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Abstract: Protamines play a critical role in DNA compaction and stabilization in sperm cells, signifi-
cantly influencing male fertility and various biotechnological applications. Traditionally, identifying
these proteins is a challenging and time-consuming process due to their species-specific variability
and complexity. Leveraging advancements in computational biology, we present PROTA, a novel
tool that combines machine learning (ML) and deep learning (DL) techniques to predict protamines
with high accuracy. For the first time, we integrate Generative Adversarial Networks (GANs) with su-
pervised learning methods to enhance the accuracy and generalizability of protamine prediction. Our
methodology evaluated multiple ML models, including Light Gradient-Boosting Machine (LIGHT-
GBM), Multilayer Perceptron (MLP), Random Forest (RF), eXtreme Gradient Boosting (XGBOOST),
k-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), and Radial Basis Function-
Support Vector Machine (RBF-SVM). During ten-fold cross-validation on our training dataset, the
MLP model with GAN-augmented data demonstrated superior performance metrics: 0.997 accuracy,
0.997 F1 score, 0.998 precision, 0.997 sensitivity, and 1.0 AUC. In the independent testing phase, this
model achieved 0.999 accuracy, 0.999 F1 score, 1.0 precision, 0.999 sensitivity, and 1.0 AUC. These re-
sults establish PROTA, accessible via a user-friendly web application. We anticipate that PROTA will
be a crucial resource for researchers, enabling the rapid and reliable prediction of protamines, thereby
advancing our understanding of their roles in reproductive biology, biotechnology, and medicine.

Keywords: machine learning; deep learning; protamine; reproduction; biotechnology

1. Introduction

Protamines are a group of basic proteins, rich in arginine, found in the nucleus of
sperm cells in many animals, including fish and mammals. Their primary function is
to compact sperm DNA during spermatogenesis, which helps protect and stabilize the
DNA and facilitates its transport during fertilization [1–3]. The study of protamines offers
valuable insights into the regulation of gene expression, chromosome stability, and the
mechanisms underlying male infertility [2,4,5]. Furthermore, the application of protamines
extends beyond reproductive biology. Their unique properties are utilized in biotechnology
and medicine, particularly in formulating drug delivery complexes and as potential thera-
peutic agents for various diseases [1,6,7]. Despite the importance of these proteins, their
identification by conventional methods remains a challenge due to several factors. Pro-
tamines are predominantly studied in certain types of organisms, such as fish (e.g., salmon)
and some mammals. However, not all organisms produce protamines, and in those that
do, these proteins tend to be quite species-specific [1,8,9]. Additionally, protamines exhibit
high variability and complexity between different species and even among individuals of
the same species [1,9,10]. This variability complicates the annotation and confirmation of
protamine sequences in omics databases.
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Addressing these challenges, machine learning (ML) and deep learning (DL) offer
transformative potential for enhancing protamine research. These technologies can auto-
mate the detection and classification of protein sequences, even from noisy or incomplete
data, by learning from patterns identified in datasets [11–13]. The use of ML-based ap-
proaches to develop predictive models for proteins and peptides in the field of reproduction
has been relatively unexplored in recent years. However, several models following this
approach have been developed, indicating significant potential impact in this field of
study [14–17].

Considering all the above, ML algorithms could be trained with known protamine
sequences to predict the presence of these proteins in new omics samples with high perfor-
mance. Applying machine learning and deep learning in protamine research represents
a promising avenue to overcome current challenges and expand our understanding of
these essential proteins. By leveraging the power of these technologies, researchers can
gain deeper insights into the biological roles of protamines, their evolutionary diversity,
and their potential applications in biotechnology and medicine. Consequently, this study
evaluates the proposal of a protamine predictive model based on machine learning and
deep learning approaches.

2. Results
2.1. Performance in Cross-Validation with Native Data

In the results of the ten-fold cross-validation on the native imbalanced training data
(Table 1), the RF and KNN algorithms demonstrated the best overall performance with an
ACC of 0.990. Other algorithms also showed high performance, such as MLP, XGBOOST,
and LR, achieving accuracies of 0.988. The RF algorithm showed the highest recall (1.0)
and F1 score (0.994), while NB achieved the highest precision (1.0). KNN demonstrated the
highest kappa (0.984) and MCC (0.977) values. The RBF-SVM algorithm showed the lowest
performance with an accuracy of 0.965 and a recall of 1.0.

