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Abstract: Protein kinases have essential responsibilities in controlling several cellular processes, and
their abnormal regulation is strongly related to the development of cancer. The implementation
of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment
strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases
have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer
treatment. At present, 69 therapeutics have been approved by the FDA that target approximately
24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These
novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases,
protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and
receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of
kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth
factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer
cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The
reviewed articles provide detailed information on the structural features of potent anticancer agents
and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases
including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these
enzymes were highlighted accordingly.
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1. Introduction

Cancer remains a leading cause of mortality worldwide, despite significant advance-
ments in the discovery of potential anticancer therapies [1–3]. While the FDA approves new
cancer drugs annually, the efficacy of current treatments is hampered by multiple drug re-
sistance, and severe side effects. Consequently, there is a pressing need for the development
of novel therapeutics with reduced toxicity [4–6]. Extensive efforts are underway to identify
compounds with improved safety profiles. In pursuit of this goal, researchers are designing
and synthesizing novel chemical structures targeting key biological pathways implicated
in cancer progression, such as EGFR, CDKs, Ras, and tubulin proteins. These pathways
represent primary targets for the development of innovative anticancer agents [7,8].

A protein kinase functions as an enzyme that catalyzes the transfer of the phosphate
group of ATP to threonine, serine, and/or tyrosine residues on protein substrates, a process
commonly referred to as phosphorylation. Phosphorylation induces a functional modifi-
cation in the target protein, controlling the signaling pathways. Notably, human genome
sequencing has uncovered that approximately 2% of the human genome is dedicated to en-
coding protein kinases [9]. The human genome encompasses 518 kinases, pivotal enzymes
responsible for phosphorylating up to one-third of the proteome [10,11]. Virtually every sig-
nal transduction process relies on a phosphotransfer cascade, underscoring the multitude of
opportunities kinases offer for therapeutic intervention across various aberrantly regulated
biological pathways [12,13]. Beyond cancer, dysregulation of kinase function is implicated
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in numerous diseases, including immunological, inflammatory, degenerative, metabolic,
cardiovascular, and infectious conditions [14,15]. This emphasizes the wide-ranging signifi-
cance of targeting kinases in the treatment of diverse medical ailments [16,17]. Currently,
the FDA has approved 69 therapies that specifically target around 24 protein kinases. These
treatments are given for the treatment of neoplastic disorders [18].

The availability of various protein kinase X-ray crystal structures in the public domain
has expedited the process of developing drugs based on structural information [19,20]. The
crystal structure with PDB id 6GUB was utilized recently in many works as CDK2/CyclinA
complex crystal (Figure 1a) [21,22]. Flavopiridol is considered an inhibitor of multiple
cyclin-dependent kinases that causes a cell cycle arrest and apoptosis [23,24]. This agent
has been documented to hinder the activity of CDK2 and was subjected to co-crystallization
with CDK2 as presented in Figure 1a [25], and the binding mode of this drug was eluci-
dated through the establishment of hydrophilic and hydrophobic interactions with the
residues Lys33, Val18, Phe80, Val64, and Leu134 as presented in Figure 1b [21]. A crystal
structure assigned the PDB id 7SJ3 has been recently employed in several studies as a
CDK4/CyclinD complex crystal with co-crystal abemaciclib (Figure 1c), and the binding
mode of this drug was elucidated through the establishment of hydrophilic and hydropho-
bic interactions with Ile12, Lys35, Phe93, Val96, Asp97, Leu147, and Asp99 residues as
presented in Figure 1d [26–28]. This ligand was approved by the FDA in 2017 for breast
cancer [29]. In addition, commercial ventures have developed and implemented various
proprietary structures that are widely utilized in the drug discovery process. There are now
around 180 protein kinase inhibitors that can be taken orally that are being tested in clinical
trials globally [19,20]. To access an up-to-date and extensive list of these agents, please visit
www.icoa.fr/pkidb/ (accessed on 18 July 2024). Approximately 80 medications approved
by the FDA specifically target around 24 distinct protein kinases [30].
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Figure 1. (a) The crystal structure of CDK2/CyclinA with Flavopiridol (PDB: 6GUB). (b) The binding
interactions between Flavopiridol and certain residues in side CDK2. (c) The crystal structure of
CDK4/CyclinD with abemaciclib (PDB: 7SJ3). (d) The binding interactions between abemaciclib and
certain residues in side CDK4.

CDK inhibitors are typically identified by high-throughput, fragment-based screening
and virtual methods to facilitate the development of novel anticancer medicines with potent
therapeutic properties [31,32]. The progress of the cell cycle and cell division in organisms
ranging from yeast to humans is facilitated by the progression of a set of serine-threonine
kinases known as CDKs. Several CDKs regulate the cell cycle in mammalians and have long
been regarded as crucial for normal cell growth, development, and maintenance of internal
stability. The significance of the CDK-cyclin complexes in cell proliferation is emphasized
by the discovery that the dysregulation of CDK activity is present in almost all types of
human tumors [33,34]. Four FDA-approved antagonists specifically target CDK4/6 for
the treatment of breast cancer [35,36]. It is crucial to discuss the processes that regulate
the division process of cancer cells in order to hinder tumor growth. The replication of
identical daughter cells is a tightly controlled process in healthy cells. Nevertheless, genetic
alterations that may take place in cancerous cells can ultimately result in uncontrollable cell
growth. To gain a more comprehensive comprehension of the mechanism by which cyclin-
dependent kinase inhibitors (CDKIs) work, it is necessary to provide a broad description
of the cell cycle and illustrate how cyclins and CDKs can have a substantial impact on
the course of the cell cycle. Multiple observations have been conducted to discourage
the cell division process in the cancer pathways, leading to the discovery of novel CDKIs.
Nevertheless, the intricate nature of cellular control pathways poses significant difficulties
in effectively inhibiting the proliferation of tumor cells in a targeted manner [37–39].

According to research, eight of the kinase inhibitors that have been approved by the
FDA establish covalent connections with the enzymes they target. These inhibitors are
classed as TKIs, which stand for targeted covalent inhibitors [40]. The agents mentioned are
acalabrutinib, dacomitinib, osimertinib, afatinib, neratinib, zanubrutinib, ritlecitinib, and
ibrutinib. These agents have specific targets in various types of cancer, such as blocking
Bruton’s tyrosine kinase (BTK) in mantle cell lymphoma, targeting mutant EGFR in NSCLC,
or inhibiting ErbB2 in HER2-positive breast cancer, and Waldenström macroglobulinemia.
The EGFR and ErbB4, which are closely related members of the ErbB subtype EGFR



Cells 2024, 13, 1656 4 of 37

family, are the protein kinases that most frequently exhibit alterations in all types of
malignancies [41].

FDA-approved TKIs targeting EGFR, such as first- and second-generation drugs like
erlotinib and afatinib, often face resistance within 8 to 14 months due to mutations like
T790M [42,43]. Third-generation TKIs, such as osimertinib, were developed to address this,
but resistance still develops through mechanisms like the C797S mutation and activation of
alternative pathways (e.g., MET amplification, HER2 overexpression). Fourth-generation
TKIs are in development to overcome these issues, but challenges remain in achieving
selectivity and reducing side effects. Recent clinical evidence highlights the need for
combination therapies and more advanced inhibitors to address both primary mutations
and resistance mechanisms [44–46].

