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Abstract: Background/Objectives: The ongoing avian influenza (H5N1) outbreak, one of the most
widespread and persistent in recent history, has significantly impacted public health and the poultry
and dairy cattle industries. This review covers lessons from past outbreaks, risk factors for transmis-
sion, molecular epidemiology, clinical features, surveillance strategies, and socioeconomic impacts.
Since 1997, H5N1 has infected over 900 individuals globally, with a fatality rate exceeding 50%. Key
factors influencing infection rates include demographic, socioeconomic, environmental, and ecologi-
cal variables. The virus’s potential for sustained human-to-human transmission remains a concern.
The current outbreak, marked by new viral clades, has complicated containment efforts. Methods:
This review discusses how to integrate technological advances, such as mathematical modeling and
artificial intelligence (AI), to improve forecasting, hotspot detection, and early warning systems.
Results: We provide inventories of data sources, covering both conventional and unconventional
data streams, as well as those of mathematical and AI models, which can be vital for comprehensive
surveillance and outbreak responses. Conclusion: In conclusion, integrating AI, mathematical models,
and technological innovations into a One-Health approach is essential for improving surveillance,
forecasting, and response strategies to mitigate the impacts of the ongoing avian influenza outbreak.
Strengthening international collaboration and biosecurity measures will be pivotal in controlling
future outbreaks and protecting both human and animal populations from this evolving global threat.

Keywords: avian influenza; H5N1; hotspot; mathematical modeling; artificial intelligence; conven-
tional and unconventional data; early warning system

1. Introduction

The avian influenza A (H5N1) virus infection (‘bird flu’) was first transmitted to
humans in 1997 in Hong Kong, where 18 cases and 6 deaths were reported [1]. Since then,
human cases have been reported to the World Health Organization (WHO), primarily
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from 15 countries in Asia, Africa, the Pacific, Europe, and the Middle East, though over
60 countries have been affected [1]. Human infections have remained relatively rare, but the
virus has demonstrated its potential to move from one species to another, raising concerns
that sustained human-to-human transmission could become possible [1,2]. Currently,
human cases are occasionally detected in situations where avian influenza viruses are
circulating in poultry. From 1 January 2003 to 3 May 2024, 889 cases of human infection
with the avian influenza A (H5N1) virus were reported from 23 countries globally. Of these
889 cases, 463 were fatal, giving a case fatality rate of 52% [2,3].

Outbreaks of avian influenza A (H5N1) have been occurring in recent years, and the
virus has been spreading in bird populations from Asia to Europe and Africa, and to the
Americas in 2021, becoming endemic in poultry populations in many countries. Migratory
wild birds, particularly the waterfowl, serve as a natural reservoir for avian influenza
viruses, and they are able to contract the disease themselves and facilitate the transmission
of the viruses across vast geographical areas [1]. The ongoing outbreaks are particularly
concerning because various mammalian species are being infected, including seals, foxes,
bears, cows, and even domestic cats. Furthermore, the avian influenza virus has multiple
subtypes whose genetic characteristics are rapidly evolving. Since 2020, a new H5N1 strain
has emerged and spread across continents (clade 2.3.4.4b) in 26 countries and acquired
several mutations (PB2 gene) adapted to infect up to 48 mammal species [3].

Human infections have primarily occurred through close contact with infected birds or
contaminated environments, highlighting the importance of proper biosecurity measures
and personal protective equipment when handling poultry or other potentially infected
animals [1–3]. In the United States, since 2022, four human cases of avian influenza A
(H5N1) were reported as of 26 June 2024, three of which were linked to exposure to dairy
cows and one to infected poultry [2]. While these cases were mild, they serve as a stark
reminder that the virus is constantly evolving and adapting, potentially gaining the ability
to transmit more efficiently among humans.

As the world contends with the ongoing avian influenza A (H5N1) outbreak, this
review aims to highlight lessons from past outbreaks in humans and animals, and identify
and discuss current technological innovations and tools for forecasting and hotspot detec-
tion. Specifically, this review provides crucial insights on the lessons learned from past
avian influenza outbreaks, identify conventional and unconventional data sources, and
understand how diverse data sources, predictive models, and modern tools like artificial
intelligence and machine learning could be leveraged for forecasting, hotspot detection,
and early warning systems. These insights are essential for devising response strategies,
especially in the context of ongoing outbreaks. They are also imperative for improving
outbreak and pandemic preparedness, and the mitigation of the potential consequences
of a future influenza pandemic, informing policymakers, and protecting both animal and
human populations from devastating effects.

2. Lessons Learned from Past Avian Influenza Outbreaks

Valuable lessons have been learned from past avian influenza epidemics in various
countries globally, but there are still knowledge gaps. One important lesson learned is that
the avian influenza virus is zoonotic, meaning it can be transmitted from birds to humans.
Infection with avian influenza viruses, such as the H5N1 and H7N9 strains, is particularly
notable for causing severe disease in humans [4]. However, person–to–person transmission
is uncommon, but when it occurs it can result in severe disease and death. Many of the
signs and symptoms associated with avian influenza in humans have been identified and
have proven invaluable in diagnosing and treating human H5N1 infection.

It has also been recognized that strict biosecurity implementation helps considerably
reduce avian influenza viral transmission. This has been demonstrated during the control
of avian influenza outbreaks within backyard flocks and commercial poultry farms [5–7].
Good hygiene, sanitary conditions, the disinfection of premises or culling chickens once
infected, and proper handling practices can prevent spread [8].
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The potential for influenza viruses to undergo genetic alteration by viral antigenic drift
and shift is of concern, leading to a new strain that may be more virulent or escape existing
immunity. Nonetheless, as was demonstrated in previous outbreaks, resilience is dependent
on the strength of surveillance systems for early detection and response. To address the
challenges of viral mutation and surveillance, the WHO established global systems for
surveillance and response to increase the capacity to forecast, detect, and monitor influenza
virus spread among humans—particularly avian flu viruses such as H5N1. The information
gathered is also essential for expanding vaccine production. These developments have
been vital in dealing with avian influenza outbreaks until now, and studies on human
vaccines are still contributing to more preparedness for potential pandemics [9]. As this
viral threat keeps changing, continuous research and surveillance are needed to stay one
step ahead in preparedness.