Table 1. Ten-fold cross-validation on the imbalanced training data.

Algorithm ACC Recall Precision F1 Kappa MCC

LIGHTGBM 0.986 0.996 0.982 0.979 0.979 0.969
MLP 0.988 0.999 0.977 0.989 0.982 0.973
RF 0.990 1.0 0.976 0.994 0.984 0.977

XGBOOST 0.988 0.998 0.982 0.984 0.982 0.973
KNN 0.990 0.998 0.982 0.989 0.984 0.977

LR 0.988 0.999 0.982 0.982 0.982 0.974
NB 0.986 0.992 0.960 1.0 0.978 0.968

RBF-SVM 0.965 1.0 0.897 1.0 0.944 0.919

2.2. Performance on the Independent Test Set with Native Data

During the testing stage using the native independent dataset (Table 2), the perfor-
mance of most algorithms improved further. RF, KNN, and NB achieved perfect scores
across all metrics (1.0). LIGHTGBM, MLP, XGBOOST, and LR showed nearly perfect perfor-
mance with an accuracy of 0.992 and a recall of 0.999. The RBF-SVM again demonstrated
the lowest performance, albeit still high, with an accuracy of 0.931 and a recall of 1.0.

While the native dataset demonstrated exceptionally high performance across various
metrics, it is crucial to consider the potential impact of class imbalance on these results. Our
dataset comprises 221 protamine sequences and 431 non-protamine sequences, presenting
a moderate imbalance that could influence the interpretation of certain metrics. In this
context, data-balancing techniques like SMOTE and GANs prove valuable by allowing
for a more comprehensive evaluation of our models. These techniques help mitigate
potential bias towards the majority class, enhance feature representation, and provide
insights into model stability across different data distributions. Although the native dataset
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already yields good results, the application of SMOTE and GANs allows us to validate the
robustness of our models and ensures their potential applicability in diverse scenarios.

Table 2. Testing stage on the imbalanced independent dataset.

Algorithm ACC Recall Precision F1 Kappa MCC

LIGHTGBM 0.992 0.999 0.977 1.0 0.988 0.982
MLP 0.992 0.999 0.977 1.0 0.988 0.982
RF 1.0 1.0 1.0 1.0 1.0 1.0

XGBOOST 0.992 0.999 0.977 1.0 0.988 0.982
KNN 1.0 1.0 1.0 1.0 1.0 1.0

LR 0.992 0.999 0.977 1.0 0.988 0.982
NB 1.0 1.0 1.0 1.0 1.0 1.0

RBF-SVM 0.931 1.0 0.795 1.0 0.886 0.837

In this study, the terms “real data” and “original data” are used interchangeably to
refer to the initial, unaugmented dataset comprising 221 protamine sequences and 431 non-
protamine sequences. These are the experimentally verified protein sequences collected
for this research. In contrast, “synthetic data” refers to the artificially generated sequences
created through SMOTE or GAN techniques to balance the dataset. When comparing
real (or original) data with synthetic data, we are evaluating the differences between
the biologically derived sequences and those artificially generated by our augmentation
methods. This distinction is crucial for assessing the impact of data augmentation on model
performance and the generalization capabilities of our protamine prediction approach.

2.3. Data Augmentation Using SMOTE

The results of the principal component analysis (PCA) applied to both the original
data and the data synthesized using the SMOTE technique are shown in Figure 1. The
two-dimensional visualization of the first two principal components allows for observing
the distribution of both data populations. The original data (represented in blue) show a
distribution mostly clustered around the center, while the data generated by SMOTE (rep-
resented in red) are more dispersed but still maintain a pattern similar to the original data.
This suggests that SMOTE is effective in generating synthetic data that reflect the general
characteristics of the original data distribution, albeit with some additional variability that
can be beneficial for training machine learning models.
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treme Gradient Boosting, Support Vector Machine, k-Nearest Neighbors, Logistic Regression, and 
Naive Bayes. The models were then tested on the remaining 20% of the data. Based on the evaluation 
of the performance metrics, the optimal model was selected and integrated into a web application. 