In the past two decades, the FDA has approved more than 10 anticancer drugs associ-
ated with EGFR. Additionally, in 2023, fruquintinib, a dimethoxyquinazoline derivative
(Figure 2), was sanctioned by the FDA as a novel therapeutic agent aimed at targeting the
vascular endothelial growth factor receptor (VEGFR) for managing metastatic colorectal
cancer [47]. Over the past decade, the FDA has approved four drugs targeting CDK4/6.
Trilaciclib, a derivative of piperazine-pyridine-amino-spiro (Figure 2), is the latest medicine
to be licensed in this family. It is recognized for its ability to protect the bone marrow and
its potential to effectively combat the proliferation of cancerous cells and provide safety
advantages when used alongside cancer therapy [48]. Other drugs that specifically target
the receptor protein-tyrosine kinase have recently been recognized by the FDA in 2023, like
Quizartinib (Figure 2), which belongs to the benzothiazole phenyl-urea derivative scaffold
and selectively targets the Flt3 protein. As a result, this drug has been used to treat acute
myelogenous leukemia and has shown excellent observations [49,50].
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Figure 2. The molecular compositions of various newly authorized anticancer drugs that specifically
act on kinase families such as VEGFR, CDKs, and Flt3.

This study provides a comprehensive analysis of the latest advancements in anticancer
drugs or substances that primarily focus on protein kinase enzymes. The information
offered contains comprehensive details regarding the chemical structures, IUPAC nomen-
clature, mechanisms of action, structure-activity relationships (SAR), targeted cancer cell
lines, and developmental statuses of highly potent inhibitors. The focus is specifically on
CDKIs and EGFR inhibitors. Moreover, an updated inventory of approved drugs within
this classification has been compiled. Notably, a significant portion of recently discovered
compounds fall under the category of kinase inhibitors. For a deeper understanding, read-
ers are encouraged to explore this review article, which offers a comprehensive analysis of
the kinase inhibitors’ landscape alongside their respective references.

2. Cyclin-Dependent Kinases

The CDK family is pivotal in regulating essential processes such as cell cycle pro-
gression, transcription, and splicing. Dysregulation at any of these stages can induce
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programmed cell death, known as apoptosis. Failure to correct these dysfunctions may
lead to the development of various diseases, prominently including cancer and neurode-
generative disorders [51]. CDKs are well-established as key regulators of cell proliferation.
Consequently, current research efforts are primarily directed toward elucidating the intri-
cate connections between CDK/cyclin complexes and signal transduction pathways that
govern cell growth, differentiation, and apoptosis. This emphasis seeks to reveal innovative
prospects for the diagnosis and treatment of cancer and other conditions linked to aberrant
cell growth [52,53]. Therefore, it is crucial to thoroughly examine the mechanisms of CDK
inhibitors and explore their clinical applications, particularly in light of recent updates in
the literature. This endeavor is essential for gaining deeper insights into CDK inhibitors,
their various classes, and their pivotal role in cancer treatment [54].

2.1. FDA-Approved CDK Inhibitors

In the past decade, the FDA has approved four CDK inhibitors belonging to the
CDK4/6 subtype, as listed in Table 1. These inhibitors are categorized as protein-serine/
threonine kinase inhibitors. Notably, these four drugs share a common core structure char-
acterized by a piperazin-pyridin-pyrimidin-amino scaffold. They exhibit similar features,
including binding to the inactive kinase conformation. Additionally, they establish hydro-
gen bonds between the 3N-pyridine moiety and the NH group of HIS100, as well as between
the carbonyl (CO) group of Val101 and the exocyclic NH group of the side chain [55].

Table 1. The FDA-approved CDK4/6 inhibitors’ structure, the year of approval, and therapeutic
indications.

Drug Name Chemical Structure Year Therapeutic Indications

Palbociclib
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becomes almost flat at the entrance of the cleft. This alteration removes the barrier from the
catalytic cleft, allowing the substrate to bind with the protein [63,64]. CDKs and cyclins
are frequently disrupted in different cancers, leading to the unchecked growth of cancer
cells. Recent research also indicates a connection between cancer and irregularities in
transcription factors. Table 2 outlines the varied biological functions of the main CDKs and
their cyclin partners, highlighting their significant involvement in various types of cancer.

Table 2. The biological roles of CDKs and their correlation with various forms of cancer.

CDKs Cyclin Partner Biological Role Type of Cancer Ref.

CDK1 B Regulate M phase Breast, ovarian, lung [65–67]

CDK2
A Regulate G1-S phases,

Rb-E2F pathway
Breast, ovarian, lung, prostate and many others [62,68]

E

CDK4 D Regulate G1 phase,
Rb-E2F pathway Skin, breast, bladder, lung [69,70]

CDK6 D Regulate G1 phase,
Rb-E2F pathway

Bladder, esophageal, gastric, head and neck,
pancreatic [67,71]

CDK9 T DNA damage repair and
RNAPII transcription Breast, lung, cervical, and many others [72,73]

2.2. Cyclin-Dependent Kinase 2

Anomalous activation of CDK2 has been recognized as a primary mechanism of resis-
tance to CDK4/6 inhibition in hormone-receptor-positive (HR+) breast cancer. Furthermore,
there is reliable preclinical evidence that highlights the essential function of this medication
in promoting the survival of cancer types characterized by overexpression [74]. Several
molecular docking studies have been conducted to evaluate the binding modes within
the CDK2 binding pocket. Borik et al. designed novel heterocyclic derivatives based on
curcumin for cytotoxic activity. Among these, the most potent derivative demonstrated the
best virtual effect on MCF-7 cells, with molecular docking revealing strong binding energy
and key hydrogen/hydrophobic interactions with the CDK2 binding pocket [75]. Similarly,
Riyadi et al. synthesized thiazolo-indol derivatives, with two compounds emerging as the
most active CDK2 inhibitors. Docking simulations showed interactions with Lys33, Glu81,
and Leu83 in CDK2, mimicking ATP binding [76].
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2.2.1. Pyrazole, Pyrimidine, and Related Derivatives as CDK2 Inhibitors

Pyrazole compounds demonstrate a diverse array of pharmacological activity, en-
compassing anti-inflammatory, antipyretic, and analgesic properties [77,78], and especially
as anticancer effects [78–80]. Srinivasulu et al. synthesized a derivative of disubstituted
pyrazolo-pyrimidine analogs and assessed their antitumor activities. The derivatives were
tested for their effects on CDK2/cyclin E besides Abl kinases; additionally, their antipro-
liferative effects against MCF-7 and K-562 cancer lines were investigated. Among these
derivatives, St.1 (Table 3) demonstrated the highest activity against the mentioned cell lines
with potent inhibitory activity against CDK2/cyclin E. Importantly, cytotoxicity studies on
normal cell lines indicated that all compounds were non-toxic to normal cells. SAR analysis
revealed that the anticancer activity of these compounds was influenced by substituents
at positions 4 and 6 on the pyrazolo-pyrimidine scaffold. Compounds with substitutions
at these positions showed enhanced activity compared to those with only 6th position
substitutions. Additionally, the incorporation of the benzofuran group at the 4th position
exhibited superior activity compared to furan and thiophene substitutions. Surprisingly,
compounds substituted at the 6th position also showed improved activity compared to
phenyl-carbamoyl acetamide substitution [81].

Samar et al. synthesized a series of derivatives and evaluated their CDK2 inhibitory
activity. Among the synthesized compounds, St.2 and St.3 (Table 3) exhibited the most
potent CDK2 inhibitory activity. St.2 demonstrated 1.4 and 2.3-fold inhibition of MOLT-4
and HL-60 cells, respectively, compared to dinaciclib. Pharmacokinetic analysis revealed
that both compounds have good oral bioavailability and high gastrointestinal absorption
but cannot penetrate the blood–brain barrier. The synthesis of new CDK2 inhibitors bearing
the pyrazol, pyrimidine core represents a significant advancement. SAR analyses indicated
that substitution patterns of halogens on the phenyl rings significantly influence cytotoxic
activity. The bromo at the para position of the “A” phenyl ring enhances anti-tumor activity,
while the chloro substituents in the ortho or meta positions at the “B” phenyl ring are more
effective than in the para position for both cytotoxic and CDK2 inhibitory activities [82].

