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Abstract
Background  Previous studies have shown that patients with pre-existing chronic obstructive pulmonary diseases 
(COPD) were more likely to be infected with coronavirus disease (COVID-19) and lead to more severe lung lesions. 
However, few studies have explored the severity and prognosis of COVID-19 patients with different phenotypes of 
COPD.

Purpose  The aim of this study is to investigate the value of the deep learning and radiomics features for the severity 
evaluation and the nucleic acid turning-negative time prediction in COVID-19 patients with COPD including two 
phenotypes of chronic bronchitis predominant patients and emphysema predominant patients.

Methods  A total of 281 patients were retrospectively collected from Hohhot First Hospital between October 2022 
and January 2023. They were divided to three groups: COVID-19 group of 95 patients, COVID-19 with emphysema 
group of 94 patients, COVID-19 with chronic bronchitis group of 92 patients. All patients underwent chest computed 
tomography (CT) scans and recorded clinical data. The U-net model was pretrained to segment the pulmonary 
involvement area on CT images and the severity of pneumonia were evaluated by the percentage of pulmonary 
involvement volume to lung volume. The 107 radiomics features were extracted by pyradiomics package. The 
Spearman method was employed to analyze the correlation of the data and visualize it through a heatmap. Then we 
establish a deep learning model (model 1) and a fusion model (model 2) combined deep learning with radiomics 
features to predict nucleic acid turning-negative time.

Results  COVID-19 patients with emphysema was lowest in the lymphocyte count compared to COVID-19 
patients and COVID-19 companied with chronic bronchitis, and they have the most extensive range of pulmonary 
inflammation. The lymphocyte count was significantly correlated with pulmonary involvement and the time for 
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Introduction
Coronavirus disease (COVID-19) is an infectious respira-
tory disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) [1]. Mudatsir et al. demon-
strated that chronic diseases have been associated with 
the severity and death of COVID-19, such as chronic 
obstructive pulmonary disease (COPD), diabetes melli-
tus, hypertension and cardiovascular disease experience 
[2]. COPD is one of the most common chronic diseases 
in the world, characterized by chronic respiratory symp-
toms caused by the airway and/or alveolar abnormalities 
[3]. Sanchez-Ramirez et al. found that COPD patients 
with COVID-19 were associated with a four-time higher 
risk of severe consequences such as intensive care unit 
admission and death [4]. Increasing evidence suggests 
that the up-regulation of angiotensin converting enzyme 
2 is a significant factor contributing to the susceptibil-
ity of COPD patients to SARS-CoV-2 infection [5, 6]. 
Moreover, COPD patients often have impaired innate 
and adaptive immune responses, which may delay the 
clearance of respiratory viruses [7]. Consequently, SARS-
CoV-2 may have a higher propensity to spread within the 
lungs of COPD patients and COPD patients have worse 
outcomes from COVID-19 [8]. A 2023 bibliometric anal-
ysis indicated that, as a key focus of COVID-19 epidemic 
prevention, COPD combined with COVID-19 still was a 
hot topic and trend [9].

The diagnostic value of computed tomography (CT) 
in COVID-19 has been well-established [10]. CT imag-
ing can detect the characteristic features of COVID-19 
pneumonia, such as ground-glass opacity, crazy pav-
ing pattern, consolidation, and fibrosis [11]. Serial CT 
scans can track the evolution of lung lesions over time, 
providing insights into the effectiveness of therapeutic 
interventions [12]. Additionally,  chest CT severity score 
is a scoring method in the assessment of COVID-19 pul-
monary parenchymal involvement, which has demon-
strated strong discriminating power for the prediction of 
disease severity and outcome of COVID-19 patients [13, 
14]. These findings could help differentiate COVID-19 
pneumonia from other respiratory infections and con-
tribute to early detection and diagnosis of COVID-19 
pneumonia. Previous studies revealed that the pre-exist-
ing COPD increased the severity and the risk of death 

of COVID-19 [15, 16]. The classic COPD phenotypes of 
chronic bronchitis and emphysema have been recognized 
in Global Initiative for Chronic Obstructive Lung Disease 
and Global Initiative [17]. However, the differences of 
pulmonary parenchymal involvement between COVID-
19 patients with two COPD phenotypes has not been 
explored.