2.4. Data Augmentation Using GAN 
A comparison between the real data and the synthetic data for the positive class is 

illustrated in Figure 2. In this figure, the real data are represented in green, while the syn-
thetic data generated by the GANs are in red. The synthetic data show significant overlap 
with the real data, indicating that the generation model has adequately captured the es-
sential characteristics of the positive class. However, greater dispersion is also observed 

Figure 1. General workflow employed in this study. Sequences of real protamines and non-protamines
were initially used to compute PseACC molecular descriptors. These descriptors were then utilized to
generate augmented data using two different methods: Generative Adversarial Networks (GAN) and
Synthetic Minority Over-sampling Technique (SMOTE). The augmented datasets were combined with
the original data, forming a comprehensive dataset. This dataset was subsequently divided, with 80%
allocated for training and 10-fold cross-validation of various machine learning algorithms, including
Random Forest, Multilayer Perceptron, Light Gradient Boosting Machine, Extreme Gradient Boosting,
Support Vector Machine, k-Nearest Neighbors, Logistic Regression, and Naive Bayes. The models
were then tested on the remaining 20% of the data. Based on the evaluation of the performance
metrics, the optimal model was selected and integrated into a web application.

2.4. Data Augmentation Using GAN

A comparison between the real data and the synthetic data for the positive class is
illustrated in Figure 2. In this figure, the real data are represented in green, while the
synthetic data generated by the GANs are in red. The synthetic data show significant
overlap with the real data, indicating that the generation model has adequately captured
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the essential characteristics of the positive class. However, greater dispersion is also
observed in the synthetic data, which could suggest greater diversity in the generated
examples. This additional variability can be beneficial for improving the generalization of
predictive models trained with this data (Figure 2).
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Figure 2. Visualization of synthetic data generated by a Generative Adversarial Network (GAN) and
by Synthetic Minority Over-sampling Technique (SMOTE). Panels (A,B) show the comparison of real
and synthetic data for the positive and negative classes, respectively, using a GAN. Panel (C) shows
the comparison of original and SMOTE-generated data in a principal component space. Real data are
represented in green and synthetic data in red in panels (A,B), while in panel (C), the original data
are in blue and SMOTE-generated data are in red.

2.5. Performance in Cross-Validation with SMOTE

In the results of the ten-fold cross-validation (Table 3) on imbalanced training data
treated with SMOTE, the LIGHTGBM algorithm demonstrated the best overall performance
with an ACC of 0.996, a recall of 0.994, a precision of 0.994, an F1 score of 0.994, a Kappa of
0.991, and an MCC of 0.991. Other algorithms also showed competitive performance, such
as MLP, RF, and XGBOOST, achieving accuracies of 0.994, 0.994, and 0.992, respectively.
However, the RBF-SVM algorithm showed the lowest performance with an accuracy of
0.969 and a recall of 0.909.

Table 3. Ten-fold cross-validation on imbalanced training data treated with SMOTE.

Algorithm ACC Recall Precision F1 Kappa MCC

LIGHTGBM 0.996 0.994 0.994 0.994 0.991 0.991
MLP 0.994 0.994 0.990 0.991 0.987 0.987
RF 0.994 0.983 1.0 0.991 0.987 0.987

XGBOOST 0.992 0.977 1.0 0.988 0.982 0.983
KNN 0.992 0.983 0.994 0.988 0.982 0.983

LR 0.992 0.994 0.985 0.989 0.983 0.984
NB 0.986 0.960 1.0 0.979 0.969 0.970

RBF-SVM 0.969 0.909 1.0 0.951 0.929 0.932
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2.6. Performance on the Independent Test Set with SMOTE

During the testing stage using an independent dataset treated with SMOTE (Table 4),
the LIGHTGBM, MLP, RF, XGBOOST, KNN, and LR algorithms each achieved an ACC
of 0.992, a recall of 1.0, a precision of 0.977, and an F1 score of 0.988. In contrast, the NB
and RBF-SVM algorithms showed slightly lower performance with accuracies of 0.984 and
recalls of 0.954.

Table 4. Testing stage on the independent dataset using SMOTE.