Basma et al. synthesized a series of pyrazolo-pyridines and investigated their anti-
cancer effects on MCF-7, Hela, and HCT116 cancer cell lines. St.4 (Table 3) exhibited the
highest anticancer activity against HeLa among the derivatives, comparable to that of the
standard drug doxorubicin. Similarly, compound St.5 demonstrated significant cytotoxicity
against MCF-7 and HCT116 cell lines. Both compounds induced cell cycle arrest and apop-
tosis in the tested cancer cell lines, with St.4 showing S phase arrest in Hela cells and St.5
inducing G2/M phase arrest in MCF-7 and S phase arrest in HCT116 cells. Furthermore,
St.4 and St.5 demonstrated inhibitory activity against CDK2 and CDK9. Molecular docking
studies indicated that both compounds fit well in the active sites of both CDK2 and CDK9,
suggesting a mechanism for their action against cancer cells. The electronic properties
of phenyl substituents at the 4th position of the pyridine ring significantly influenced
the anticancer activity of these compounds. Substitution variations in compound series
resulted in varied effectiveness against Hela cells, with compound St.4 showing superior
activity [83]. In another work, a series of pyrazolo-pyrdine derivatives were synthesized,
and among the synthesized compounds, St.6 and St.7 (Table 3) observed potent activities
against CKD2/Cyclin A with 96% inhibition on this enzyme for both compounds at 10 µM
concentration [84].

Fanta et al. designed a series of pyrazol-pyrimidine-amine as potential anticancer
agents targeting CDK2. Among the investigated derivatives, St.8 (Table 3) showed the best
activities against various cancer cell lines besides potent activities on CDK2, as well as this
compound, which arrests the cell cycle at S and G2/M phases and induces apoptosis [85].
Cheng et al. synthesized a series of pyrazole carboxamides as CDK2 inhibitors, and they
present a collection of novel inhibitors that target histone deacetylase (HDAC). Among the
synthesized derivatives, St.9 and St.10 (Table 3) exhibited potent antiproliferative effects
against five solid cancer cell lines. Moreover, these compounds demonstrated excellent
inhibitory activities against HDAC2 with IC50 values of 0.25 and 0.24 nM, respectively,
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and both of these compounds significantly suppressed the migration of A375 and H460
cells. Further investigations revealed that these compounds induced cell cycle arrest in the
G2/M phase and promoted apoptosis in A375, HCT116, H460, and HeLa cells, which was
associated with elevated intracellular reactive oxygen species (ROS) levels. The presence
of an electron-donating methoxyl group resulted in diminished activity compared to com-
pounds with electron-withdrawing groups; substitution with fluorine or chlorine moieties
at the ortho positions of the phenylamide ring enhanced activity relative to compounds with
hydrogen atoms. Notably, compounds St.9 and St.10, featuring two chlorine atoms at ortho
positions, demonstrated excellent antiproliferative activities. The pyrazole-3-carboxamide
group of these two compounds was observed to form hydrogen bonds with the back-
bone residues Glu81 and Leu83 in the hinge area of CDK2, which are essential for CDK2
inhibition. Importantly, compound St.9 exhibited favorable pharmacokinetic properties,
including an intraperitoneal bioavailability of 63.6% in ICR mice, and demonstrated potent
in vivo antitumor efficacy in the HCT116 xenograft model [86].

In a recent study by Shaker et al., a series of pyrazole-triaryl derivatives were de-
signed, synthesized, and investigated as potential anticancer agents targeting CDK2 and
cyclooxygenase-2 (COX-2) enzymes. All of the evaluated derivatives underwent screen-
ing against three cancer cell lines [87]. The COX-2 enzyme is consistently produced in
excessive amounts in different types of cancer in humans due to signaling pathways in-
volving protein kinase C and RAS. It has been observed that selective COX-2 inhibitors
can affect the checkpoints in the cell cycle by reducing the levels of cyclin D1 and cyclin
E. Therefore, CDK2 and COX-2 are potential targets for cancer treatment [87,88]. Among
the synthesized series, St.11 (Table 3) was the most active compound and found to induce
apoptosis of HepG2 cells by regulating the G1 phase of the cell cycle. Furthermore, it
markedly reduced the levels of anti-apoptotic Bcl-2 expression and increased the levels
of pro-apoptotic Bax expression, thus demonstrating the cells’ vulnerability to apoptosis.
Molecular modeling studies have revealed that the chemicals’ anticancer effect is achieved
via inhibiting the CDK2 and COX-2 enzymes. Hence, diaryl pyrazole compounds with a
methylsulfonyl group could potentially provide a straightforward means to develop highly
effective inhibitors of CDK2 and COX-2, which possess notable anticancer properties [87].

Table 3. The structures and the IC50 values against a panel of cancer cell lines and CDK2 for the most
active agents, which contain pyrazole, pyrimidine, and pyridine scaffolds.

Code Structures
Evaluated Cancer Cell Lines CDK2

Ref.
Cell lines IC50/IG50 IC50
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Wang et al. designed a series of pyrimidine-piperidine derivatives and tested their
activity against CDK2. St.12 (Table 3) emerged as the most active structure, exhibiting
potent inhibitory activity against CDK2. Additionally, this compound demonstrated a
broad range of anticancer activity against a panel of human breast cancer cell lines by
inducing apoptosis and cell cycle arrest, particularly at the G0, G1, and S phases in MDA-
MB-468 cells. Further analysis revealed that the presence of a 4-methoxy group in the
phenyl amide group was crucial for the activity. Positional variations in substituents
indicated that a 4-fluoro group in the amino-phenyl ring conferred the highest activity,
while substitution with 2-methyl or 4-methyl led to a decrease in activity. This structure
was found to form important interactions with key residues in the ATP-binding site of
CDK2, including hydrogen bonding with Leu83 residue and anion interaction with Asp86
residue. These interactions contributed to the binding affinity with CDK2, emphasizing its
capacity as a therapeutic agent for the treatment of breast cancer [89].
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Zeng and colleagues designed a new series of pyrimidine-amino-pyridine by modi-
fying the similar structures containing the piperidine-amino-pyrimidine; among the new
series St.13 (Table 3) showed promising results against different cancer cell lines and CDK2,
in comparison with the Palbociclib positive control. Molecular docking studies were con-
ducted to investigate the interactions between this compound binding pocket of CDK2.
This compound attaches to the ATP-binding site in a U-shaped conformer, exhibiting a
binding mechanism comparable to that of AZD5438, the ligand of the co-crystal [90].

Hu and co-workers designed and synthesized a series of pyrimido-quinazoline deriva-
tives, and observed their potential as CDK2 inhibitors. Compounds St.14 and St.15 (Table 3)
demonstrated significant activities against the CDK2 enzyme and exhibited strong antipro-
liferative activities against MCF-7 and HCT116 cancer cell lines. The two substituted with
phenylamine among these derivatives showed the best overall anticancer activity compared
to other derivatives. Furthermore, the tricyclic scaffold of pyrimido-quinazoline, identified
as an inhibitor of various cell cycle kinases, including CDK2, interacts with Leu83 residue
at the ATP site. The pyrimidine portion of this scaffold forms crucial hydrogen bonds with
the CDK2 hinge region (Leu83), essential for inhibitory activity [91].