3. Current Avian Influenza Outbreak

The ongoing avian influenza outbreak has been one of the most widespread and
persistent in recent history because of its panzootic nature (large-scale infections among
animals across continents), resulting in economic and biodiversity losses in a manner
different from the situation in 2003–2019 [10,11]. Since its emergence in 2020, the virus
has rapidly spread across multiple continents, affecting poultry populations, and causing
significant economic losses in agriculture [11]. As of early 2024, it has spread to more
than sixty countries in Africa, Asia, and Europe as well as the Americas with millions of
domestic and wild birds being culled or dying from infection [10]. Successive waves of the
outbreak have been characterized by novel viral clades and subclades differing to variable
extents in pathogenicity and transmissibility. The first wave, which was fueled by the
2.3.4.4b clade, led to massive outbreaks in poultry farms and homesteads across Asia and
Europe [12,13]. The emergence of additional subclades, followed by prolonged expansion
and disease transmission, has made it even more difficult to control this outbreak [13].

3.1. Risk Factors for Avian Influenza Transmission

The avian influenza virus is largely spread among birds, and from birds or their
secretions to humans directly [2,12]. Although the total number of confirmed human cases is
by far very low compared to widespread avian exposure, a greater potential for emergence
at some distant time always exists. Exposure to the avian influenza virus is almost always
a major risk factor for animal and human health, due mainly to direct or indirect contact
with live birds on farms, backyard poultry, or in markets. Direct exposure to infected birds
(e.g., during the preparation of poultry for consumption) greatly increases human disease
transmission [14,15]. Cooking thoroughly inactivates the virus; however, there is a low
risk of spread from the consumption of raw or undercooked infected poultry products
(including eggs), and unpasteurized milk from infected dairy. Virus transmission can
occur through activities such as handling backyard poultry, visiting live poultry markets,
or coming into contact with environments contaminated by the secretions or feces of
infected birds, such as farms or animal markets. Additionally, shared domestic spaces,
especially those with close physical interaction among individuals—such as households
where someone is infected—can increase the risk of spreading the virus [2,14–16].

Some groups of people are at greater risk for exposure, among them poultry work-
ers, veterinarians, and cullers who perform slaughter on infected birds or prepare sick
animals [14,15]. Humans with certain underlying medical conditions such as chronic pul-
monary diseases and those who have renal dysfunction or immunodeficiencies are known
to be at increased risk of severe illness if they become infected [17].

3.2. Molecular Epidemiology and Viral Evolution

The H5N1 virus is a subtype of the influenza A virus, known for its ability to undergo
genetic mutations and reassortment, leading to the emergence of new strains [18]. The
ongoing outbreak has been characterized by the rapid evolution of the virus, with multiple
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clades and subclades emerging and co-circulating simultaneously [19]. Genetic analysis
of the circulating strains has revealed mutations that may enhance the virus’s ability to
infect and replicate in mammalian hosts, raising concerns about its potential for increased
human transmissibility [20]. Continued monitoring and surveillance of the virus’s genetic
changes are crucial for understanding its evolutionary trajectory and informing prevention
and control strategies [13,18].

3.3. Clinical Features of H5N1 Infection

Avian influenza virus (H5N1) infection in humans leads to respiratory symptoms
including fever, cough, and breathing difficulty. While the virus is usually associated with
mild symptoms, these can progress to severe complications such as pneumonia, acute respi-
ratory distress syndrome (ARDS), severe hypoxemia, and multiple organ failure syndrome
(MOFS) [19,21]. Some concerns about missing asymptomatic or mildly symptomatic cases,
giving a lower infection fatality ratio (IFR), have been raised [22–24], but available evidence
suggests that these may be few.

The case fatality rate of H5N1 infections in humans has been alarmingly high with a
range of 50–60% [19]. The severity of illness results from the capacity of the virus to evoke
a vigorous inflammatory response (a ‘cytokine storm’) and an ability for opportunistic
secondary bacterial infections [23].

3.4. Surveillance Strategies and Public Health Control Measures

Surveillance and detection strategies are key in tracking the spread of avian influenza
to identify new cases rapidly. These systems provide data on zoonotic virus circulation.
While animal surveillance systems can monitor live markets and wild bird populations,
as well as poultry farms, human health surveillance systems are based on case reporting,
syndromic surveillance, and laboratory testing [17,25,26]. Both surveillance systems play
a vital role in early detection and rapid outbreak containment but under-reporting and
limited access to diagnosis and healthcare could impede these efforts [25,26].

Public health interventions and control measures to stop avian influenza spread
require multifaceted approaches. Biosecurity is crucial in poultry and live animal markets
to prevent transmission [27,28]. High-risk groups such as poultry workers or those who
come in contact with sick birds/animals must wear personal protective equipment (PPE)
and strictly comply with infection prevention and control measures [15]. Antivirals (e.g.,
oseltamivir) can be used for both treatment and prevention in some circumstances [29–32].
Vaccine development is ongoing, with many candidate vaccines currently in various stages
of clinical trials [33]. However, the rapid evolution of the virus and frequent changes to
respond to circulating strains present a significant challenge for producing and deploying a
vaccine [34].

4. Mathematical Modeling of Avian Influenza

Mathematical models are crucial for understanding and controlling infectious diseases
like avian influenza, providing quantitative frameworks for simulating disease spread
and evaluating control strategies [33]. A recent review by Kirkeby and Ward highlighted
the use of mathematical modeling to predict the spread of avian influenza viruses within
and between poultry flocks [35]. The review found significant variability in transmission
parameters, such as the basic reproduction number, latent period, and infectious period,
influenced by factors like virus type, pathogenicity, species, study type, and poultry flock
unit. The basic reproduction number varied widely across studies, with the highest esti-
mates for H5N1 and H7N3 viruses. It was higher for within-flock transmission compared
to between-flock transmission and higher for ducks compared to other species. Field
studies generally reported higher values than experimental studies. The median latency
period was around 1 day, while the infectious period ranged from 6.35 days for within-flock
transmission to 9.6 days for between-flock transmission.
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Accurate parameterization is essential for reliable simulation models, requiring continu-
ous updates and validation through ongoing research. Among the various types of models,
mathematical or analytical models, such as the “Susceptible–Exposed–Infectious–Recovered”
(SEIR) model, provide a quantitative framework for understanding avian influenza transmis-
sion dynamics. These models, based on data from real epidemics or experiments, are useful
for describing epidemics and understanding pathogen behavior within populations. Another
type of modeling is represented by spatial models, which can account for the geographical
distribution of farms and disease spread dynamics, providing more accurate details on virus
introduction estimation and contact tracing in a given geographical area, illustrating how
spatial factors influence transmission rates and control measures’ effectiveness.