Algorithm ACC Recall Precision F1 Kappa MCC

LIGHTGBM 0.992 1.0 0.977 0.988 0.983 0.983
MLP 0.992 1.0 0.977 0.988 0.983 0.983
RF 0.992 1.0 0.977 0.988 0.983 0.983

XGBOOST 0.992 1.0 0.977 0.988 0.983 0.983
KNN 0.992 1.0 0.977 0.988 0.983 0.983

LR 0.992 1.0 0.977 0.988 0.983 0.983
NB 0.984 0.954 1.0 0.9767 0.965 0.966

RBF-SVM 0.984 0.954 1.0 0.9767 0.965 0.966

2.7. Performance in Cross-Validation with GAN

For the imbalanced training data treated with a GAN, the ten-fold cross-validation
(Table 5) revealed that the XGBOOST algorithm achieved the highest performance with
an ACC of 0.9971 in all metrics (recall, precision, F1, Kappa, and MCC). LIGHTGBM and
RF also showed high performance with accuracies of 0.9942 and F1 scores of 0.9941. The
RBF-SVM algorithm again showed the lowest performance with an accuracy of 0.987 and a
recall of 0.9737.

Table 5. Ten-fold cross-validation on imbalanced training data treated with GAN.

Algorithm ACC Recall Precision F1 Kappa MCC

LIGHTGBM 0.9942 0.9913 0.9971 0.9941 0.9884 0.9886
MLP 0.9927 0.9913 0.9943 0.9927 0.9855 0.9857
RF 0.9942 0.9913 0.9971 0.9941 0.9884 0.9886

XGBOOST 0.9971 0.9971 0.9971 0.9971 0.9942 0.9943
KNN 0.9927 0.9913 0.9943 0.9927 0.9855 0.9857

LR 0.9913 0.9942 0.9885 0.9913 0.9826 0.9827
NB 0.9913 0.9855 0.9971 0.9912 0.9826 0.9829

RBF-SVM 0.9870 0.9737 1.0 0.9866 0.9739 0.9744

2.8. Performance on the Independent Test Set with GAN

During the testing stage on an independent dataset treated with a GAN (Table 6),
the MLP, KNN, and LR algorithms stood out with an ACC of 0.999, a recall of 0.999, a
precision of 1.0, and an F1 score of 0.999. The LIGHTGBM, RF, and XGBOOST algorithms
also showed high performance with accuracies of 0.9942 and F1 scores of 0.9942. On the
other hand, the NB and RBF-SVM algorithms performed lower with accuracies of 0.9884
and 0.9711, respectively.

Table 6. Testing stage on the independent dataset using GAN.

Algorithm ACC Recall Precision F1 Kappa MCC

LIGHTGBM 0.9942 0.9885 1.0 0.9942 0.9884 0.9885
MLP 0.999 0.999 1.0 0.999 0.999 0.999
RF 0.9942 0.9885 1.0 0.9942 0.9884 0.9885

XGBOOST 0.9942 0.9885 1.0 0.9942 0.9884 0.9885
KNN 0.999 0.999 1.0 0.999 0.999 0.999

LR 0.999 0.999 1.0 0.999 0.999 0.999
NB 0.9884 0.9770 1.0 0.9884 0.9769 0.9771

RBF-SVM 0.9711 0.9425 1.0 0.9704 0.9422 0.9438
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2.9. Overall Comparison

Overall, the results indicate that the use of SMOTE and GANs significantly improved
the performance of all evaluated algorithms. The data balancing methods succeeded in
equalizing the classes in the dataset, resulting in high values of accuracy, recall, and F1 score
for most algorithms. Nevertheless, the MLP, KNN, and LR algorithms showed particularly
outstanding performance during the independent test stage with a GAN, achieving nearly
perfect performance in all metrics. These observations suggest that applying data balancing
techniques such as SMOTE and GANs can considerably enhance the performance of
machine learning models on imbalanced datasets, with GANs being particularly effective
in this context.