Ghorab et al. conducted the synthesis of amino pyridine derivatives which were de-
signed as potential anticancer agents. These synthesized compounds underwent biological
evaluation for cytotoxic activity against MCF-7 cell lines. Within this series, compound
St.16 (Table 3) exhibited notable activities against both the MCF-7 and CDK2 enzymes.
Additionally, the potential of γ-radiation to enhance the cytotoxic activity of this compound
was investigated, demonstrating a significant increase in cell killing effect at lower con-
centrations post-irradiation. Docking studies were conducted to investigate the potential
binding modes within the active site of the CDK2 enzyme. The residue Leu83 was found
to interact with the nitrogen (N) of the pyridine moiety at a distance of 3.02 Å, as well as
with the NH group linked to the pyridine at a distance of 2.61 Å. Additionally, the residue
Lys 89 exhibited an interaction with the sulfone group (SO2) of the sulfonamide moiety
at a distance of 3.09 Å, while Asp86 interacted with the SO2 group of the sulfonamide at
a distance of 2.89 Å. Moreover, Tyr15 was observed to interact with the SO2 group of the
tolyl sulfonamide moiety at a distance of 3.04 Å [92].

Sabt et al. synthesized a series of pyridazine derivatives with anticancer activities
aimed at targeting the CDK2 enzyme, utilizing the 3,6-disubstituted pyridazine scaffold
to enhance the therapeutic arsenal with efficient and safe anticancer CDK inhibitors. The
synthesized compounds underwent evaluation for in vitro CDK2 inhibitory activity. These
compounds demonstrated potent anti-proliferative effects against T-47D and MDA-MB-231
cell lines. Notably, among the synthesized compounds, St.17 (Table 3) emerged as the most
active compound. This compound showed various binding interactions inside the pocket
of the CDK2 active site, including a hydrophobic interaction with non-polar residues and
hydrogen bonding with the other residues. Moreover, this compound induced cell cycle
arrest at the G2/M phase and triggered apoptosis and necrosis in both T-47D breast cancer
and MDA-MB-231 cell lines. [93].

2.2.2. Thiazole, Thiouracil, and Related Derivatives as CDK2 Inhibitors

Thiazole derivatives are recognized as agents with diverse biological activities, encom-
passing anticancer properties [94,95], neuroprotective effects [95], and anti-inflammatory
capabilities [96,97]. El-Naggar et al. synthesized a novel series of thiazole-hydrazine deriva-
tives with potential as CDK2 inhibitors. All synthesized compounds were tested for their
antiproliferative activities against four cancer cell lines. Among the synthesized series
compound, St.18 (Table 4) was the most active derivative on CDK2, exhibiting the highest
potency, being two-fold more potent than the roscovitine positive control against this target.
Moreover, this compound was observed to arrest the cell cycle at the G2/M phase of HepG2
and have apoptotic effects on the same cell lines. Docking studies indicated that these
derivatives are well accommodated within the binding pocket of the CDK2, engaging
in various binding interactions with seven amino acid residues. This structure showed
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the best docking values (−18.63 kcal/mol) and exhibited significant activities against the
CDK2, nearly matching the score of roscovitine (−17.03 kcal/mol). A strong binding
interaction involving hydrogen bonds between the N atoms of thiazole and hydrazinyl
of this compound and the Lys89 amino acid was observed. Additionally, the CH3 group,
which is linked to thiazole, may potentially form binding interactions within the active site,
such as hydrophobic interactions with His84 [98].

A series of derivatives, based on dichlorophenoxymethyl and featuring various ni-
trogenous heterocyclic rings were synthesized and evaluated on cancer cell lines and the
CDK2 enzyme. Among this series, thioxonaphtho-oxazine containing compound St.19
and benzothiazole containing compound St.20 (Table 4) were the most potent compounds
that were synthesized via the hybridization concept. The derivatives show promising
results against CDK-2 in comparison with roscovitine as a positive control. To elucidate
the potential binding interactions of the most active compounds in this series, molecular
docking simulations were conducted inside the pocket of the CDK-2. St.19 showed strong
binding interactions, including hydrogen bond interactions with two oxygens of the sul-
fonic moiety (with distances ranging from 2.63 to 2.86 Å). Furthermore, hydrogen bond
donor interactions were observed between the side chain of Lys89 and the oxygens of the
2,4-dichlorophenoxy moiety in this compound. Similar binding modes of derivatives St.20
were observed inside the ATP-binding pocket of CDK-2. The backbone of Leu83 amino acid
is bound via hydrogen-binding interactions with N and NH groups of benzo-thiazole and
amide groups. The excellent inhibitory activity observed can be attributed to these specific
interactions, highlighting the superior activity of St.19 due to the additional hydrogen
bonding, which is crucial for a more precise fitting within the active site of CDK-2 [99].

Hendawy and colleagues designed a series of thiazolidinone analogs and tested
their anticancer activities by targeting CDK2 and EGFR, as well as the apoptotic effect
observed in three caspases (3, 8, and 9). St.21 and St.22 (Table 4) demonstrated strong
inhibitory activity against CDK2 and EGFR. These compounds also increased the activity of
caspases 3, 8, and 9, as well as cytochrome C levels in the breast cancer cell lines. The SAR
analysis indicated that compounds featuring the 2,4-dinitrophenyl-hydrazono-thiazolidine-
4-one moiety exhibited higher antiproliferative activity compared to the other derivatives.
Furthermore, the substitution of p-tolyl (St.22) was better than cyclohexyl (St.21) or other
substitutions, and p-tolyl showed better antiproliferative, CDK2 inhibitory, and EGFR
inhibitory activities. Molecular docking simulations revealed that the test compounds
were stabilized within the active site cavity of the target proteins, forming hydrogen bonds
and π-hydrophobic binding interactions with some amino acids [100]. In another work on
this series scaffold (thiazolidinone), two compounds were synthesized by a rapid method
called grindings without using any solvent, and these two compounds were evaluated
virtually, and they showed a promising virtual binding interaction with the CDK2 binding
pocket [101].

In a recent study, Manda et al. created a series of thiazolidinone-coumarin derivatives
as potential anticancer compounds that target the CDK2 enzyme. These novel compounds
were synthesized by using the hybridization concept, and they were evaluated for their
in vitro activities against both MCF-7 and CDK2. The most active agent was St.23 (Table 4)
and showed promising activities against these targets. Molecular docking simulations
demonstrated the engagement of the St.23 compound with the CDK2 binding pocket via
hydrogen bonding interactions. The carbonyl (C=O) group of the benzylidene ring forms
a hydrogen bond with the Leu281, and another binding interaction occurs through the
methoxy group of the phenyl ring Glu8 [102].

Fatahala et al. innovated a series of thiouracil-5-sulfonamide derivatives as potential
anticancer agents targeting the CDK2 enzyme. The anticancer effects of these derivatives
were assessed against a panel of cancer cell lines. The most potent compound was St.24
(Table 4), which arrests the cell cycle at G1/S, S, and G2/M phases in A-2780, HT-29, MCF-7,
and HepG2 cells, respectively. Moreover, this compound showed an apoptosis effect in
all utilized cancer cells. In terms of SAR analysis, derivatives without the SO2NH group
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showed inactivity against the mentioned cancer cell lines, while the St.24 compound, which
has SO2NH and contains 2,3-dichlorophenyl, demonstrated the highest potency. These
observations suggest the critical role of the sulfonamide group in cytotoxic activity. How-
ever, further modification of this group by converting it to SO2NHNH led to a reduction in
potency. Molecular modeling revealed the binding of this compound by forming hydrogen
bonds with amino acids (Gln131, Lys33, and Lys129) [103].

Table 4. The structures and the IC50 values against a panel of cancer cell lines and CDK2 for the most
active agents which contain Thiazole, and Thiouracil scaffolds.