Due to the outbreak of COVID-19, global health-
care resources have been facing a tremendous burden. 
Thus, accumulating studies focus on identification of 
the patients whose nucleic acid can turn negative in a 
short time to make rational use of resources. Liu et al. 
found biochemical indicators such as lactate dehydro-
genase, c-reactive protein and Albumin were useful 
prognostic markers for predicting nucleic acid turning-
negative-time [18]. Zhu et al. demonstrated that the value 
of nutrophil-to-lmphocyte ratio (NLR) and vaccination 
could predict the negative conversion time of nucleic 
acid [19]. The time of nucleic acid conversion to nega-
tive was closely related to the clinical manifestations and 
disease progression of COVID-19 patients [20]. With the 
wide spread of models based on artificial intelligence, the 
deep learning method combined with lung CT images 
could provide the tool to the understanding and manage-
ment of COVID-19 [21]. Zhou et al. used an ensemble 
deep learning model to realize the rapid detection of 
novel coronavirus COVID-19 [22]. Xie et al. proposed 
that the artificial intelligence system based on U-shaped 
neural network method can quickly provide some quan-
titative indicators including the radiologist with the posi-
tion of lesions, dynamic volume changes, ground glass 
opacity internal organ morphology, the HU value of the 
lesion and so on,  mak it easier for radiologists to identify 
COVID-19 from other diseases [23]. In addition, the deep 
learning methods can automatically and more accurately 
predict the severity of COVID-19 patients, which provide 
a tool for personalized treatment of patients and signifi-
cantly reduced mortality rates [24, 25]. Importantly, the 
deep learning method could assess difficult cases that 
does not fit in the predefined feature characteristics, still 
achieving satisfactory results [26]. However, deep learn-
ing models typically require more data and have poor 
interpretability [27]. As another medical imaging analysis 
method, radiomics could build high performance models 

nucleic acid turning negative (r=-0.145, P < 0.05). Importantly, our results demonstrated that model 2 achieved an 
accuracy of 80.9% in predicting nucleic acid turning-negative time.

Conclusion  The pre-existing emphysema phenotype of COPD severely aggravated the pulmonary involvement of 
COVID-19 patients. Deep learning and radiomics features may provide more information to accurately predict the 
nucleic acid turning-negative time, which is expected to play an important role in clinical practice.

Keywords  COVID-19 with COPD, Pulmonary involvement, Nucleic acid turning-negative time, Deep learning 
method, Radiomics features
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out of limited datasets, which has been widely used in 
quantitative analysis of CT images for screening COVID-
19 patients [28, 29], discriminating the severity of pneu-
monia [30], and prognosis assessment in patients with 
COVID-19 pneumonia [31]. As of yet, the research on 
utilizing deep learning and radiomics for predicting the 
nucleic acid turning-negative-time of COVID-19 patients 
is still in its early stages and remains relatively limited. 
Thus, there is an urgent need for intelligent algorithms to 
accurately and automatically predict the nucleic acid con-
version time of patients with COVID-19.

The aims in our study as follows. First, we aim to assess 
the pulmonary severity and the laboratory variables in 
COVID-19 with chronic bronchitis patients and COVID-
19 with emphysema patients. Second, we aim to evaluate 
the clinical value of deep learning and radiomics features 
in predicting the nucleic acid turning-negative-time. 
Third, we aim to explore influence factors correlated with 
the nucleic acid turning-negative-time.

Patients and methods
Participants
This retrospective cohort study enrolled 281 COVID-19 
patients who had definite clinical outcome (discharge) 
from October 2022 to January 2023, at Hohhot First 
Hospital, the designated hospital to treat patients with 
COVID-19 in Inner Mongolia. According to the guidance 
for diagnosis and management of COVID-19 released 
by World Health Organization, COVID-19 patients was 
diagnosed [32].