2.10. Development of PROTA

As a result of this study, PROTA, a robust tool for protamine prediction, was developed.
PROTA incorporates the best-performing predictive model obtained in our experiments,
based on the MLP algorithm trained with GAN-augmented data. This tool was imple-
mented as a web application with a minimalist and user-friendly interface, designed to
be accessible to researchers without programming experience. PROTA accepts amino
acid sequences as input and provides binary predictions (YES for protamines, NO for
non-protamines), accompanied by a probabilistic score between zero and one, where values
closer to one indicate more robust predictions. This tool represents a practical application
of our findings, offering the scientific community a fast and accurate method for identifying
potential protamines in genomic and proteomic datasets. PROTA is freely available at
https://www.biochemintelli.com/PROTA accessed on 2 August 2024, allowing researchers
to easily integrate this resource into their protein analysis workflows.

3. Discussion

The arginine clusters form the DNA-binding domains, allowing DNA–protamine
complexes to condense and stabilize the spermatid genome. Protamines replace histones
during spermatid maturation, protecting DNA from degradation [6]. Protamines are
proteins of great importance for several reasons. They can protect DNA from degradation
during sperm formation due to electrostatic interactions between DNA and protamine,
which is positively charged. This is crucial for maintaining genetic stability in reproductive
cells [18,19]. They are widely used in medicine as adjuvants in insulin formulations,
extending their duration of action by forming complexes with insulin through electrostatic
interactions [20]. Moreover, protamine nanoparticles have been shown to have outstanding
immunomodulatory properties, making them promising components in new vaccine
technologies, especially in RNA delivery systems for vaccines against infectious diseases
and in cancer treatment [21–23]. However, due to the unique characteristics of protamines,
extracting and analyzing them is more complex compared with other chromatin-associated
proteins, for which there are numerous detailed protocols [24]. This complexity could be
one of the main reasons why few protamines have been sequenced using mass spectrometry
techniques to determine their primary sequence.

The SMOTE technique has been reported in several works as an effective method for
dealing with balanced data derived from the computation of molecular descriptors from
primary sequences of proteins and peptides [25–31]. On the other hand, the use of GANs
for data augmentation is a more recent approach, which has proven to be very robust in
generating high-quality synthetic data [32–36]. In this study, both methods enabled the
development of models with high quality according to performance metrics, which were
greater than 0.9 in all cases. However, the models obtained with the GAN-based approach
showed an improvement, although not a significant one, in the evaluated performance
metrics. These results demonstrate and align with previous studies on the robustness of
applying both data augmentation techniques to tabular data derived from the computation
of molecular descriptors [31,32,37,38].

https://www.biochemintelli.com/PROTA
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The integration of GANs into PROTA, despite similar performance metrics with
SMOTE, was based on several key considerations. GANs showed subtle performance im-
provements during cross-validation, with XGBOOST achieving marginally higher accuracy
(0.997) compared with the best performance of SMOTE (0.996 with LIGHTGBM). While
not statistically significant in our current dataset, this suggests potential for enhanced per-
formance with larger, more diverse datasets. The ability of GANs to capture and generate
complex, non-linear patterns aligns well with the intricate nature of protamine sequences,
potentially capturing a wider range of variations compared with the interpolation approach
of SMOTE [39–41]. Additionally, GANs offer superior scalability and adaptability as deep
learning models, making PROTA more robust to potential increases in dataset size and com-
plexity. This positions PROTA at the forefront of bioinformatics advancements, facilitating
future improvements in protein sequence analysis.

ML-based methods offer several significant advantages over traditional sequence
alignment methods based on the principle of homology. Firstly, ML algorithms can handle
large volumes of data and detect complex patterns that are not evident with traditional
alignment techniques. Traditional methods heavily rely on the similarity of known se-
quences, which can limit their effectiveness in identifying less conserved protein sequences
or detecting new variants [42–44]. Consequently, ML-based methods are particularly rel-
evant in the context of proteins such as protamines, which exhibit high variability and
complexity across species. As an example of the application of PROTA, in this study,
we conducted a large-scale analysis of unannotated sequences in the UniProt database
for the first time [45]. The number of sequences analyzed was 3512, which are currently
available without annotation in this database due to the deficiencies of traditional sequence
alignment methods and the intrinsic characteristics of these proteins regarding their high
variability and low homology mentioned earlier. From this total number of amino acid
sequences, we identified 591 protamines using our best model incorporated in PROTA,
which are available at https://github.com/jfbldevs/BioChemIntelli_datasets accessed on 2
August 2024, with binary labels of one for protamines and zero for non-protamines.