Within-host models focus on virus dynamics within individual birds, integrating ge-
nomics data—such as transcriptomic, proteomic, and metabolomic data—across different
biological scales and timeframes. Systems biology aims to build predictive models of H5N1
infection by examining interactions at multiple levels, from molecular to organismal. This
involves high-throughput technologies to generate large datasets analyzed through compu-
tational models, uncovering emergent properties not predictable by studying individual
components in isolation. These models help understand the host’s transcriptomic response
at the cellular or lung tissue level during H5N1 infection, revealing critical aspects of the
innate immune response and immune cell infiltration [36].

Predictive models simulate the effects of various control measures on epidemic courses,
assisting policymakers in implementing effective measures. However, they rely heavily
on real data, which are often insufficient, necessitating additional experiments or outbreak
data analyses. These models, more complex than analytical models, can incorporate expert
opinions when data are lacking [37].

Key insights from published mathematical models show that enhanced surveillance
is crucial in controlling avian influenza outbreaks. These measures, combined with the
depopulation of infected and surrounding flocks, significantly reduce disease spread. The
immediate depopulation of infected flocks is consistently identified as the most effective
control strategy, and strategic vaccination can effectively halt epidemic progression. Es-
timating the time and source of virus introduction is vital for efficient control measures.
Accurate contact tracing and farm-specific interventions can drastically reduce epidemic
size and duration. Implementing seasonal sampling and preventive measures during
high-risk periods can improve the detection and control of avian influenza.

Combining multiple control strategies, such as increased surveillance and immedi-
ate depopulation, coupled with vaccination strategies, leads to significant reductions in
outbreak duration and infected flocks. Early detection and rapid response are critical
for minimizing avian influenza spread. Predictive modeling assists in preparing and
implementing effective measures. Ongoing field studies and controlled experiments are
necessary to refine models and validate assumptions, ensuring effective control strategies
under real-world conditions.

5. Machine Learning Models for Avian Influenza

Machine learning models have extensively been deployed for modeling, analyzing,
and controlling avian influenza (Table 1). A wide group of these methods focus on finding
demographic, socioeconomic, and environmental factors that are associated with infection or
mortality of bird flu [38–48]. Among these risk factors, lower temperature, humidity, higher
farm density, poultry density, bird density, and human population are commonly reported
as the most important factors associated with a high number of cases [49–53]. Kilpatrick
et al. [54] used regression analysis to discover whether H5N1 infections in different countries
are the result of poultry or migratory birds. They found that, unlike Asia where H5N1 was
mainly caused by poultry, the virus had spread in Europe through migratory birds, while in
Africa the infection was partly caused by poultry and partly by migratory birds. Some other
works have studied the environmental factors that ease the transmission of avian influenza
from birds to other species such as dogs, cats, and pigs [55,56].
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Table 1. Machine learning (ML) techniques for avian influenza. Abbreviations: Artificial Neural Networks (ANNs); Convolutional Neural Network (CNN); Genetic
Algorithm for Rule-Set Prediction (GARP); Maximum Entropy (MaxEnt); Species Distribution Modeling (SDM); Single Shot MultiBox Detector (SSD); Support Vector
Machine (SVM); Extreme Gradient Boosting (XGBoost); You Only Look Once (YOLO).

ML Method Application Animal Health Human Health

Logistic regression [38–46,48,51,52], tobit regression [47], negative
binomial regression [49], linear regression [52]

Identify animal and environmental risk factors associated with avian
influenza occurrence

√

Logistic regression [55,56] Identify risk factors that result in the transmission of avian influenza
from birds to mammalians such as dogs, cats, and pigs

√

Logistic regression [45], Poisson regression [50], multivariable
regression [53], linear regression [57]

Identify environmental, demographic, and socioeconomic risk
factors associated with avian influenza occurrence

√

Linear regression [58], multilevel regression [59], birth process with
regression model [60], logistic regression [61], SVM [62]

Study the efficiency of preventive policies such as poultry
vaccination on the spread of the avian influenza virus among birds

√

Cox proportional hazards regression [32], logistic regression [63,64] Study the efficiency of pharmaceutical and non-pharmaceutical
interventions on avian influenza transmission and mortality

√

Gradient boosted tree [65], SVM [66], multiple linear regression [67],
simple regression [68], logistic regression [39,69–71]

Identify the molecular signatures that define the pathogenicity of
viral strains

√

Deep CNN [72], logistic regression [73] Predict genomic sequences
√

Random Forest, Gradient Boosting, and XGBoost [74], SVM and
ANN [75], binomial regression [76], and deep-learning models

[77,78]
Predict avian influenza outbreaks in animals at the temporal level

√

Multiple linear regression [79] Forecast avian influenza outbreaks in humans at the temporal level
√

Bayesian logistic regression, XGBoost [41,80,81], spatial regression
analysis [41,82], region-based CNN, SSD and YOLO [83], logistic

regression [84,85], generalized linear mixed model [86], Poisson and
logistic regression [87]

Identify geographical regions and risk factors of avian influenza
hotspots

√

MaxEnt [88–90], GARP [91], Random Forest [90] Identify geographical and spatial factors of migratory bird hotspots
and provide a risk map using SDM

√

Linear regression and spatial regression [82], logistic regression
[92–95], boosted regression tree [96], Poisson regression [97] Analyze spatiotemporal factors affecting avian influenza

√
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Machine learning techniques are also used to assess the effectiveness of interventions
for reducing avian flu infection and mortality [57–60,62,98], including vaccines [61,63,64].
Machine learning techniques are also applied to explore the genomic properties of the
avian influenza virus, its sub-variants, and mutations [39,65–69,72,73]. For instance,
Chadha et al. [70] developed a Convolutional Neural Network (CNN) model to predict the
pathogenicity of H5N1 virus for poultry species. Islam et al. [71] used multivariate logistic
regression to detect the prevalence of the avian influenza virus in various waterfowls.