Code Structure
Evaluated Cancer Cell Lines CDK2

Ref.
Cell Lines IC50 or IG50 IC50
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Ref.
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Sayed et al. developed and created a new series of tetrahydroisoquinolines. Within
this collection, St.25 (Table 4) stands out as it contains thio-naphthalen-acetamide connected
to cyano tetrahydroisoquinolines that have shown a significant efficacy on several cell
lines in comparison to the positive control drug doxorubicin. This compound induces
cell cycle arrest specifically at the G2/M phase. Based on the docking analysis, this
compound exhibited a higher binding affinity with a binding score of −10.3 kcal/mol to
CDK2 compared to the standard STU299 value (−11.5 kcal/mol). The examination of the
binding interactions revealed that this compound established hydrogen and hydrophobic
interactions bonding, with important amino acid residues in the CDK2 binding region,
such as Glu12, Val18, Lys33, and Leu134 [104].

2.3. Cyclin Dependent Kinase 4/6

In recent years, four CDK4/6 inhibitors have been approved by the FDA and are
highlighted in Table 1. These medicines have been observed to have low permeability
through the blood–brain barrier (BBB). Hence, there is a constant need for the advancement
of CDK4/6 inhibitors that have been clinically authorized for the treatment of brain ma-
lignancies such as glioblastoma multiforme. Due to the disadvantages of these inhibitors
in patient treatment resulting from either intrinsic or acquired resistance. Therefore, it
is essential to prioritize the identification of many strategies to overcome this challenge.
An elucidation of the many processes by which resistance to CDK4/6 inhibitors arises
could assist in the development of innovative therapeutic approaches to enhance patient
outcomes [35,105,106].

2.3.1. Pyrimidine Derivatives as CDK4/6 Inhibitors

Over the past decade, numerous studies have focused on the synthesis and in-
vestigation of the pyrimidine series as the primary framework, intending to target the
CDK4/6 [107–110]. The pyrido-pyrimidine scaffold showed promising activities as an
anticancer agent by targeting CDK4/6 and other kinases [110–112]. Abbas and his co-
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workers developed a series of pyrido-pyrimidines as CDK4/6 inhibitors. Among this
series, St.26 and St.27 (Table 5) showed significant activities against a panel of cancer cell
lines and CDK6 enzymes. Additionally, these two compounds induced apoptosis in PC-3
and MCF-7 via the activation of caspase 3 in PC-3 cell lines, and bax and p53, as well
as down regulation of Bcl2. According to the SAR analysis, the size of the atom and its
lipophilicity may impact the activity, as demonstrated by the increased activity of chloro
derivatives like St.26 and St.27 better than compounds with a fluoro atom. St.26 was
found to dock within the binding pocket of CDK6 well by forming hydrogen bonds with
Glu99 and Val101 amino acids, in addition to engaging in hydrophobic interactions with
other amino acid residues. This direct binding mechanism suggests inhibition of CDK6
activity, alongside activation of the intrinsic apoptotic pathway [113]. In another work,
Al-Attraqchi et al. synthesized a series of pyrido-pyrimidines as CDK4 inhibitors; the
most potent compound against CDK4 was St.28 (Table 5). According to the molecular
docking analysis, the amine group makes a hydrogen bonding interaction with Val96, and
another hydrogen bonding interaction is established between the side chain of His95 and
the nitrogen atom in the ring. The π-ring system is sustained within the binding pocket
through several hydrophobic and π-alkyl interactions with certain hydrophobic residues,
namely Aal33, Leu147, Val72, and Ala157 [114]. Fang and his coworkers designed and
synthesized a series of pyridin-amino-pyrido-pyrimidine derivatives as CDK4/6 inhibitors
based on the chemical structure of the piperazine moiety of the anticancer agent palbociclib.
These compounds showed significant anticancer activities against several cancer cell lines,
including HepG2, A549, MDA-MB-231, and MCF-7. Among this series, compound St.29
(Table 5) showed a potent inhibitory effect against MDA-MB-231 and MCF-7 breast cancer
cell lines with low IC50 values, as well as a selective inhibitory effect against CDK4/6. This
compound also arrests the cell cycle at the G0/G1 phase and induces apoptosis [115].

Table 5. The structures and the IC50 values against a panel of cancer cell lines and CDK4/6 for the
most active agents of pyrimidine derivatives.

Code Structure
Evaluated Cancer Cell Lines CDK4 CDK6

Ref.
Cell Lines IC50 IC50
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Table 5. Cont.

Code Structure
Evaluated Cancer Cell Lines CDK4 CDK6

Ref.
Cell Lines IC50 IC50
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Shi et al. conducted research on a novel series of pyrrolo-pyrimidines, and this class of
compounds was synthesized and evaluated for its impact on pancreatic cancer cells, focus-
ing on in vitro studies and activity against CDK4/6. Among the synthesized derivatives, a
series of 6-anilino carbonyl-substituted pyrrolo[2,3-d]pyrimidine derivatives demonstrated
enhanced potency against various cell lines, specifically St.30 (Table 5) was the most potent
agent. Further investigation revealed that this compound exhibited potential for combina-
tion therapy with mTOR inhibitors in pancreatic cancer treatment. This was achieved by
introducing a sulfonamide group on the C2-substituent of pyrrolo[2,3-d]pyrimidine, which
affected CDK activity. CDK is pivotal in regulating cell cycle progression from the G1 to
S phase, making it a promising target for cancer therapy [116]. Another work by Sroor
and his co-workers on the pyrrolo-pyrimidines family was conducted to evaluate their
anticancer activities. This new set of pyrrolo[2,3-d]pyrimidine derivatives was created,
synthesized, and examined for their antiproliferative activities against several cancer cell
lines. Among this series, St.31 (Table 5) showed promising activities as an anticancer agent,
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as well as a down regulation observed by this compound on CDK4 and BcL2, and this
compound arrests the cell cycle at the G1/S phase in MCF-7 [117].

Guo and colleagues synthesized a series of derivatives falling under the same series
(pyrrolo-pyrimidines). The synthesized compounds underwent evaluation for their in vitro
inhibitory activity against CDK4/6, as well as their anti-proliferative effects on T47D and
A549 cancer cell lines. Among these derivatives, St.32 (Table 5) was the most potent against
CDK4, demonstrating dual inhibition against both kinase enzymes 4/6. The selective CDK4
inhibitor St.32 displayed antitumor activity by arresting the cell cycle at the G1 phase. This
compound is tightly bound to the ATP-binding site the like ribociclib positive control and
forms hydrogen bond interactions through amino-pyrimidine and carboxamide groups
with His95, Val96, and Asp158 amino acids [118].

Divya et al. designed a series of thieno-pyrimidin-hydrazones as CDK4 inhibitors.
A total of 59 derivatives were designed and subjected to evaluation for their inhibitory
activity against CDK4/D. According to their findings, St.33 (Table 5) was the most potent
compound, which induced cell cycle arrest at the G1 to S phase transition. In the docking
study, this compound can form hydrogen bonding interactions with Val96 and Asp99 amino
acids within the pocket of CDK4, via the NH of the hydrazone moiety acting as a hydrogen
bond donor to the carbonyl group of Val96. Additionally, the nitrogen atom at the 3rd
position in the Thieno[2,3-d]pyrimidine moiety acted as a hydrogen bond acceptor [119].

2.3.2. Miscellaneous Derivatives CDK4/6 Inhibitors

Li and his coworkers synthesized a series of pteridin-7(8H)-one derivatives as signif-
icant CDK4/6 inhibitors. Among this series, the most potent compound St.34 (Table 6)
showed significant anticancer activities against a panel of cancer cell lines, including
HCT116, MDA-MB-231, HeLa, and HT-29 cells, with low IC50 values, in comparison with
the anticancer drug Palbociclib. This compound showed promising activities toward both
CDK4 and CDK6 with cyclin D3. As well as, it showed cell cycle arrest at the G2/M phase
and caused apoptosis in HeLa cells via a concentration-dependent manner. The sulfamoyl
substituent was essential for the activities, and a bulky lipophilic group like cyclopentyl
was better than small or hydrophilic substituents. Regarding the molecular docking anal-
ysis, compound St.34 observed a similar binding interaction mode like positive control
Palbociclib and was located very well in the ATP-binding site of CDK6 with a powerful
hydrogen bond interaction via the carbonyl oxygen atom of the pteridin skeleton with
the nitrogen of the Asp163 amino acid; moreover, the sulfamoyl moiety interacts with the
amino acids Asp102, Thr107, and Gln103 through hydrogen bond interactions [120].