Inclusion criteria for this study were: (1) The diagno-
sis was confirmed by positive result of real-time reverse-
transcriptase polymerase-chain-reaction (rRT-PCR) 
assay for SARS-CoV-2 of throat or nasopharyngeal swab 
specimens; (2) CT images demonstrated pneumonia; (3) 
Patients without comorbidities or with only comorbidi-
ties of chronic obstructive pulmonary disease. Comor-
bidities of COPD information was collected based on 
patients’ self-report on admission and diagnosed by expe-
rienced physicians based on Global Initiative for Chronic 
Obstructive Lung Disease and Global Initiative [17]. 
Exclusion criteria for this study were: (1) patients with 
inflammatory diseases such as pancreatitis, prostatitis, 
and immunological diseases or with severe diseases such 
as hypertension, diabetes, cerebro-cardiovascular dis-
eases, and chronic kidney disease; (2) patients with miss-
ing data; or (3) Patients with uncertain COPD diagnosis.

Among the selected patients, patients with COVID-
19 combined with COPD were divided into two groups: 
chronic bronchitis predominant group and emphysema 
predominant group. The definitions of chronic bron-
chitis predominant were chronic sputum for most days, 
3 months a year, or no radiological diagnosis of emphy-
sema for at least 2 years. Emphysema predominant was 

defined as no chronic cough and sputum but having typi-
cal clinical and radiological manifestations of emphysema 
[33]. Clinical data including gender, age, vaccination sta-
tus, nucleic acid turning-negative-time, and laboratory 
test results (procalcitonin (PCT) level, C-reactive protein 
level, white leukocyte count, neutrophil count, lympho-
cyte count, neutrophil-to-lymphocyte ratio (NLR)) were 
collected and recorded. The criteria for confirming the 
patient’s nucleic acid turned negative were twice con-
secutive negatives, and the interval of tests > 24  h [18]. 
According to the different time required for nucleic acid 
to turn negative, the subjects were divided into the fol-
lowing four categories: 0–5 days, 6–10 days, 11–15 days, 
and ≥ 16 days. The number of people in each category is 
22, 122, 94 and 43 respectively. This study was approved 
by the Ethics Committee of the Hohhot First Hospital 
(number: IRB2024022).

CT acquisition
Patients underwent chest CT imaging on two 64 detector 
CT scanners (Discovery CT 750 and u-CT 760). The pro-
tocol was as follows: tube voltage: 120 kV; automatic tube 
current (260 mA for Discovery CT 750, GE and 150 mA 
for u-CT, United Imaging); reconstruction slice thick-
ness: 1.25 mm; pitch of 1.0; matrix, 512 × 512 and breath 
hold at full inspiration in a craniocaudal direction from 
the lung apices to lateral costophrenic sulci. The follow-
ing windows were used for image display: a mediastinal 
window with window width of 400 HU and window level 
of 40 HU and a lung window with a width of 1600 HU 
and window level of -700 HU. The acquired images were 
subsequently reconstructed using an iterative recon-
struction method.

Segmentation and processing of CT images
The U-net convolutional neural network was pretrained 
to segment the pulmonary involvement area based on 
CT images of 500 pnemonia patients in our study [34]. 
As seen in Fig.  1, the U-net network mainly consists of 
three parts: encoder, decoder and skip connection. It 
has performed four down-sampling and up-sampling 
operations on CT images respectively. The CT images 
of were divided into training set, validation set, and test 
set according to 7:2:1 for U-net model construction. The 
experiment sets up 100 epoch iterations, the learning rate 
was set to 0.00001, and the loss function was set to cross 
entropy combined with the dice function and two radi-
ologists with over 5 years of experience were invited to 
evaluate the segmentation results of pulmonary involve-
ment area. Then, we quantitatively estimated the pulmo-
nary involvement area of patients [12–14].
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Extraction and analysis of radiomics features
Radiomics features were extracted from the pulmonary 
involvement area of CT images using the PyRadiomics 
Python tool (v3.11) in our study [35]. Previous study has 
demonstrated that the 107 standard radiomics features 
can be used for lung disease research [36]. These features 
were divided into 14 shape features, 18 first-order statisti-
cal features, and 75 textural features, which included the 
neighborhood gray tone difference matrix (n = 5), gray-
level run length matrix (n = 16), gray-level dependence 
matrix (n = 14), gray-level size zone matrix (n = 16), and 
gray-level co-occurrence matrix (n = 24). The least abso-
lute shrinkage and selection operator (LASSO) method 
was used for feature selection, which applied regular-
ization for variable selection to compress the regression 
coefficients of some unnecessary variables to zero and 
then eliminated them from the model, achieving the pur-
pose of variable screening [37]. Finally, we selected the 30 
features with non-zero coefficients to follow analysis.