Moreover, machine learning techniques have been used to study avian influenza
infection on both spatial [41,80,81,83,84,99] and temporal dimensions [74–77,85]. Uncon-
ventional sources of data such as Google Trends, number of news articles, and number of
social media posts are often found to be significantly correlated with the number of disease
infections or fatalities. Therefore, recent studies have employed unconventional web-based
data to forecast outbreaks and infection peaks. For example, Lu et al. [78] used multiple
linear regression on a temporal level to build an early warning system for avian influenza
outbreaks based on Google Trends.

On a spatial level, a large volume of the literature concentrates on identifying en-
vironmental factors that make a particular geo-location suitable for migratory bird sur-
vival [41,81,83,84]. These hotspots potentially increase the risk of avian influenza transmis-
sion from wild birds to domestic waterfowl or other species. Therefore, there is a higher
risk of avian influenza at farms and poultries that are located in wild waterfowl habitats.
Among a variety of different ecological and environmental factors, population density,
mountain ranges, proportion of river size, and air temperature are commonly identified
as factors ensuring habitat suitability for migratory birds [86,87]. In this context, spatial
regression analysis is particularly used for identifying environmental factors and hotspots
of migratory bird habitats [82,99].

In addition, Ecological Niche Modeling (ENM) methods such as MaxEnt are also used
for estimating factor importance and area suitability for migratory bird survival [88,89,91].
Belkhiria et al. [90] compared MaxEnt and Random Forest to identify the main hotspots of
wild waterfowls. Finally, multiple works have studied the association between time and
space during avian influenza outbreaks [92–97]. For example, Azat et al. [82] designed a
permutation space–time model to find a wave-like steady spread of H5N1 infection from
north to south over time in Chile.

6. Data Inventory

For conducting explorations on H5N1 (avian influenza), various data sources and
types of data inventories can be utilized. These sources cover surveillance and clinical
reports (Table 2), genetic sequences and epidemiological data (Table 3), and poultry trades,
food safety, and waterfowl abundance information (Table 4). Key sources and inventories
to consider include institutional websites, such as the WHO, which provides reports and
updates on influenza activity, including H5N1, through its Global Influenza Programme
and FluNet, a global web-based tool for influenza virological surveillance. The Centers
for Disease Control and Prevention (CDC) offers data and statistics on influenza viruses,
including H5N1, through its Influenza Division and FluView, a weekly influenza surveil-
lance report. The European Centre for Disease Prevention and Control (ECDC) monitors
influenza activity and provides epidemiological updates through its Influenza Surveillance
program. The Food and Agriculture Organization (FAO) provides data on animal disease
outbreaks, including avian influenza, through its EMPRES-i (Emergency Prevention System
for Transboundary Animal and Plant Pests and Diseases).
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Table 2. Dataset inventory for avian influenza surveillance.

Name of the Dataset Author Year Initiated Description Link

Global Influenza Programme (FluNet) World Health Organization (WHO) 1997 Surveillance data on influenza including H5N1;
from all over the globe; country-level; weekly basis

https://www.who.int/tools/flunet
(accessed on 30 September 2024)

Emergency Prevention System for
Transboundary Animal and Plant Pests

and Disease (EMPRES-i)

Food and Agriculture Organization
(FAO) 2004

Monitors wild and domestic animal disease
including avian influenza; global-level; provides
the exact coordinates of the incidence; daily basis

https://empres-i.apps.fao.org
(accessed on 30 September 2024)

HPAI in Wildlife Canadian Food Inspection Agency
(CFIA) December 2021 Number of avian influenza records in wild birds;

Canada only; subdivision-level

https://cfia-ncr.maps.arcgis.com/app
s/dashboards/89c779e98cdf492c899df

23e1c38fdbc
(accessed on 30 September 2024)

European Influenza Surveillance
Network (EISN)

European Center for Disease Prevention
and Control (ECDC) 2008

Surveillance data on influenza; In European Union
(EU) and European Economic Area (EEA)

countries; weekly basis

https://www.ecdc.europa.eu/en
(accessed on 30 September 2024)

World Organization for Animal Health
(WOAH) (formerly known as the Office

International des Epizooties (OIE))
1924 Provides data on zoonotic disease such as avian

influenza; global level

https://www.woah.org/en/disease/av
ian-influenza/

(accessed on 30 September 2024)

Government of United Kingdom 2022
Provides data on H5N1 and possibility of

transmission from animals to humans or other
mammalians; the UK

https://www.gov.uk/government/pu
blications/avian-influenza-influenza-a

-h5n1-technical-briefings
(accessed on 30 September 2024)

Ministry of Agriculture, Forestry and
Fisheries (MAFF) 1881 Surveillance data on avian influenza outbreak;

Japan
https://www.maff.go.jp/e/

(accessed on 30 September 2024)

Center for Health Protection (CHP) 2004 Disease surveillance data including avian influenza
surveillance data; Hong-Kong

https:
//www.chp.gov.hk/en/index.html

(accessed on 30 September 2024)

Hospital Based Influenza Surveillance
(HBIS)

Institute of Epidemiology, Disease
Control and Research (IEDCR) 2012 Real-time influenza surveillance and

hospitalization data; Bangladesh

https://www.iedcr.org/index.php?opt
ion=com_content&view=article&id=13

0&Itemid=86
(accessed on 30 September 2024)

National Influenza Surveillance in
Bangladesh (NISB)