Ali et al. synthesized and evaluated a series of 2-phenyl benzimidazole derivatives as
CDK6 inhibitors, among the synthesized series compound St.35 (Table 6), observed promis-
ing results against a panel of cancer cell lines with a very high growth inhibition percentage
against HL-60, NCI-H522, HCT-15, PC-3, and MCF-7 with an inhibitory percentage higher
than 71%, and this compound showed dual inhibition of CDK-6 and Aurora A kinases,
as well as cell cycle arrest, was observed at the G1 phase and induced total apoptosis on
cancer cell line HCT-15 cells by 45.63%. The molecular docking studies showed a promising
score for this compound, which was -9.1 kcal/mol through various hydrophobic interac-
tions with Val27, Ile19, Asp104, Thr107, Asp102, Ala162, Phe98, Ala41, and Leu152 amino
acid residues in the CDK6 binding pocket. Referring to the inhibition of Aurora A and
CDK-6 enzymes, it was clear that N atoms containing heterocycles like piperidine were
very important for potent activities. Additionally, the substitution at position 5th of the
benzimidazole ring was essential for the activities, especially with an electron-withdrawing
group (EWG) like the nitro group of this compound in comparison with electron-donating
groups [121].

Yousuf et al. investigated dietary phytochemicals including rosmarinic acid, ferulic
acid, capsaicin, limonene, tocopherol, ursolic acid, caffeic acid, and ellagic acid for their
effect on inhibiting CDK6. Among these dietary phytochemicals, ellagic acid (St.36, Table 6)
was best located inside the binding pocket of CDK6, this compound inhibited the CDK6
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with an IC50 value of 3.053 µM, as well as decreased the colonization of cancer cells and
induced apoptosis [122].

Table 6. The structures and the IC50 values against a panel of cancer cell lines and CDK4/6 for the
most active agents of miscellaneous-based derivatives.

Code Structure
Evaluated Cancer Cell Lines CDK4 CDK6

Ref.
Cell Lines IC50 or Inh.% IC50
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2.4. Cyclin-Dependent Kinase 9

CDK9 is a key controller of transcription that regulates the process of transcription
elongation by adding phosphate groups to RNA polymerase II. Temporary suppression of
CDK9 leads to the reduction in short-lived transcripts, ultimately inducing apoptosis in
cancer cells [123,124]. The overexpression of genes that control tumor cell proliferation, sur-
vival, cell cycle regulation, DNA damage repair, and metastasis has been associated with the
excessive activity of CDK9 in cancer [125,126]. Multiple CDK9 inhibitors, including fadraci-
clib, AZD-4573, and CDKI-73, have been created and have shown substantial anti-tumor
effects in preclinical research [127]. AZD-4573 is a potent CDK9 inhibitor that specifically
reduces the expression of cancer-causing genes such as MCL-1. AZD-4573 is highly effective
in treating blood cancers, according to preclinical research [128]. Many novel compounds
were designed, synthesized, and targeted CDK9 as anticancer agents [129–131]. It was
mentioned before that St.6 (Table 3) showed CDK2 inhibitory activities; it also showed
significant CDK9 inhibitory activity with an IC50 value of 1.8 µM [84].

Ghanem et al. designed, synthesized, and evaluated a series of imidazole-pyridine
derivatives as anticancer agents and CDK9 inhibitors. Among the synthesized compounds,
St.37 (Table 7) was the most potent derivative, exhibiting superior activity against two
cancer cell lines with potent inhibitory effects on CDK9, as well as showed cell cycle arrest
at the S phase. The imidazolo-pyridine was essential for activities; the binding affinity of
this compound with CDK9 was measured to be −26.72 Kcal/mol. The binding occurred
due to the interaction between the amino group, phenyl ring, 1,4-diazepine, carbonitrile
group, and pyrimidine moiety and the ATP pocket of the CDK9. The primary amino acid
residues implicated in the interaction were Cys106, Ile25, Val33, Asp109, Leu156, Asp167,
and Ala46, which was comparable with the native ligand [132].
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Table 7. The structures and the IC50 values against a panel of cancer cell lines and CDK9 for the most
active agents.

Code Structure
Evaluated Cancer Cell Lines CDK9

Ref.
Cell Lines IC50 IC50
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In another study, a series of chromene-1,2,3-triazole derivatives were synthesized,
and the cytotoxicity activity of newly synthesized hybrids was tested against three human
cancer cell lines, including MCF-7, MDA-MB 231, and HCT, as well as the in vitro inhibitory
potential of all derivatives against CDK9/cyclin T1 was assessed. St.38 (Table 7) which
contains a triazole amide linker attached to the terminal chromene was the most potent
compound among this series against the cancer cell lines and CDK9 enzyme, as well as this
compound showed cell cycle arrest at the G0/G1 phase. It was clear that the selectivity and
activity are affected by the size and placement of the substituent on the phenyl ring at the
para position of the chromene-1,2,3 triazole. The molecular docking analysis was conducted
to forecast the binding interactions of the most powerful triazole derivative, St.38, to the
CDK9 target’s ATP binding site, three hydrogen binding interactions were observed with
Cys106 and Asp167 with distances ranging at 2.84–3.09 Å. By fully occupying the active site,
just like the reference control does, it was demonstrated that the design of this compound
inhibits the target protein CDK9 very well [133].

In another work, a piperazine derivative was designed and synthesized as a CDK9
inhibitor. This compound, St.39 (Table 7), showed significant activity on several cancer cell
lines. Besides potent activities against CDK9 and GSK-3β signal pathways, this compound
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also effectively suppressed tumor growth in a xenograft mice model with little adverse
effects. Molecular docking was conducted to investigate the interaction pattern of St.39
within the active site of CDK9, and based on this model, it was predicted that the 4-carbonyl
group has the potential to make a hydrogen bond with Cys106, allowing it to bind to the
ATP binding site [134].

Xu et al. designed and synthesized a series of disubstituted pyrimidine as CDK9
inhibitors. Among the synthesized series, compound St.40 (Table 7) showed promising
activities and selectivity for CDK9 over CDK2 by 84 folds. This compound induced
apoptosis in PANC-1 cancer cell lines, as well as arresting the cell at the G2/M phase of the
cell cycle. Molecular docking analysis was conducted to investigate the binding interactions
of this structure in CDK9, and it was clear that the N-phenylpyrimidin-2-amine forms three
hydrogen binding interactions with amino acids Thr29, Asp109, and Asn154 in the binding
region of CDK9, as well as that this compound’s anticancer activity was confirmed by
in vivo studies in xenograft models [135]. In another study of how pyridine derivatives
work as CDK9 inhibitors, Gao et al. synthesized a series of bipyridine derivatives, and
among this series, St.41 (Table 7) was the most promising agent with significant activities
against various cancer cell lines. This compound also inhibits the cell migration in MDA-
MB-231 cancer cell lines and was reported as the first non-metal–organic structure that
works as a selective CDK9/Cyclin T1 with in vivo anticancer activities [136].

In a recent work, triazole-pyridine-carbamate derivatives were synthesized and evalu-
ated as CDK9 inhibitors; among this series, St.42 (Table 7) showed potent activities against
HCT116 cancer cell lines with significant activities on the CDK9 enzyme. Regarding the
molecular docking analysis, the carbamate pyridine and amide moieties formed four hydro-
gen binding interactions with Cys106 and Asp109, respectively, as well as the benzotriazole
moiety formed a π–π binding interactions with Phe103 residue. This structure can trigger
apoptosis in the HCT116 cell line by suppressing the phosphorylation of RNA polymerase
II at Ser2. This, in turn, leads to the suppression of genes and proteins associated with
apoptosis [137].