Construction of the classification model
We constructed two models using a universal Pytorch 
framework (http://pytorch.org) to predict the nucleic 
acid turning-negative-time, including a deep learning 
model (model 1) and a fusion model (model 2) combined 
deep learning with radiomics features. As shown in Fig. 2, 
the fusion model consisted of the upper branch and lower 
branch. The upper branch had one input of the original 
CT image, which consisted of 3 groups of 7 × 7 conv2d, 
5 × 5 conv2d and 3 × 3 conv2d plus batch-norm. The rec-
tified linear unit (ReLU) activation function was used 
to improve the model’s efficiency and the deep learning 

feature map (F1) was extracted. The lower branch had 
two inputs of the original CT image and the segmented 
image of the pneumonia area, which included the extrac-
tion and selection of radiomics features (F2). Then, the 
final features from two branches were concatenated to 
obtain the F3 feature map. The F3 feature maps were 
compressed through the global average pooling function 
and the fully connected layer to obtain the final feature 
map, and the softmax function was used to achieve the 
probability output of each target category. In general, 
the fusion model combined the high-dimensional fea-
tures by deep learning method and the low-dimensional 
features by radiomics features to improve the classifica-
tion results. Deep learning model was the upper branch 
of fusion model, which was employed as part of ablation 
experiments to reflect the value of radiomics features 
in the nucleic acid turning-negative-time prediction by 
comparing it with the fusion model.

	
Softmax (Z) =

exp (Zi)∑n
j=1 exp (Zj)

� (1)

In formula (1), Zi represented the output values of the 
i-th sample and n represented the number of classes in 
the classification task.

With respect to the model construction, the backprop-
agation (BP) algorithm was employed, which updated the 
network parameters iteratively until an optimal or subop-
timal solution was reached. The weight cross entropy loss 
function was utilized to alleviate the sample imbalance 
problem according to the weights of different sample 
numbers.

Fig. 1  The architecture diagram of the U-net convolutional network. The network is a traditional end-to-end model, consisting of encoder, decoder and 
skip connection

 

http://pytorch.org
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Cross_Entropy H (p, q) = −

∑

i

P (i) log Q (i)� (2)

In formula (2), i represented the label or category of a 
sample, P(i) indicated the probability of the true label, 
and Q (i) was the probability predicted by the model.

The following metrics were employed to evaluate the 
performances of each model: accuracy, precision, sen-
sitivity, specificity, and F1-score. Furthermore, radar 
charts were used to compare the predictive performance 
between model 1 and model 2 in Classes 1–4 respectively 
and display the relative relationships between the two 
models.

Statistical analysis
Categorical variables were presented as frequencies 
and percentages, which were compared using the chi-
square test. Continuous variables were described as 
means ± standard deviation (SD) or median (interquartile 
range, IQR) and compared between groups using either 
a two-sample t-test or Wilcoxon test, depending on the 
distribution. Spearman correlation was used to assess 
the correlations between variables. All statistical analyses 
were performed using IBM SPSS Statistics Software (ver-
sion 27.0, SPSS Inc., Chicago, IL, USA).

Results
Demographics and baseline clinical characteristics
A total of 281 patients were enrolled including 95 
COVID-19 patients, 94 COVID-19 patients with the 
emphysema‑predominant COPD, and 92 patients 
with the chronic bronchitis-predominant COPD. As 
shown in Tables  1 and 62 patients (65.96%) were males 