Institute of Epidemiology, Disease
Control and Research (IEDCR) 2013 Real-time influenza surveillance data; Bangladesh

https://www.iedcr.org/index.php?opt
ion=com_content&view=article&id=13

1&Itemid=174
(accessed on 30 September 2024)

https://www.who.int/tools/flunet
https://empres-i.apps.fao.org
https://cfia-ncr.maps.arcgis.com/apps/dashboards/89c779e98cdf492c899df23e1c38fdbc
https://cfia-ncr.maps.arcgis.com/apps/dashboards/89c779e98cdf492c899df23e1c38fdbc
https://cfia-ncr.maps.arcgis.com/apps/dashboards/89c779e98cdf492c899df23e1c38fdbc
https://www.ecdc.europa.eu/en
https://www.woah.org/en/disease/avian-influenza/
https://www.woah.org/en/disease/avian-influenza/
https://www.gov.uk/government/publications/avian-influenza-influenza-a-h5n1-technical-briefings
https://www.gov.uk/government/publications/avian-influenza-influenza-a-h5n1-technical-briefings
https://www.gov.uk/government/publications/avian-influenza-influenza-a-h5n1-technical-briefings
https://www.maff.go.jp/e/
https://www.chp.gov.hk/en/index.html
https://www.chp.gov.hk/en/index.html
https://www.iedcr.org/index.php?option=com_content&view=article&id=130&Itemid=86
https://www.iedcr.org/index.php?option=com_content&view=article&id=130&Itemid=86
https://www.iedcr.org/index.php?option=com_content&view=article&id=130&Itemid=86
https://www.iedcr.org/index.php?option=com_content&view=article&id=131&Itemid=174
https://www.iedcr.org/index.php?option=com_content&view=article&id=131&Itemid=174
https://www.iedcr.org/index.php?option=com_content&view=article&id=131&Itemid=174
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Table 3. Dataset inventory for genetic and genomic sequences.

Name of the Dataset Author Year Initiated Description Link

Global Initiative on Sharing Avian
Influenza Data (GISAID)

World Health Organization (WHO) and other
international and scientific organizations, e.g., the
Association of Public Health Laboratories (APHL),
the Swiss State Secretariat for Education, Research
and Innovation (SERI), the Federal Office of Public

Health (FOPH), and the U.S. Department of
Agriculture (USDA)

2008

Includes viral genetic and genomic
sequences and related epidemiological
data of influenza viruses; global-level;

country-level

https://gisaid.org
(accessed on 30 September 2024)

Influenza Virus Resource National Center for Biotechnology Information
(NCBI) 2006

Provides data on avian influenza,
including genomic sequences and

related metadata; global-level;
country-level

https://www.ncbi.nlm.nih.gov/labs/vi
rus/vssi/#/virus?SeqType_s=Nucleot

ide&VirusLineage_ss=taxid:
197911&VirusLineage_ss=taxid:
197912&VirusLineage_ss=taxid:

197913&VirusLineage_ss=taxid:1511083
(accessed on 30 September 2024)

Influenza Research Database (IRD) National Institute of Health (NIH)/National
Institute of Allergy and Infectious Disease (NIAID) 2008

Provides data on avian influenza
including genomic sequences and

related metadata; global-level;
country-level

https://www.bv-brc.org/api/doc/
(accessed on 30 September 2024)

Avian Influenza DataBase (AIDB)

Supported by multiple organizations including
World Health Organization (WHO), World

Organisation for Animal Health (WOAH), and
Food and Agriculture Organization of the United

Nations (FAO)

Epidemiological, case report, and
genomic data on avian influenza in

real-time or near-real-time; global level;
for regions with significant poultry

industries and migratory bird
populations

http://avian-flu.org
(accessed on 30 September 2024)

FluGlobalNet

Supported by a coalition of international
organizations, including World Health

Organization (WHO) and Centers for Disease
Control and Prevention (CDC)

2010

Provides epidemiological, genetic
sequencing, vaccination coverage, and
public health response data on avian
influenza; global-level; country-level

https://science.vla.gov.uk/fluglobalne
t/about_ai.html

(accessed on 30 September 2024)

China Animal Health and Epidemiology Center
(CAHEC) 2002

Surveillance as well as genomic data on
animal disease such as avian influenza;

China only

https://www.cahec.cn
(accessed on 30 September 2024)

https://gisaid.org
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=taxid:197911&VirusLineage_ss=taxid:197912&VirusLineage_ss=taxid:197913&VirusLineage_ss=taxid:1511083
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=taxid:197911&VirusLineage_ss=taxid:197912&VirusLineage_ss=taxid:197913&VirusLineage_ss=taxid:1511083
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=taxid:197911&VirusLineage_ss=taxid:197912&VirusLineage_ss=taxid:197913&VirusLineage_ss=taxid:1511083
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=taxid:197911&VirusLineage_ss=taxid:197912&VirusLineage_ss=taxid:197913&VirusLineage_ss=taxid:1511083
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=taxid:197911&VirusLineage_ss=taxid:197912&VirusLineage_ss=taxid:197913&VirusLineage_ss=taxid:1511083
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=taxid:197911&VirusLineage_ss=taxid:197912&VirusLineage_ss=taxid:197913&VirusLineage_ss=taxid:1511083
https://www.bv-brc.org/api/doc/
http://avian-flu.org
https://science.vla.gov.uk/fluglobalnet/about_ai.html
https://science.vla.gov.uk/fluglobalnet/about_ai.html
https://www.cahec.cn
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Table 4. Dataset inventory for poultry trades, food safety, and waterfowl abundance.

Name of the Dataset Author Year Initiated Description Link

HPAI in Domestic Birds Canadian Food Inspection Agency
(CFIA) 2022

Number of avian influenza records in domestic
birds in poultries and farms; Canada only;

city-level

https://app.powerbi.com/view?r=eyJrIjo
iMGZkNGRmZmQtNzg1My00ZmYxLTk

zMTgtMWViNjg0MTBhYjRhIiwidCI6IjE4Y
jVhNWVkLTFkODYtNDFkMy05NGEwL

WJjMjdkYWUzMmFiMiJ9
(accessed on 30 September 2024)

National Poultry Improvement Plan
(NPIP) Database

NPIP and US Department of
Agriculture’s (USDA) Animal and Plant

Health Inspection Service (APHIS)
1935

Surveillance data on poultry disease including
avian influenza, and international trade and export

of poultry products from the USA; the USA

https://www.poultryimprovement.org/npi
pdatabase/Login/Npiplogin.cfm
(accessed on 30 September 2024)

European Commission in cooperation
with the European Food Safety

Authority (EFSA)
2002

Includes datasets on animal disease such as avian
influenza, and risk associated with food chains;