3. EGFR Inhibitors

Tyrosine kinases are enzymes that catalyze the transfer of phosphate groups from ATP
to tyrosine residues in cellular proteins, resulting in their phosphorylation [20,138]. The
conventional approach for the creation of anticancer drugs involves the utilization of small
compounds that inhibit tyrosine kinases. Numerous studies have examined the binding
locations and crucial residues in these kinases, intending to develop novel inhibitors.
Nevertheless, the process of developing drugs must give priority to selectivity because
there are around 30 families of tyrosine kinases [139–141]. Receptor tyrosine kinases (RTK)
are transmembrane proteins that span the biological membrane and possess extracellular
ligand-binding domains (ectodomains) where ligands can attach. Some examples of these
proteins are VEGFR, EGFR, platelet-derived growth factor receptor (PDGFR), and fibroblast
growth factor receptor (FGFR). Receptor tyrosine kinase has emerged as a primary target
for therapeutics in the 21st century [142,143].

The most prevalent medications in targeted therapy are the tyrosine kinase inhibitors
(TKIs) that target the EGFR. These TKIs are classified into four generations. First- and
second-generation medications result in the development of drug resistance during a period
of 8 to 14 months. The primary cause of this resistance is the T790M mutation, which is the
most commonly reported mechanism. A new medicine of the third generation has been
created to tackle this problem, and a drug of the fourth generation is anticipated to surpass
several mechanisms of resistance, including resistance to third-generation drugs [144,145].

3.1. FDA-Approved EGFR-Targeting Drugs

The mammalian EGFR family consists of four receptors (EGFR, ErbB2, ErbB3, and ErbB4),
which originated via a sequence of gene duplications during the early stages of vertebrate
evolution. These receptors share a 40–45% similarity in their genetic makeup [146,147]. Eight
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EGFR-targeting drugs have been approved by the FDA in the last two decades and are listed
in Table 8 as EGFR, ErbB2, and HER2 inhibitors.

Table 8. The FDA-approved EGFR inhibitors’ structure, the year of approval, mechanism of action,
and therapeutic indications.

Drug Name Chemical Structure Year MOA Therapeutic
Indications

Gefitinib
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Table 8. Cont.

Drug Name Chemical Structure Year MOA Therapeutic
Indications
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3.2. New EGFR Inhibitors

Excessive expression of the EGFR leads to aberrant signal transduction and is directly
associated with the development of cancer. The majority of EGFR TKIs are inhibitors that
compete with ATP. Consequently, the pursuit of targeting the EGFR TK allosteric site has
emerged as a very desirable technique for cancer treatment [144,145].

3.2.1. Quinazoline Derivatives as EGFR Inhibitors

The quinazoline core is widely employed in the creation of new EGFR TKIs and as
a fundamental component for the synthesis of small compounds with enhanced selectiv-
ity [158,159]. Zhang et al. developed and evaluated a series of sulfamoylphenyl-quinazoline
derivatives as potential EGFR/CAIX dual inhibitors. These derivatives were evaluated for
their cytotoxicity against three cancer cell lines, and the most potent structure was St.43
(Table 9) with superior activities against H1975 cell lines and the EGFRT790M enzyme. This
compound demonstrated a noteworthy inhibitory impact on CAIX, similarly to acetazo-
lamide. Additionally, it dramatically suppressed the expression of p-EGFR, as well as its
downstream targets p-AKT and p-ERK, in H1975 cells; also, this compound arrested the
cell cycle at the G2/M phase [160]. In another work, a new series of quinazoline-based
thiazole derivatives were evaluated for their anticancer efficacy in vitro, and compound
St.44 (Table 9) was the most potent against different kinds of EGFR mutants, including
L858R/T790 M, wild-type, and L858R/T790 M/C797S mutant EGFR kinases. It was clear
that derivatives with fluoro, chloro, bromo, trifluoromethyl, or nitro groups were more
potent than others with unsubstituted or methyl groups. Compound St.44 is regarded
as a good option for future investigation and refinement as EGFR kinase inhibitors with
improved anticancer efficacy [161]. In another work with thiazole moiety, a series was de-
veloped as EGFR inhibitors, and among this series, St.45 (Table 9) was the most potent with
significant nanomolar EGFR inhibitory actions [162]. In a recent other work of the quinazo-
line derivatives, this series was developed as dual inhibitors of EGFR/c-Met. Among these
derivatives, compound St.46 (Table 9) showed remarkable activities on three cancer cell
lines and against EGFR L858R and c-Met enzymes, as well as induced apoptosis and cell
cycle arrest in A549 cancer cell lines. The in vivo results confirmed the anticancer activities
on the same cell lines [163]. In another recent work on the same scaffold (quinazoline),
a series was synthesized and showed dual significant activities on EGFR and VEGFR,
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and compound St.47 (Table 9) was the most promising candidate on both targets [164].
Derivatives of quinoline were developed by Mohassab and his team as EGFR inhibitors.
According to the synthesized series, the quinoline, oxime, and methylsulfonyl-phenyl
rings were essential for the activities, and the most active compound was St.48 (Table 9).
This compound triggered programmed cell death and caused an arrest in the cell cycle,
specifically at the S phase. Significantly, upon structural alteration, this compound has
the potential to emerge as a very effective inhibitor for both the EGFR and BRAFV600E
targets [165].

Table 9. The structures and the IC50 values against a panel of cancer cell lines and EGFR subtypes for
the most active agents of quinazoline-based derivatives.

Code Structure
Evaluated Cancer Cell Lines EGFR

Ref.
Cell Lines IC50 IC50
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develop and discover a novel agent as a kinase inhibitor [166,167]. A series of osimertinib
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thesized as a reversible inhibitor of EGFR. Compounds St.49 and St.50 (Table 10) exhibited
significant inhibitory effects against the wild type of EGFR. These two compounds have
shown potential and merit additional investigation. Compound St.49 exhibited significant
inhibitory efficacy against the L858R/T790 M mutant EGFR kinase as a reversible inhibitor
and can cause apoptosis in a dose-dependent manner, arrest the cell cycle at the G1/G0
phase, and limit the motility of A549 and H1975 cancer cell lines, while compound St.50
exhibited exceptional inhibitory activity and selectivity against the mutant EGFR kinase
variants L858R/T790 M/C797S [168].

Table 10. The structures and the IC50 values against a panel of cancer cell lines and EGFR subtypes
for the most active agents of pyrimidine-based derivatives.

Code Structure
Evaluated Cancer Cell Lines EGFR or Related

Ref.
Cell Lines IC50 IC50
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Alanazi and his team developed and evaluated a series of pyrimidine derivatives
as multi-kinase inhibitors, including EGFR, VEGFR-2, CDK2, and HER2, besides the
evaluation against a panel of cancer cell lines. Among this series, compound St.51 (Table 10)
was the most promising candidate with superior activities. This compound showed various
binding interactions with different amino acids in the EGFR active site [169]. Elsebaie and
her team developed a new series on this scaffold as EGFR inhibitors, and among this series,
compound St.52 (Table 10) was the most potent compound on various cancer cell lines with
low toxicity on the normal cell lines WI-38, as well as this compound was arresting the
cell cycle at G2/m phase in MDA-MB-468 cancer cell lines [170]. In another recent work, a
series of pyrimidin-oxazole-carboxamide derivatives were evaluated in silico and in vitro
as EGFR kinase inhibitors. These derivatives were tested against a panel of human cancer
cell lines, and the most active structure was compound St.53 (Table 10). The featuring of the
3,5-dinitro group on the aryl showed excellent potency on evaluated cancer cell lines. This
compound increased the cell population at the G2/M and Sub-G1 cell cycle phases, causing
cell cycle arrest at the G2/M phase and induced apoptosis. The molecular docking studies
observed that the 3,5-dinitro group on the aryl moiety placed in a hydrophobic pocket
exhibited interactions with Leu820, Cys773, Lys721, and Leu764 amino acids; H-bond
interactions with the oxazole ring and Lys745; pi–pi interactions with Phe723 Flank with
the pyrimidine moiety; and another hydrogen bond interaction with gatekeeper Met793
residue were observed too [171].