in COVID-19 with emphysema group, and more than 
the other two groups. The laboratory tests including 
white leukocyte count, neutrophil count, NLR value, 
and C-reactive protein level increased in COVID-19 
patients with COPD than COVID-19 patients. How-
ever, the Lymphocyte count was shown to be lower in 
COVID-19 patients with emphysema compared than 
other groups and the median was 1.07 × 10^9cells/L. 
Among the patients with different time required for 
nucleic acid to turn negative, 51.58% patients during 
6–10 days in COVID-19 group, 40.43% patients dur-
ing 11–15 days of COVID-19 patients with emphysema 
and 40.22% patients during 11–15 days of COVID-19 
patients with chronic bronchitis. A total of 85 patients 
(89.47%) received at least one dose of inactivated SARS-
CoV-2 vaccine in COVID-19 group, in which 56 patients 
(58.95%) received three doses of inactivated vaccine. 
Only 6 patients (6.32%) received one dose of the inacti-
vated vaccine, and 23 patients (24.21%) got two doses of 
the inactivated vaccine. However, 36 patients (38.30%) in 
COVID-19 with emphysema and 19 patients (20.65%)in 
COVID-19 with chronic bronchitis have not been vacci-
nated. There were significant statistical differences in sex, 
lymphocyte count, neutrophil count, NLR value, C-reac-
tive protein level, nucleic acid turning-negative-time, and 
vaccination dose between the three groups (P < 0.05).

The severity of pneumonia analysis
The dice coefficient of U-net model on the test set 
reaches 0.85 and the pulmonary involvement area were 
confirmed by two radiologists. As seen in Table  2, the 
COVID-19 patients with COPD has higher proportion 
of pulmonary involvement area than those patients with 

Fig. 2  The framework of the fusion model for predicting nucleic acid turning-negative-time. The model is divided into two branches, of which the upper 
branch was used for the deep learning features extraction, and the lower branch was used for the radiomics features extraction and selection.
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COVID-19 only. The average proportion of pulmonary 
involvement in COVID-19 with emphysema groups was 
3.90% and has the most extensive range of pulmonary 
inflammation.

Correlations between different clinical variables
As seen in Fig.  3, in terms of pulmonary involvement 
indicators, six indicators show significant correlations: 
vaccination dose (correlation coefficient value (r) = 
-0.228, P < 0.001), lymphocyte count (r= -0.145, P < 0.05), 
neutrophil count (r = 0.122, P < 0.05), C-reactive protein 
level (r = 0.352, P < 0.001), PCT level (r = 0.217, P < 0.001), 
and NLR (r = 0.178, P < 0.01). Regarding the time to 
nucleic acid turning negative, two indicators exhibited 
significant correlations: vaccination dose (r= -0.201, 
P < 0.001) and lymphocyte count (r = 0.145, P < 0.05). 
Besides, significant positive correlations were observed 
between NLR value and white leukocyte count, neutro-
phil level, C-reactive protein, and PCT (P < 0.001) and 
significant negative correlations were identified between 
NLR value and lymphocyte count (P < 0.001).

Prediction results of nucleic acid turning-negative-time
Figure 4 shows the training loss changes of model 1 using 
deep learning method and Fig. 5 shows the training loss 
changes of Model 2 using deep learning combined with 
radiomics features. The model iterated for a total of 120 
epochs, with batch size being set to 2, and the learning 

rate being set to 0.0001, and it can be determined that the 
both models have effectively converged. The performance 
of the model 1 on the test set with an overall accuracy 
of 78.7%, precision of 77.6%, sensitivity of 75.0%, specific-
ity of 77.1% and F1 score of 77.1% (Table 3). The model 
2 improved the classification result, achieving an accu-
racy of 80.9%, precision of 77.9%, sensitivity of 77.8%, 
specificity of 75.8%, and F1 score of 77.8%. The accuracy 
of model 1 at classes 1–4 were 77.0%, 80.9%, 90.1%, and 
66.7% respectively and the accuracy of model 2 at classes 
1–4 were 80.1%, 85.3%, 83.0%, and 75.0% respectively, 
which illustrated that the accuracy of model 2 for pre-
dicting nucleic acid turning-negative-time in classes 1, 
2, and 4 were better than model 1. As seen in the radar 
chart (Figs.  6 and 7), it starts from a central point and 
extends outward with multiple rays, each representing a 
specific metrics including accuracy, precision, sensitiv-
ity, specificity, and F1-score. The points or line segments 
on each ray represent the values or scores of this metrics 
in different models. Specifically, Fig.  6 shows the per-
formance of each classes between model 1 and model 2 
respectively and Fig. 7 shows the overall performance of 
the two models.