The protamines identified by PROTA exhibit a marked predominance of arginine
residues, with a frequency approximately three-fold higher than any other amino acid
(Figure 3). This arginine-rich composition is consistent with the canonical structure of
protamines and their function in DNA condensation [1,9,46,47]. The high arginine content
facilitates the electrostatic neutralization of DNA phosphate groups, enabling chromatin
hypercondensation in spermatozoa [48–50].

The consistent arginine enrichment across the identified sequences validates the speci-
ficity of PROTA in protamine detection. This characteristic amino acid profile serves as a
robust molecular signature, distinguishing protamines from other nuclear proteins. The
conservation of this feature across diverse taxa in the sequences identified by PROTA
suggests the efficacy of the tool in capturing evolutionary variants of protamines. The
pronounced arginine bias in sequences identified by PROTA corroborates the accuracy
and specificity of the tool in protamine detection. This finding underscores the utility of
PROTA as a computational resource for protamine identification and analysis in complex
sequence datasets.

Furthermore, the identification of protamines and protamine-like proteins by PROTA
has implications beyond chromatin condensation. These proteins play a crucial role in
environmental toxicology and reproductive health, as semen bioaccumulates pollutants
that can alter sperm quality. Pollutant-induced conformational changes in protamines can
affect DNA binding and chromatin structure across various species [51]. The ability of
PROTA to accurately identify both protamines and protamine-like proteins positions it as a
valuable tool for investigating these environmental interactions, potentially contributing to
the development of biomarkers for pollution and reproductive disorders.

https://github.com/jfbldevs/BioChemIntelli_datasets
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Figure 3. Position-specific amino acid frequencies in protamines. The heatmap displays the frequency
(%) of each amino acid (Y-axis) at each position in the sequence (X-axis) of the analyzed protamines.
Warmer colors indicate higher frequency, with yellow representing the highest frequencies (close to
100%) and dark purple the lowest (close to 0%). A clear predominance of arginine (R) is observed at
multiple positions, especially in the N-terminal and central regions of the sequences.

While PROTA demonstrates robust performance in protamine prediction, there are
several avenues for the future enhancement and expansion of its capabilities. First, al-
though our dataset is comprehensive, continuously updating it with newly discovered
protamines from diverse species could further improve the tool accuracy and broaden its
applicability across different taxonomic groups. Second, while our data augmentation tech-
niques (SMOTE and GANs) have proven effective, exploring their impact on the biological
relevance of synthetic sequences presents an interesting area for future research. This could
potentially lead to even more sophisticated data augmentation strategies tailored specifi-
cally for proteomic data. These considerations not only highlight the current strengths of
PROTA but also underscore its potential for growth and refinement, paving the way for
future advancements in protamine research and computational biology.

PROTA represents a significant step forward in protamine research, offering a powerful
tool for researchers in reproductive biology, evolution, and biotechnology. By leveraging
the strengths of machine learning and deep learning, we have created a robust method for
protamine prediction that overcomes many of the limitations of traditional approaches.
This work not only enhances our ability to identify and study these crucial proteins but
also opens new avenues for research in reproductive biology and beyond.

4. Material and Methods
4.1. Dataset

In this study, sequences of protamines and non-protamines were selected and down-
loaded from the UniProt database [45]. This process involved a meticulous manual review
of each sequence, and only those meeting the following two criteria were selected: (1) amino
acid sequences with reviewed notation, and (2) support from the scientific literature demon-
strating the functionality of these proteins. Through this process, 221 protamine amino acid
sequences (n = 221) and 431 randomly selected real protein sequences (n = 431) were identi-
fied to form the positive and negative datasets, respectively. All the amino acid sequences
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used in this study are available at https://github.com/jfbldevs/BioChemIntelli_datasets
accessed on 2 August 2024.