3.2.3. Indole Derivatives as EGFR Inhibitors

Several works were conducted to develop indole derivatives as EGFR inhibitors [172,173],
Olgen et al. developed a series of indole derivatives and explored their activities on EGFR/SRC
kinases. These compounds have the potential to be used as a therapeutic approach for treating
EGFR-mutant lung cancer. These derivatives were synthesized via osimetinib’s structure as a
basis to address both resistance and adverse effects. Compound St.54 (Table 11) demonstrated
the most effectiveness against SRC kinase, and it also caused a notable increase in programmed
cell death in cell lines derived from prostate cancer. The results suggest that this compound
exhibits dual inhibitory effects on SRC and EGFR kinases while demonstrating modest toxicity
toward normal cells [174]. In another work, Al-Wahaibi et al. developed a new series of
5-chloro-indole-2-carboxylate derivatives as EGFR inhibitors. Five compounds in this series
exhibited significant activities against EGFR with IC50 range values 68–89 nM, and the most
potent compound was St.55 (Table 11), as well as this compound showed an 8 times selectivity
index toward EGFRT790M protein over EGFRwt [175].

Dubba and Koppula synthesized a new series of indole-isoxazole hybrids as EGFR
inhibitors; all compounds were evaluated against two breast cancer cell lines, and among
this series, two compounds, St.56 and St.57 (Table 11), showed remarkable inhibitory
activities against EGFR [176]. In another recent work, He et al. synthesized a new series
of 4-indolyl quinazoline derivatives, and among this series, compound St.58 (Table 11)
potently inhibits EGFR and suppresses p-EGFR and p-AKT in lung cancer cell lines. This
compound induces apoptosis and arrests the cell cycle at G0/G1 phases [177,178].

Table 11. The structures and the IC50 values against a panel of cancer cell lines and EGFR subtypes
for the most active agents of indole-based derivatives.

Code Structure
Evaluated Cancer Cell Lines EGFR or Related

Ref.
Cell Lines IC50 or Inh.% IC50
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4. Challenges, Limitations, and Future Directions

While inhibitors targeting CDKs and EGFR have demonstrated substantial clinical
success, significant challenges remain in maximizing their therapeutic potential. For CDKIs,
the primary limitation has been the emergence of resistance mechanisms in cancer cells.
Tumors can bypass CDK4/6 inhibition by activating alternative pathways, such as the
PI3K/AKT/mTOR pathway, or through upregulation of cyclins and other regulatory
proteins that restore cell cycle progression. Additionally, CDKIs often exhibit a narrow
therapeutic window, resulting in dose-limiting toxicities, especially myelosuppression.
Another limitation is that current CDKIs primarily concentricity on CDK4/6, while the
roles of other CDKs (e.g., CDK7, CDK9) in cancer progression remain underexplored.

In the case of EGFR inhibitors, one of the biggest challenges is the development of
acquired resistance due to secondary mutations in the EGFR gene, such as the T790M
mutation in non-small cell lung cancer (NSCLC), which limits the long-term efficacy of
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first- and second-generation EGFR inhibitors. Furthermore, while EGFR inhibitors have
been effective in certain EGFR-mutant cancers, they often show limited efficacy in cancers
with wild-type EGFR or in tumors that develop compensatory signaling pathways, like
MET amplification or activation of HER2 kinases. Off-target effects leading to toxicity,
particularly in skin and gastrointestinal tissues, also remain a concern with EGFR inhibitors.

To enhance the selectivity of both CDKIs and EGFR inhibitors, more research is needed
in the areas of structural biology and precision medicine. High-resolution structures of
CDK and EGFR complexes, coupled with computational modeling, will aid in designing
next-generation inhibitors with greater specificity and fewer side effects. A promising
direction for both CDKIs and EGFR inhibitors involves exploring their role in combination
with immunotherapies, as kinase inhibitors can modulate the tumor microenvironment,
potentially improving immune responses to cancer. Ultimately, overcoming the resistance
mechanisms and improving selectivity will be pivotal in realizing the full potential of
these therapies.

5. Conclusions

In conclusion, the field of protein kinase inhibitors has significantly advanced cancer
therapy by targeting key regulators of cellular processes. With 69 therapeutics approved by
the FDA targeting approximately 24 protein kinases, these inhibitors have become vital
in the treatment of neoplastic diseases. This review highlighted the progress in targeting
CDKs and EGFR as promising strategies in cancer therapy. CDKs, particularly CDK4
and CDK6, have shown great promise with ATP-competitive inhibitors like palbociclib,
abemaciclib, and ribociclib, leading to significant breakthroughs in metastatic breast cancer
treatment. The introduction of ATP non-competitive inhibitors opens new avenues for
expanding the therapeutic potential and discovering novel pharmacological properties.
Future research will focus on refining combination therapies, identifying biomarkers for
patient stratification, and understanding resistance mechanisms to enhance the effectiveness
and tolerability of CDK inhibitors. Similarly, EGFR tyrosine kinase inhibitors (TKIs) have
improved survival rates in patients with EGFR mutations, although resistance due to
epigenetic mutations such as T790M poses a significant challenge. Innovative strategies,
including the development of next-generation TKIs, multi-target agents, and combination
therapies with other signaling pathway inhibitors, hold promise for overcoming resistance
and enhancing treatment efficacy. Overall, the ongoing advancements in kinase inhibitor
research underscore the importance of continuous exploration and innovation. By focusing
on specific mutations, combination therapies, and personalized treatment approaches,
future kinase inhibitors are poised to provide more effective and tailored cancer treatments,
ultimately improving patient outcomes.
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CDK cyclin-dependent kinase
CDKI cyclin-dependent kinase inhibitor
EGFR epidermal growth factor receptor
VEGFR vascular endothelial growth factor receptor
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FGFR fibroblast growth factor receptor
HER2 human epidermal growth factor receptor-2
NSCLC non-small cell lung cancer
PDGFR platelet-derived growth factor receptor
ATP adenosine triphosphate
HDAC Histone deacetylase
IC50 inhibitory concentration
GI50 half-maximum growth inhibition
PDB Protein Data Bank
SAR structure-activity relationship
WHO World Health Organization
M phase mitosis phase
RTK receptor tyrosine kinase
MOA Mechanism of action
Cancer Cell Lines Explanation
A375 melanoma
A431 squamous
MDA-MB231 breast
Colo205 colon
HCT116 colon
A549 lung
MCF-7 breast
PC3 prostate
HepG2 liver
MDA-MB-468 breast
T-47D breast
HeLa cervical
K-562 leukemia
A2780 ovarian
HL60 leukemia
HT-29 colon
MOLT-4 lymphoblastic leukemia
H460 lung
SMMC77 liver
MV4-11 leukemia
SKOV3 ovarian
WI-38 lung
Panc-1 pancreas
PaCa-2 pancreas
BxPc-3 pancreas
NCIH522 lung
HCT-15 colon
RKO colon
SW480 colon
DLD1 colon
LO2 liver
PC-9 lung
HOP92 lung
SNB-75 brain
DU-145 brain
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