Discussion
In this study, we compared the laboratory variables differ-
ence and the severity of pneumonia between COVID-19 
patients with emphysema groups and COVID-19 patients 
with chronic bronchitis. In addition, we constructed two 
predictive models, i.e. a deep learning model and a fusion 
model combining deep learning with radiomics to pre-
dict the nucleic acid turning-negative-time and explored 
the influence factors for conversion time from positive to 
negative nucleic acid test.

Table 1  Comparison of baseline characteristics among the patients
COVID-19(95) COVID-19 with emphysema(94) COVID-19 with chronic bronchitis(92) P value

Sex (male), N(%) 36(37.89%) 62(65.96%) 35(38.04%) < 0.001
White leukocyte, per l 4.58(1.73) 5.08(2.06) 5.25(2.04) 0.076
Lymphocyte, per l 1.36(0.64) 1.07(0.57) 1.37(0.68) < 0.001
Neutrophil, per l 2.77(1.31) 3.27(1.99) 3.09(1.71) 0.032
NLR 2.00(1.43) 2.90(2.53) 2.34(1.52) < 0.001
C-reactive protein, per l 7.40(8.65) 13.16(28.87) 8.70(12.52) < 0.001
PCT, per ml 0.05(0.05) 0.06(0.05) 0.06(0.08) 0.191
Nucleic acid turning-negative-time, days 0.003
  0–5 7(7.37%) 13(13.83%) 5(5.43%)
  6–10 49(51.58%) 26(27.66%) 30(32.61%)
  11–15 33(34.74%) 38(40.43%) 37(40.22%)

  ≥ 16 6(6.32%) 17(18.09%) 20(21.74%)

Vaccination dose, N (%) < 0.001
  0 10(10.53%) 36(38.30%) 19(20.65%)
  1 6(6.32%) 2(2.13%) 12(13.04%)
  2 23(24.21%) 19(20.21%) 18(19.57%)
  3 56(58.95%) 37(39.36%) 43(46.74%)

Table 2  The pulmonary involvement degree in the three groups
COVID-19 COVID-19 with 

emphysema
COVID-19 
with chronic 
bronchitis

Pulmonary 
involvement

0.61% 3.90% 1.80%
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Firstly, the study demonstrated that those COVID-
19 patients with COPD have higher level of NLR val-
ues compared with the COVID-19 patients. The NLR 
values in COVID-19 with emphysema were highest 
with a median of 2.90 (Table  1) and the NLR values 

were positively correlated with the pulmonary involve-
ment (r = 0.178, p < 0.01) (Fig.  3). Such findings were 
consistent with previous research that the NLR val-
ues of severe patients were higher than those that in 
mild patients [38] and the elevated NLR in COVID-19 

Fig. 5  Training loss changes of the model 2 using deep learning com-
bined with radiomics features. It is observed that the loss value gradually 
fluctuates, decreases and converges within 120 iterations

 

Fig. 4  Training loss changes of the model 1 using deep learning method. 
It shows that the loss value gradually fluctuates, decreases and converges 
within 120 iterations

 

Fig. 3  Correlations between different clinical variables. Note: * representing P < 0.05, ** representing P < 0.01, *** representing P < 0.001
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patients was associated with poor outcomes [39]. How-
ever, the COVID-19 patients with emphysema had the 
lowest lymphocyte count compared with COVID-19 
patients and COVID-19 patients with chronic bronchitis. 
As a prominent clinical manifestation, the lymphocytes 
level was shown to be decreased in COVID-19 patients, 
which related to the body’s immune function and 
inflammatory status [40]. Especially in severe COVID-
19 patients, serum secretion of Interleukin-2 Receptor 
(IL-2R) were remarkably increased, which was also con-
sidered as a sign of lymphopenia [41]. Similarly, COPD 
patients are always accompanied by immune aging and 
immune dysfunction, which may lead to a decrease in 

lymphocyte count. Meanwhile, the aging immune sys-
tem has a weaker ability to respond to viral infections, 
which may lead to the loss of lymphocytes as well. On the 
other hand, the subtypes of emphysema cause structural 
destruction of lung tissue, including decreased elastic-
ity of lung tissue and increased lung volume. Therefore, 
when emphysema patients are infected with COVID-19, 
the lung tissue may release more inflammatory cells and 
cytokines, such as the highly prionflammatory macro-
phages abundant in lungs, further leading to the adverse 
effects on the survival of lymphocytes [42].