European Union countries and their member states

https://food.ec.europa.eu/animals/animal
-diseases/diseases-and-control-measures/

avian-influenza_en
(accessed on 30 September 2024)

FAOSTAT Food and Agriculture Organization
(FAO) 1961

Provides data on trade statistics, food safety and
supply, and animal disease such as avian influenza;

country-level; annual basis

https://www.fao.org/faostat/en/#home
(accessed on 30 September 2024)

PADI-web Agency for Food, Environmental and
Occupational Health & Safety (ANSES) 2015

A platform for animal disease such as avian
influenza surveillance in wild and domestic birds

in poultries and farms; France

https://www.padi-web-one-health.org
(accessed on 30 September 2024)

Korean Animal Health Integrated
System (KAHIS)

Korea’s Animal and Plant Quarantine
Agency (APQA) and Ministry of

Agriculture, Food and Rural Affairs
(MAFRA)

2009
Surveillance data on animal disease such as avian
influenza and trade, import, and export of poultry

products to/from South Korea; South Korea

http://kahis.go.kr/
(accessed on 30 September 2024)

Danish Veterinary and Food
Administration (DVFA)

Ministry of Environment and Food of
Denmark 2011 Provides data on food safety and animal disease

including avian influenza; Denmark
https://en.foedevarestyrelsen.dk
(accessed on 30 September 2024)

Ministry of Environment 2007 The number of migratory waterfowls; Japan
http://www.env.go.jp/nature/dobutsu/bir
d_flu/migratory/ap_wr_transit/index.html

(accessed on 30 September 2024)

United Nations (UN) Comtrade United Nations Statistics Division
(UNSD) 1962 Provides annual trade data including poultry

between countries, global-level; country-level
https://comtradeplus.un.org

(accessed on 30 September 2024)

Poultry Industry Association of New
Zealand (PIANZ) The New Zealand poultry industry 1953 Provides data on poultry trade; New Zealand https://www.pianz.org.nz

(accessed on 30 September 2024)

Waterbirds Population Portal (WPP) Wetlands International 2012
Provides data on population, distribution, habitat,

and conservations status of waterbirds; for all
countries where waterbirds are found

https://wpp.wetlands.org
(accessed on 30 September 2024)

https://app.powerbi.com/view?r=eyJrIjoiMGZkNGRmZmQtNzg1My00ZmYxLTkzMTgtMWViNjg0MTBhYjRhIiwidCI6IjE4YjVhNWVkLTFkODYtNDFkMy05NGEwLWJjMjdkYWUzMmFiMiJ9
https://app.powerbi.com/view?r=eyJrIjoiMGZkNGRmZmQtNzg1My00ZmYxLTkzMTgtMWViNjg0MTBhYjRhIiwidCI6IjE4YjVhNWVkLTFkODYtNDFkMy05NGEwLWJjMjdkYWUzMmFiMiJ9
https://app.powerbi.com/view?r=eyJrIjoiMGZkNGRmZmQtNzg1My00ZmYxLTkzMTgtMWViNjg0MTBhYjRhIiwidCI6IjE4YjVhNWVkLTFkODYtNDFkMy05NGEwLWJjMjdkYWUzMmFiMiJ9
https://app.powerbi.com/view?r=eyJrIjoiMGZkNGRmZmQtNzg1My00ZmYxLTkzMTgtMWViNjg0MTBhYjRhIiwidCI6IjE4YjVhNWVkLTFkODYtNDFkMy05NGEwLWJjMjdkYWUzMmFiMiJ9
https://app.powerbi.com/view?r=eyJrIjoiMGZkNGRmZmQtNzg1My00ZmYxLTkzMTgtMWViNjg0MTBhYjRhIiwidCI6IjE4YjVhNWVkLTFkODYtNDFkMy05NGEwLWJjMjdkYWUzMmFiMiJ9
https://www.poultryimprovement.org/npipdatabase/Login/Npiplogin.cfm
https://www.poultryimprovement.org/npipdatabase/Login/Npiplogin.cfm
https://food.ec.europa.eu/animals/animal-diseases/diseases-and-control-measures/avian-influenza_en
https://food.ec.europa.eu/animals/animal-diseases/diseases-and-control-measures/avian-influenza_en
https://food.ec.europa.eu/animals/animal-diseases/diseases-and-control-measures/avian-influenza_en
https://www.fao.org/faostat/en/#home
https://www.padi-web-one-health.org
http://kahis.go.kr/
https://en.foedevarestyrelsen.dk
http://www.env.go.jp/nature/dobutsu/bird_flu/migratory/ap_wr_transit/index.html
http://www.env.go.jp/nature/dobutsu/bird_flu/migratory/ap_wr_transit/index.html
https://comtradeplus.un.org
https://www.pianz.org.nz
https://wpp.wetlands.org
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Table 4. Cont.

Name of the Dataset Author Year Initiated Description Link

Global Flyway Network (GFN) 2006

Provides data on migratory routes, population
dynamics, breeding and wintering grounds,
ecological studies, conservation status, and

tracking data for different species of migratory
birds; global flyways

https://www.globalflywaynetwork.org
(accessed on 30 September 2024)

International trade data program U.S. Census Bureau Provides export and import data including poultry
trades; the USA; monthly basis [54]

https://www.census.gov/foreign-trade/i
ndex.html

(accessed on 30 September 2024)

https://www.globalflywaynetwork.org
https://www.census.gov/foreign-trade/index.html
https://www.census.gov/foreign-trade/index.html
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For genetic and genomic data, the Global Initiative on Sharing All Influenza Data (GI-
SAID) is a platform for sharing genetic sequences of influenza viruses, including H5N1. The
National Center for Biotechnology Information (NCBI) offers a comprehensive database
of genetic sequences, including influenza A (H5N1), through GenBank and the Influenza
Virus Resource, which provides tools for the analysis of influenza sequences. The Influenza
Research Database (IRD) is a comprehensive database providing sequence data, annotated
data sets, and tools for influenza research. For clinical and research data, PubMed is a
database of scientific publications where studies related to H5N1 can be found. ClinicalTri-
als.gov is a database of clinical studies related to H5N1, including ongoing and completed
trials. For surveillance and monitoring reports, ProMED-mail is an internet-based reporting
system dedicated to rapid global dissemination of information on outbreaks of infectious
diseases. HealthMap is a global disease alert map that provides real-time surveillance of
emerging public health threats, including avian influenza.

