymethyl starch Strawberry 4.8 × 10−5 38 27 [127]
Active film Carrageenan–silver particles Cottage cheese 9.3 × 10−5 40 6 [93]
Active film Carrageenan–mulberry extract Milk 1.2 × 10−6 26 9 [95]
Active film Carrageenan–lignin carbon dots Milk 2.5 × 102 47 22 [97]

Intelligent film Carrageenan–sweet potato peel extract–carbon dots Shrimp 8.3 × 10−5 106 5 [96]
Intelligent film Carrageenan–pectin–sweet potato extract Salmon 8.1 × 10−5 21 24 [128]

Active film Carrageenan–gelatin–date seeds Goat 1.5 × 10−5 9 46 [129]
Active film Carrageenan–honey Beef 1.4 × 10−5 34 79 [130]

Green Seaweed
Edible film Ulvan–sorbitol - 3.0 × 10−6 2 20 [111]
Edible film Ulvan–carrageenan - 8.6 × -10−3 49 11 [114]
Active film Ulvan–gelatin–beeswax - 1.6 × 10−3 6 89 [116]

Regarding the mechanical stability, the tensile strength, and elongation at break values,
seaweed-based films exhibit considerable variation across different formulations, irrespec-
tive of the used seaweed species. While the incorporation of nanodots, nanoparticles, and
nanocellulose generally enhances the tensile strength of seaweed-based films, ensuring
values exceeding 10 MPa, a threshold deemed sufficient for food packaging application,
most studied formulations demonstrate relatively low elongation at break, typically rang-
ing between 2 and 30%. In exceptional cases, values as high as 40 to 120% have been
observed. In contrast, commercial packages often exhibit significantly higher elongation
at break, ranging from 100 to 600%, to protect a wider range of food products. Notably,
meat food packaging materials necessitate elongation values between 40 and 100%, while
for the powdered food, such as coffee, it is a broader range of 40 to 600% (see Table 1).
Furthermore, it is noticed that films produced from brown seaweed possess better elasticity
without compromising the mechanical strength, when compared to films made from green
and red seaweed. Hence, further research and development are needed to optimize the
performance of seaweed-based films, in terms of water vapor barrier and elasticity, to be
able expand their applications in the food packaging industry.

4.5. Safety of Seaweed-Based Food Packaging Materials

Seaweed-based food packaging materials must comply with safety regulations to
ensure the safety of food products and protect consumers’ health. The European Union reg-
ulation EU 10/2011 mandates that “food contact materials do not release their constituents
into food at levels harmful to human health” [131]. Seaweed, while a valuable natural
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resource, can pose potential health risks due to its high ability to bioaccumulate certain
heavy metals from the aquatic environment. Bioaccumulation occurs when organisms
absorb and retain substances from their environment at a faster rate than they can eliminate
them. This can lead to the concentration of heavy metals in seaweed, potentially exceeding
the safe levels for human consumption [132]. The most common heavy metals accumulated
in seaweed are lead, cadmium, mercury, and arsenic. Besides heavy metals, excessive
seaweed consumption can cause, in some cases, iodine toxicity. Namely, seaweed is a
natural source of iodine and excessive intake can lead to hyperthyroidism, a condition
characterized by an overactive thyroid gland [133]. Consequently, food packaging materials
derived from seaweed, or its derivatives, may exhibit elevated levels of heavy metals and
iodine as well. To mitigate potential health risks, the European Commission established
regulations related to the maximum allowed levels of cadmium and lead in different types
of food and mercury in edible seaweed; the CEVA organization in France set regulations
for lead and cadmium in edible seaweed maximum, and the AFSA organization in France
put a limit on iodine in seaweed. These values and references related to the regulations are
presented in Table 4.

Table 4. Regulations related to the maximum allowed concentrations of harmful substances in food.

Harmful Substance Maximum Allowed Concentration, mg/kg Reference

Cd
In food: 3 [134]

In edible seaweed: 0.5 [135]

Pb
In food: 0.1–0.5 [136]

In edible seaweed: 5 [135]
Hg In seaweed: 0.01 [137]

Iodine 2000 [138]

Analyzing the seaweed-based formulations presented in previous sections, it can be
observed that some formulations contain copper, silver, zinc nanoparticles, or metal salts.
According to the European Commission Regulation 10/2011, the maximum allowed migra-
tion level of copper and zinc ions from food packaging is 5 mg/kg, whereas for silver ions,
it is 10 mg/kg [131]. Hence, the monitoring of content and migration test of heavy metals
and iodine from seaweed-based food packaging films into food simulants established by
European Commission Regulation 10/2011 is crucial to ensure their safety [131]. Regular
testing should be obligatory in order to address any potential issues before products reach
the market.