Secondly, the present study showed that those 
COVID-19 patients with COPD had higher pulmonary 

Table 3  The classification results by using the two models
model 1 Accuracy Precision Sensitivity Specificity F1-score
Class 1 (0–5 days) 77.0% 75.0% 66.7% 75.6% 70.6%
Class 2 (6–10 days) 80.9% 76.5% 86.7% 85.7% 81.3%
Class 3 (11–15 days) 90.1% 92.3% 80.0% 71.4% 85.7%

Class 4 (≥ 16 days) 66.7% 66.7% 66.7% 75.6% 70.6%

Overall 78.7% 77.6% 75.0% 77.1% 77.1%
model 2
Class 1 (0–5 days) 80.1% 77.8% 77.8% 77.5% 77.8%
Class 2 (6–10 days) 85.3% 85.7% 80.0% 74.3% 82.8%
Class 3 (11–15 days) 83.0% 81.3% 86.7% 73.5% 83.9%

Class 4 (≥ 16 days) 75.0% 66.7% 66.7% 78.0% 66.7%

Overall 80.9% 77.9% 77.8% 75.8% 77.8%
Note model 1: The model based on deep learning method; model 2: The model based on deep learning combined with radiomics features

Fig. 6  Comparisons of each class performance between the model 1 based on deep learning method and the model 2 based on deep learning com-
bined with radiomics features by using the following 5 metrics: Acc (accuracy), Pre (precision), Sen (sensitivity), Spe (specificity), and F1-score
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parenchymal involvement compared with the COVID-
19 patients and the COVID-19 with emphysema groups 
has the most extensive range of pulmonary inflamma-
tion, which may be related to the differential expression 
of angiotensin-converting enzyme 2 (ACE-2) in the three 
groups [43]. Specifically, we inferred that the COVID-19 
with emphysema groups have increased expression of 
ACE-2 than other groups, which is consistent with the 
previous research that increased level of ACE-2 expres-
sion was strongly associated with viral load and lung 
injury [44]. In addition, inflammation-associated alveolar 
damage and vascular injury in COVID-19 patients causes 
emphysema alterations [45], and the pre-existing emphy-
sema with diffuse lung involvement were more likely to 
increase the mortality rate of COVID-19 [46]. Thus, more 
attention should be paid to the COVID-19 with emphy-
sema in the pandemic.

Thirdly, we showed that the nucleic acid turning-neg-
ative-time was negatively correlated with vaccination 
dose (r=-0.201, P < 0.001) in the current study. A previous 
study demonstrated that the nucleic acid turning-nega-
tive-time was related to clinical symptoms of constipa-
tion, fever, and expectoration. Specifically, if patients 
exhibit these symptoms, the nucleic acid turning-nega-
tive time is likely to be prolonged [47]. It was shown that 
the vaccine based on mRNA can stimulate the immune 
system immediately and produce a remarkable effect 
through immune cells such as CD8 + T cells [48]. Thus, 
the patients receiving the vaccine can significantly reduce 
the incidence of severe symptoms, alleviate the sever-
ity of the disease, and lower the risks of hospitalization 
and death [49–51]. Overall, these research findings cor-
roborate our findings that vaccination can shorten the 
time to turn negative for nucleic acid, therefore providing 

evidence for the effectiveness of COVID-19 vaccines in 
alleviating symptoms.

In our study, we achieved the automatic segmentation 
of the involvement area to quantify the extent of pulmo-
nary abnormalities in COVID-19 patients and used the 
radiomics features to accurately and objectively evaluate 
these abnormal lesions on CT images. We further con-
structed a fusion model (model 2) to improve the perfor-
mance for predicting the nucleic acid turning-negative 
time, which is consistent with the previous research 
approach of focusing on lesion areas and extracting 
radiomics features to improve the model’s performance 
[30, 31]. The result showed that compared with model 
1, model 2 has improved accuracy by 2.1%, precision by 
0.3%, and sensitivity by 2.8%, and F1 score by 0.7%, and 
the accuracy of model 2 for predicting nucleic acid turn-
ing-negative-time at classes 1, 2, and 4 were better than 
model 1; these results demonstrated that the radiomics 
feature could provide complementary information in 
predicting the nucleic acid turning-negative-time. How-
ever, compared to model 1, the improvement of model 2 
was not very pronounced and the optimization value of 
model 2 for each category is also different, indicating that 
the contribution of radiomics features is limited. Presum-
ably, the following 2 reasons may be utilized to interpret 
the finding. First, the process of radiomics comprises a 
series of consecutive steps including image acquisition 
and pre-processing, segmentation of the desired region 
of interest, calculation of defined features, feature engi-
neering, and construction of the classification model. 
However, most of these steps require manual involve-
ment, so the detection results may be subjective. Previ-
ous studies also suggested that radiomics methods lack 
standardized methods including the number of features 