4.2. Calculation of Pseudo Amino Acid Composition

From all the sequences selected in this study, the molecular descriptor known as
pseudo amino acid composition (PseAAC) was calculated. This molecular descriptor is
widely used and popular in the development of predictive models based on primary amino
acid sequences. To compute PseAAC, the propy3 library (https://propy3.readthedocs.io/
accessed on 2 August 2024), developed in Python 3 (https://www.python.org/ accessed
on 2 August 2024), was used. The PseAAC consists of two main parts:

1. Twenty components representing the frequency of the 20 standard amino acids in
the sequence.

2. λ additional components that capture information about the order and correlations
between amino acids in the sequence, where λ is an adjustable parameter (in our
study, λ = 10).

The resulting vector for each sequence has a dimension of 20 + λ.
For example, for a hypothetical X sequence “ARYRCCRSTRRNRC”:

1. Amino acid frequency components:
[0.077, 0.385, 0.077, 0.231, 0.077, 0.077, 0.077, 0, . . ., 0]
where 0.077 represents the frequency of A, 0.385 that of R, etc.

2. Sequence correlation components:
[0.1, 0.08, . . ., 0.01]

These values capture information about the order and interactions between amino
acids. The final PseAAC vector would be the concatenation of these two sets of values. For
the binary response variable, a value of 1 was assigned to confirmed protamine sequences
and 0 to non-protamine sequences. Once the calculations were completed for all the
sequences under study, the values were saved in comma-separated values (csv) files for
further analysis.

The independent variables in this study, derived from the PseAAC, underwent min-
imal preprocessing. The resulting PseAAC values, being intrinsically normalized and
ranging between 0 and 1, did not require further normalization or scaling. This approach
leverages a key advantage of PseAAC: it provides a machine learning-ready numerical
representation of protein sequences, preserving biological information while minimizing
preprocessing needs. The final PseAAC values were used directly as input for our machine
learning models without further transformation.

4.3. Approaches for Data Augmentation

In this work, we evaluated two very different approaches to deal with the moderate
number of sequences and, consequently, the number of molecular descriptors calculated
from them. The first approach involved the application of the synthetic minority over-
sampling technique (SMOTE), a widely used method in machine learning to address
the problem of class imbalance. When a dataset is imbalanced, the model tends to be
biased towards the majority class, which can lead to poor performance in predicting the
minority class. SMOTE helps mitigate this problem by creating synthetic samples of the
minority class [52,53]. This technique was applied to an imbalanced class file composed of
previously calculated PseAAC from protamines (n = 221) and non-protamines (n = 431). For
the execution of SMOTE, the imbalanced-learn library (version 0.8.0, https://imbalanced-
learn.org/ accessed on 2 August 2024) was used. SMOTE was initialized with automatic
sampling strategy to balance the dataset, a fixed random state for reproducibility, and
5 nearest neighbors for synthetic sample construction. The technique created synthetic
samples for the minority class (protamines) until it matched the number of samples in
the majority class (non-protamines), resulting in a balanced dataset of 431 samples for
each class. This balanced dataset was then used for training our machine learning models,

https://github.com/jfbldevs/BioChemIntelli_datasets
https://propy3.readthedocs.io/
https://www.python.org/
https://imbalanced-learn.org/
https://imbalanced-learn.org/
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ensuring equal representation of both classes and potentially improving the performance
and generalizability of our predictive models.

The second approach evaluated in this study was the use of a specific generative
adversarial network (GAN) architecture for tabular data [32]. This deep learning ar-
chitecture consists of two neural networks that are trained simultaneously: a generator
and a discriminator. The generator network comprised three dense layers (128, 128, and
30 neurons, corresponding to the PseAAC dimensions) with LeakyReLU activation
(alpha = 0.01) and dropout (rate = 0.5) between layers. The discriminator network consisted
of two dense layers (128 neurons each) with LeakyReLU activation and dropout, followed
by a single-neuron output layer with sigmoid activation. Both networks were optimized
using Adam optimizer with a learning rate of 0.0002 and beta_1 of 0.5. The GAN was
trained for 1000 epochs with a batch size of 30.