Regional and national data sources include the China Animal Health and Epidemiol-
ogy Center (CAHEC), which provides data on animal health, including avian influenza
outbreaks in China. The Japan Ministry of Agriculture, Forestry and Fisheries (MAFF)
offers reports on avian influenza outbreaks and control measures in Japan. The Animal
and Plant Health Inspection Service (APHIS) of the USDA provides surveillance reports
and data on avian influenza in the United States.

For data inventory and management, the FAIR Data Principles ensure that data is
Findable, Accessible, Interoperable, and Reusable. Utilizing FAIR principles can help in
managing H5N1 data inventories effectively. Data repositories such as Dryad and Figshare
allow researchers to share data, including data related to H5N1 research. By leveraging
these diverse sources and inventories, researchers can gain comprehensive insights into the
epidemiology, genetics, clinical aspects, and surveillance of H5N1, aiding in the exploration
and understanding of this virus.

Two sources of data play a pivotal role in studying avian influenza morbidity and
mortality, data gathered for animal infection surveillance, and clinical data gathered from
human avian influenza infections [100]. Mostly, predictive models are developed using
data collected from sick or dead birds or mammalians. Nevertheless, samples taken
from domestic and peri-domestic environments such as faeces, mud, soil, water, feathers,
and air, or poultry instruments such as cages, feeding sources, chopping boards, and
de-feathering machines are mostly suitable for studying disease circulation, transmission
routes, intervention effectiveness, risk assessment, and performing molecular analyses,
such as gene analysis [101].

Clinical data which may include the number of cases, deaths, patient demograph-
ics, health history, socioeconomic factors, genetic and genomic sequences, and antibodies
found in people could also be used to build predictive models for infection and fatal-
ity rates, detecting relevant predictors, and studying intervention and preventive policy
effectiveness [102]. These sources of data are frequently combined with ecological, and en-
vironmental data taken from sources such as satellite information and weather or air quality
sensors to analyze avian influenza infections on a spatial-temporal level, detecting hotspots
and possible spill-overs, and extracting potential predictors [56,71,74–77,80,81,83–85,99].
Inter- and intra-country poultry networks are also another data source that is commonly
combined with other sources of data for building surveillance, risk assessment, and predic-
tive models [54,103–105].

Besides such conventional data, unconventional sources, such as social media posts,
news articles, emails, and other web-based sources have also been considered for ana-
lyzing bird flu [78,106,107]. Several works have used tweets to forecast infection trends
or mine mass opinions, detect fake news, mis- and dis-information regarding avian in-
fluenza [108,109]. News articles have also been gathered and analyzed for building predic-
tive models, risk management, and preparedness [79,107].
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7. Socioeconomic and Environmental Impacts

The ongoing avian influenza outbreak could lead to major socioeconomic and envi-
ronmental impacts. Some control measures such as the culling of infected birds, trade
restrictions, and decreased consumer demand have resulted in considerable economic
losses in the poultry industry. Livelihoods and food security are severely impacted, par-
ticularly in rural areas where commercial or simple backyard-based poultry farming is
an important source of income and dietary protein. Concerns about the environmental
consequences, including the disposal of culled birds and wild bird populations being
disrupted by raptor species are other potential risks [110,111]. Consequently, interventions
in these aspects to enhance the resilience of the poultry industry are crucial in mitigating
such impacts and promoting sustainable practices [27].

Artificial intelligence, machine learning, and advanced mathematical models can
significantly contribute to addressing the socioeconomic and environmental impacts of
outbreaks such as avian influenza. As previously mentioned, these technologies can
enhance the accuracy and speed of epidemiological modeling, allowing for the tracking and
prediction of outbreaks based on large-scale datasets (Figure 1). By analyzing factors like
weather conditions, bird migration patterns, and poultry movement, modeling can identify
high-risk zones and provide early warnings, reducing the risk of outbreaks escalating into
larger crises.
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Figure 1. AI and mathematical models in analyzing, modeling, and predicting avian influenza
transmission from diverse data sources, integrating biological insights from affected bird species and
human interaction. This figure was created with BioRender.com.

In addition, artificial intelligence-driven models can optimize control measures by
simulating various interventions, such as selective culling, vaccination, or trade restrictions.
These simulations allow for the evaluation of potential outcomes, ensuring that the most
effective strategies are chosen while minimizing economic disruption and safeguarding
livelihoods. Artificial intelligence can also enhance the efficiency of supply chains during an
outbreak, helping reduce food security risks in rural areas dependent on poultry farming.
By analyzing consumer demand and logistics, artificial intelligence-based systems can
better manage resources and maintain market stability.

From an environmental perspective, artificial intelligence and machine learning can
help monitor the impact of control measures, such as the culling of infected birds, by
analyzing disposal methods and assessing risks to wildlife populations. By predicting and

BioRender.com
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mitigating the ecological consequences of these actions, artificial intelligence contributes to
more sustainable practices in managing outbreaks.

Ultimately, artificial intelligence and mathematical models offer powerful tools for
making informed decisions, enabling proactive measures that enhance the resilience of
the poultry industry and reduce the overall impact of disease outbreaks on society and
the environment.

8. Pandemic Preparedness and Response

The ongoing avian influenza outbreak has highlighted the importance of pandemic
preparedness and response planning [15,34]. Even though sustained human-to-human
transmission has not been observed, the risk of the virus acquiring the ability to spread
efficiently among humans remains a significant concern [20]. Consequently, forecasting,
hotspot detection, and preparedness planning which involves developing comprehensive
strategies for surveillance, risk assessment, healthcare system readiness, and coordination
among various stakeholders must be strengthened using the One-Health approach [29,
34]. International collaboration and information sharing are also crucial for effective
pandemic response, as demonstrated by the efforts of organizations like the WHO and the
FAO [112,113].