Fig. 7  Comparisons of overall performance between the model 1 based on deep learning method and the model 2 based on deep learning combined 
with radiomics features by using the following 5 metrics: Acc (accuracy), Pre (precision), Sen (sensitivity), Spe (specificity), and F1-score
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and feature selection methods [52]. Second, Zorzi et al. 
extracted radiomics features from the entire lung as a 
region of interest and developed the models to diagnose 
the coronavirus disease 2019 (COVID-19), which showed 
good diagnostic performances in differentiating COVID-
19 versus non-COVID-19 pneumonia [53]. However, we 
only focused the pulmonary involvement area, which 
may limit the value of radiomics features. Third, the deep 
learning networks can take whole images as the input, 
making them independent of region of interest segmen-
tation and allowing for obtaining deeper features as the 
CNN layers get deeper, which have demonstrated their 
tremendous potential for image segmentation, recon-
struction, recognition, and classification [54].

Importantly, the Protocol for Prevention and Con-
trol of COVID-19 (9th edition) points out that one of 
the goals of the prevention and control of COVID-19 
is to control the epidemic situation to the minimum at 
the lowest cost in the shortest possible time [55]. While 
nucleic acid detection of SARS CoV-2 virus by rRT-PCR 
has been considered as the gold standard, it may also 
produce false negative results and the evaluation of the 
time to turn negative might be compromised [56]. Our 
models may provide a tool for negative conversion time 
of SARS-CoV-2 in COVID-19 prediction, thus reduc-
ing the impact of false negative results and promote 
timely diagnosis. In fact, Ye et al. have demonstrated 
that the effective prediction of negative conversion time 
of COVID-19 patients could help optimize the alloca-
tion of limited medical resources and prevent the spread 
of disease during COVID‐19 pandemic [57]. Critically, 
deep learning model could provide an automatic evalu-
ation method that could reduce the impact of subjective 
assessments in clinical practice. Specifically, the pro-
posed model achieved the negative conversion time pre-
diction of COVID-19 patients in four time periods of 0–5 
days, 5–10 days, 11–15 days, and ≥ 16 days, and stratify 
the severity of the patients’ condition, which would pro-
vide a new perspective on early identification of patients 
with prolonged viral shedding and facilitate optimal iso-
lation protocols and treatment strategies.

Our study has several limitations that should be 
acknowledged. First, this is a single-center retrospective 
study, which may introduce potential biases and limit 
the generalizability of our findings to other populations 
or locations. Thus, future multi-center data are needed 
to confirm results of this study. Second, the amount 
of data is rather limited and each category is unbal-
anced, which may restrict the model’s predictive power 
and/or compromise the performance of the proposed 
model. Therefore, a data augmentation method may be 
employed to improve the result and the problem of class 
imbalance. Third, the U-net model in our study may not 
be the best and some alternative models, such as V-net 

and transformer models, could be utilized to improve 
the segmentation performance, therefore we could use 
these models for the pneumonia area segmentation in the 
future research.

Conclusion
In the current study, we revealed that pre-existing 
emphysema phenotype of COPD severely aggravated the 
pulmonary involvement in COVID-19 patients. Also, our 
findings have demonstrated that the lymphocyte num-
ber may be the key indicator for predicting severity and 
nucleic acid turning-negative-time of COVID-19 with 
COPD. Critically, we have shown that prediction of turn-
ing-negative-time could be achieved through deep learn-
ing combined with radiomics features, which provides a 
viable avenue for clinical diagnosis decision-making.
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