5. Commercial Products

The seaweed packaging industry is rapidly expanding due to its sustainability and
eco-friendly benefits. In fact, as consumers increasingly seek sustainable and eco-friendly
alternatives to traditional plastic packaging, seaweed-based materials are gaining traction.
Seaweed offers a renewable and biodegradable resource that can be transformed into vari-
ous packaging solutions. Moreover, the unique properties of seaweed, such as its strength,
flexibility, and biodegradability, make it an attractive option for packaging applications.
The growing interest in seaweed packaging has been leading to increased research and
development efforts, and more startups, exploring new technologies and applications for
seaweed-based materials. The list of start-up companies that are developing seaweed-based
materials for food or the food packaging sector is summarized in Table 5, whereas some of
the seaweed-based packaging products currently available on the market are presented in
Figure 4. As the industry continues to progress, seaweed packaging is expected to become
a more prominent and sustainable solution in the packaging market.
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Table 5. The list of companies that work on development of seaweed-based packages and food materials.

Company Products

Notpla, UK Edible liquid pouch, spoons for ice cream, and coatings for
cardboard packages

Kelpi, UK Composite packaging films
FlexSea, UK Film packages

Solublue, UK Film packages
PlantSea, UK Paper, punnets, pods

B’Zeos, Norway Drinking straws and edible films
Marea, Iceland Packaging films

Noriware, Switzerland Biodegradable tableware and food packaging products made
from seaweed

Evoware, Indonesia Edible cups, wraps, films, and sachets
Biopac, Indonesia Sachet, sheet, pouch, bag
Zerocircle, India Films, coatings, wood-free paper

Sway, US Poly and retail bags, resins
Carbonware, US/Puerto Rico Coatings for cardboard packages and paper

Loliware, US Drinking straws
ULUU, Australia Rigid products and fibers

Foods 2024, 13, x FOR PEER REVIEW 17 of 23 
 

 

Carbonware, US/Puerto 
Rico 

Coatings for cardboard packages and paper 

Loliware, US Drinking straws 
ULUU, Australia Rigid products and fibers 

 
Figure 4. Seaweed-based packaging on the market. 

6. Conclusions 
Seaweed-based food packaging materials offer a promising and sustainable alterna-

tive to traditional plastic packaging. Their natural origin, biodegradability, and potential 
for incorporating functional properties make them attractive options for the food industry. 
While significant progress has been made in developing seaweed-based packaging by the 
incorporation of different nanoparticles, nano-fillers, polyphenols, and blending with 
other biopolymers, further research and development are still necessary to address chal-
lenges and optimize their performance. The main parameters for improvement are the 
elasticity of films, the water vapor barrier, and ensuring compliance with safety regula-
tions. In addition, new food products and packaging formats that can benefit from sea-
weed-based materials should be explored. By addressing these areas, seaweed-based food 
packaging can contribute to a more sustainable and circular economy, reducing reliance 
on fossil fuel-derived plastics and minimizing environmental impact. 

Author Contributions: Visualization, A.N. and G.C.-B.; Data curation, A.N., S.M., S.B., F.A.F., and 
G.C.-B.; Writing—review and editing, A.N.; Validation, S.M., S.B., and F.A.F. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is 
not applicable to this article. 

Acknowledgments: This work was supported by the Ministry of Education, Science and Techno-
logical Development of the Republic of Serbia (Contract No. 451-03-66/2024-03/200017), COST AC-
TION CA20106-SeaWheat ULVA: TOMORROW’S “WHEAT OF THE SEA”, A MODEL FOR AN IN-
NOVATIVE MARICULTURE, Postdoctoral FONDECYT project no. 3210662 (F.A.F.), MEC80180098, 
and ANID project Fondecyt Regular 1221609 (G.C.-B). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Figure 4. Seaweed-based packaging on the market.

6. Conclusions

Seaweed-based food packaging materials offer a promising and sustainable alternative
to traditional plastic packaging. Their natural origin, biodegradability, and potential for
incorporating functional properties make them attractive options for the food industry.
While significant progress has been made in developing seaweed-based packaging by the
incorporation of different nanoparticles, nano-fillers, polyphenols, and blending with other
biopolymers, further research and development are still necessary to address challenges
and optimize their performance. The main parameters for improvement are the elasticity
of films, the water vapor barrier, and ensuring compliance with safety regulations. In
addition, new food products and packaging formats that can benefit from seaweed-based
materials should be explored. By addressing these areas, seaweed-based food packaging
can contribute to a more sustainable and circular economy, reducing reliance on fossil
fuel-derived plastics and minimizing environmental impact.
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