9. Challenges and Future Directions

An emerging issue in the current avian influenza panzootic outbreak that has caused
unprecedented mass fatalities, is the transmission of avian influenza to cattle and mam-
mals [114–116]. In this context, domestic animals such as cats and dogs are of especial
concern, since they are in direct contact with humans and could easily transmit it [55,56]. It
is paramount to study the genes and genomic sequences of this strain, perform risk analysis,
and identify the amino-acid mutations that result in transmissibility to humans and other
mammalians [66]. Although a great volume of the literature explores the pathogenicity and
prevalence of avian influenza in different waterfowls [39,67–71,73,99], very few studies
concentrate on mammals including humans [66,72].

Previously, regulations such as house ordering [58–60,62], hygienic and biosecurity
practices in poultry and live bird markets [69], and mass poultry vaccination [61,63,64]
have been implemented to reduce avian influenza cases in poultries and bird farms. Similar
measures and policies need to be set and evaluated to prevent or mitigate avian influenza
infections in domestic cattle and mammals [39].

In addition, biological and environmental factors that increase the risk of transmis-
sion of avian influenza to mammals need to be identified. A rich literature on risk fac-
tors associated with avian influenza is already available that elucidates variables such
as ambient temperature [49,94], closeness to water [38,40,43,48,88–91], waterfowl abun-
dance [42,51,52,94–97], human population [51], poultry density and sanitation [48,50], and
farmers and poultry workers knowledge [41,44,46,47] as the most significant features. Such
studies need to be extended to recognize the risk factors, hotspots, and spatial and temporal
characteristics of mammalian infections. More datasets on cattle and mammal routes and
pathways must be collected on a global level to improve the accuracy of the predictions.

Another concern in this field that very limited studies focus on [38,94] is how climate
change affects the spatial and temporal trends of avian influenza. Climate change, ur-
banization, and deforestation are shifting the bird migration patterns and even regional
movements. Species Distribution Modeling (SDM) and spatiotemporal analysis need to be
continuously applied to track the deviations in avian influenza outbreak patterns.

Another area that has potential for further research is retrieving and analyzing posts
from social media platforms such as Reddit, Facebook, and Twitter. Since such studies
provide information on hot trends, mass opinions, concerns, and mis- and dis-information,
they are of particular interest to policy-makers, health officials, social workers, and other
parties. However, a very limited number of studies have focused on analyzing social
media posts regarding avian influenza [106,107]. Web-based data such as social media
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posts, Google Trends [79], emails, page visits, and news articles are also a great resource for
disease surveillance; yet, few papers have considered employing them for surveillance of
avian influenza [79,107–109].

Another useful source of data that could help with avian influenza surveillance but has
been neglected is data gathered from wastewater [117,118]. Recent studies have reported
that using wastewater data, outbreaks could be detected by up to 17 days in advance [119].

Although the bulk of studies have focused on surveillance of avian influenza [21,53,100,
101,120], limited number of works have tried to build early warning systems or forecasting
models [54,74–79]. Moreover, methodologies need to be designed and implemented to
improve the accuracy of existing models by eliminating false positives. Reducing the
number of false positive avian influenza cases from predictive models is, indeed, very
important, because it prevents unnecessary culling and poultry trade prohibitions [62].

Despite many advances in the knowledge and response to avian influenza outbreaks,
several challenges still lie ahead. Improving the understanding of the virus’ evolution-
ary potential, transmission dynamics, and host–pathogen interactions through research,
surveillance, and the application of modern tools like artificial intelligence, and machine
learning is crucial. This will ensure that prompt detection and response to outbreaks can
occur [57–60,62,98]. Enhancing surveillance systems for both animal and human popu-
lations [17,25–27], strengthening the biosecurity measures, and building local, national,
and international level preparedness measures for pandemics are critical needs that would
protect against further spread or resurgence of such outbreaks in the future [27,28].

10. Limitations

The limitations of this review include its narrative structure, which lacks the quanti-
tative rigor typically found in systematic reviews or meta-analyses. A more quantitative
approach, such as a meta-analysis, would allow for a more robust synthesis of data from
multiple studies, offering stronger, statistically supported conclusions. Without this, the
findings in this review may be subject to selective reporting and potential bias in the
interpretation of individual studies.

Furthermore, the landscape of technological advancements, particularly in artificial
intelligence tools and methodologies, is constantly evolving. This rapid development
presents a challenge, as models and tools discussed in the review may become outdated
quickly. As new algorithms, data sources, and artificial intelligence techniques emerge, the
models and early warning systems for forecasting and hotspot detection must continually
be updated to remain effective. The evolving nature of artificial intelligence technology may
lead to gaps in this review’s applicability over time, requiring continuous reassessment to
incorporate new tools and methods.

Additionally, the methodologies applied in different studies vary across temporal and
spatial scales, leading to inconsistencies in findings. This makes it difficult to compare
results and draw generalized conclusions across different outbreaks, regions, or time
periods. This review also highlights the need for future studies to adopt a more systematic,
data-driven approach, ensuring that insights are comprehensive and remain relevant as
artificial intelligence and technological tools continue to advance.

11. Conclusions

In conclusion, leveraging advancements in technological tools, such as artificial intelli-
gence and machine learning, offers significant potential in forecasting, hotspot detection,
and early warning systems for managing avian influenza outbreaks. However, these tools
must be integrated into a broader, collaborative effort that includes the One-Health ap-
proach, bringing together human, animal, and environmental health data. The ongoing
avian influenza outbreak underscores the critical need for continuous technological in-
novation, international collaboration, and robust data-sharing among health authorities,
veterinary services, environmental agencies, and research institutions.
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While artificial intelligence-driven models have shown promise in improving predic-
tive accuracy and outbreak preparedness, they require ongoing refinement and adaptation
to account for the rapidly evolving nature of viral threats and the dynamic challenges posed
by environmental, socioeconomic, and biological factors. Furthermore, a concerted effort
to bridge gaps in data quality, access, and collection will be crucial in making these techno-
logical advancements more reliable and universally applicable. Looking ahead, addressing
the limitations of existing models through greater reliance on systematic, data-driven
methodologies, and fostering stronger global collaboration will be vital in mitigating the
socioeconomic and environmental impacts of future outbreaks. By combining these efforts,
we can better safeguard public health, ensure food security, and promote more resilient
agricultural practices in the face of increasingly complex pandemic threats [113,120–122].
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