While GANs are traditionally used to generate high-dimensional data such as images
or audio, for tabular data, the goal is to create data samples that mimic the distribution
of an original tabular dataset. In our case, data augmentation was carried out only on
the minority class dataset composed of PseAAC calculated from protamines (n = 221).
The trained generator was used to create 210 synthetic data points, achieving a balanced
dataset (n = 431). The synthetic data were rounded to three decimal places to match
the precision of the original data. For the GAN implementation, we used TensorFlow 2
(https://www.tensorflow.org/ accessed on 2 August 2024) and Keras (https://keras.io/
accessed on 2 August 2024) libraries. The quality of the generated samples was visually
assessed by comparing their distribution to the real samples using scatter plots of the first
two PseAAC dimensions.

SMOTE is computationally efficient and effective for continuous features, making it
suitable for our PseAAC data. However, it may not capture complex, non-linear relation-
ships in high-dimensional data. On the other hand, GANs can identify intricate patterns
in data. Although more computationally intensive, GANs offer the potential to generate
high-quality synthetic samples, which is particularly beneficial given the complex nature of
protein sequences. Both methods were employed to provide a comprehensive evaluation of
data augmentation in protamine prediction. SMOTE offers a straightforward approach for
our relatively low-dimensional PseAAC data, while GANs enable the detection of subtle,
non-linear patterns that simpler methods might miss.

4.4. Model Training, Validation, and Testing

In both situations, considering the datasets augmented with SMOTE and GAN, the
data were divided to perform training followed by a 10-fold cross-validation on 80% of
the data, and then testing on the remaining 20% of the data (independent dataset). During
these stages, various ML algorithms were evaluated, including Light Gradient Boost-
ing Machine (LIGHTGBM), Multilayer Perceptron (MLP), Random Forest (RF), Extreme
Gradient Boosting (XGBOOST), k-Nearest Neighbors (KNN), Logistic Regression (LR),
Naive Bayes (NB), and Radial Basis Function-Support Vector Machine (RBF-SVM). To
evaluate the performance of the algorithms in model generation, several metrics were
used as shown below. For the entire process of training, validation, and testing, the
ML libraries scikit-learn (https://scikit-learn.org/ [accessed on 2 August 2024]), XG-
Boost (https://xgboost.readthedocs.io/ [accessed on 2 August 2024]), and LightGBM
(https://lightgbm.readthedocs.io/ [accessed on 2 August 2024]) were utilized (Figure 1).

Accuracy(ACC) = TP + TN/(TP + FP + FN + TN) (1)

Sensitivity(TPR) = TP/(TP + FN) (2)

Precision(PPV) = TP/(TP + FP) (3)

F1 score(F1) = 2TP/(2TP + FP + FN) (4)

https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/
https://xgboost.readthedocs.io/
https://lightgbm.readthedocs.io/


Int. J. Mol. Sci. 2024, 25, 10267 12 of 14

kappa (κ) =
Po − Pe

1 − Pe
(5)

Matthews correlation coefficient (MCC) =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

In addition to the previously discussed performance metrics, we examined the area
under the curve (AUC) at each phase of the predictive model evaluation. The receiver
operating characteristic (ROC) curve and the AUC provide a comparative analysis of
two critical metrics: the true positive rate (TPR) and the false positive rate (FPR). In this
context, the TPR is equivalent to sensitivity, as mentioned earlier, while the FPR indicates
the rate at which actual negatives are incorrectly classified as positives.

FPR = FP/(FP + TN) (7)

In the final stage of this project, a web application in Python 3 (https://www.python.
org/ accessed on 2 August 2024) was developed to make predictions of protamines using
the best predictive model generated. This application has a minimalist interface that allows
for the very easy and intuitive execution of predictions, returning the results YES and
NO for protamines and non-protamines, respectively. Additionally, each result includes a
probabilistic score between zero and one. Probabilistic scores closer to one indicate more
robust predictions (Figure 1).

5. Conclusions

PROTA is a robust tool for protamine prediction that uses hybrid machine learning
and deep learning approaches. By using data augmentation techniques such as SMOTE
and GAN, we managed to significantly improve the performance of various ML algorithms,
particularly highlighting the MLP with data augmented by GAN, achieving excellent
performance metrics. The implementation of PROTA as an accessible and easy-to-use
web application provides the scientific community with a valuable tool for the rapid and
accurate identification of protamines in genomic and proteomic datasets. This not only facil-
itates progress in protamine research but also opens new possibilities in biotechnology and
medicine, allowing for a better understanding and application of these essential proteins.
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