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Abstract: Mechanosensing and mechanotransduction pathways between the Extracellular Matrix
(ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development,
morphology, maintenance, and function. Understanding these mechanisms involves creating an
appropriate cell support that elicits signals to guide cellular functions. In this context, polymers
can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the
ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural
physiological system. The generated specific stimuli depend on the different natural or synthetic
origins of the polymers, the chemical composition, the assembly structure, and the physical and
surface properties of biomaterials. This review discusses the most widely used polymers and their
customization to develop biomaterials with tailored properties. It examines how the characteristics
of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making
them suitable for biomedical and biotechnological applications.

Keywords: polymers; mechanobiology; mechanical response; properties of polymers; tissue
engineering; biotechnological application

1. Biochemical Mechanobiology: The Proof of Concept for Biomaterial-Based
Polymer–Cell Interaction

The field of mechanobiology aims to understand how living cells respond to external
biophysical stimuli exerted by the extracellular matrix (ECM) or surrounding fluids [1–4]
(Figure 1a). ECM is a structural macromolecular scaffold that provides biophysical sup-
port and drives biochemical signaling, essential for cell homeostasis, tissue development,
morphology, maintenance, and function throughout life [1–5].

These events are a consequence of the ECM composition, which consists of (i) solid
components, such as proteins (e.g., collagen, elastin, fibronectin), glycosaminoglycans and
proteoglycans and (ii) soluble elements such as growth factors and cytokines, mediating
the interaction between the ECM and cells. The ECM’s elements confer its geometric
conformation, providing topographical stimuli, chemical signals, viscous cues, and me-
chanical properties (Figure 1a) [6]. The ECM’s mechanical component is mainly due to the
elastic fibers, fibrillar collagens, glycosaminoglycans, and associated proteoglycans [7,8].
In this regard, ECM can function as either a “soft material”, deformable under low stress,
or a “hard material”, requiring more significant stress for deformation, depending on its
composition [7,8].

Biophysical and chemical stimuli elicit dynamic interaction, remodeling the cytoskele-
ton, triggering a biochemical signal cascade reaching the nucleus, and activating a tai-
lored gene expression program to regulate cell functions and decision-making [2,4,5,9–11].
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The proteins that perceive and transduce the stimuli mentioned above are known as
mechanosensors and include transmembrane proteins (e.g., integrins and ion channels)
and intracellular proteins (e.g., Focal Adhesion proteins, cytoskeleton, nucleoskeleton, and
specific soluble proteins responsive to physical signals) [2,4,5], organized into molecular
complexes that are players, respectively, of mechanosensing and mechanotransduction
pathways [2,4,5] (Figure 1b).
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Figure 1. The cartoon illustrates how biomaterials can mimic the characteristics of the Extracellular
Matrix (ECM) and the stimuli generated, triggering mechanobiological processes. (a) summarizes the
different chemical–physical stimuli exerted by ECM at the cellular level. (b) schematizes the cellular
mechanosensing/mechanotransduction response following ECM stimulation. (b1) summarizes
the mechanosensing process in which mechanosensory ion channels and Focal Adhesion proteins
are involved in perceiving chemical–physical cues. (b2) summarizes the process in which the
mechanosensing signals are converted into mechanotransduction and biochemical mechanisms by
transmembrane, cytoskeletal and soluble proteins, and (b3) summarizes the nucleoskeleton (link
complex and lamina systems), and the chromatin structure, causing the regulation of gene expression
and the cellular response. (c) shows the different biomaterial features that elicit similar stimuli to
natural ECM, leading to comparable equivalent responsiveness at the cell level.



Int. J. Mol. Sci. 2024, 25, 10386 3 of 29

When chemical–biophysical cues act on cell membranes, mechanosensing proteins sense
the stimuli and relay them to mechanotransduction pathway proteins (Figure 1b) [12–18]. For
example, mechanosensor proteins localized in the cell membrane (e.g., integrins) per-
ceive the stimuli from the ECM microenvironment [12,19] and transmit them to Focal
Adhesions, a dynamic complex of various proteins, including Vinculin, Paxillin, and
Talin [13]. The complex exhibits rigidity-dependent assembly and turnover, highlighting
their mechanosensing/mechanotransduction function in cells. Similarly, the mechanosens-
ing ion channels Piezo 1 and Piezo 2 establish an interplay between the integrin-focal
adhesion-actin axis and calcium signaling and convert the inputs into cellular responses
(Figure 1b) [16–18]. At this stage, the above signal is converted into biochemical pathways
transduced by the mechanotransducer proteins and transmitted to the cell cytoskeleton
components and related proteins (Figure 1b) [2,4,5]. For instance, Filamin proteins, mem-
bers of actin-linking proteins, act as a direct organizer of F-actin filaments, interacting with
signaling proteins in a force-dependent manner. Moreover, primary cilia microtubule-based
structures, Polycystin-1 and α-catenin protein, play crucial roles in the mechanosensing and
mechanotransduction of cells to their mechanical environment via the TAZ pathway [20].
The effect of ECM cues is translated by the cell’s cytosolic environment to the nucleus,
where they modulate chromatin conformation and gene expression (Figure 1b) [2,21–24].
In that process, the mechanosensor proteins YAP/TAZ, play a role in transmitting external
mechanical signals to the nucleus, influencing cell behavior based on environmental cues
like stiffness and topographical organization [23,25].

The importance of mechanosensing and mechanotransduction pathways in cell func-
tion is underscored by increasing evidence linking alterations in these biochemical routes
to disease development and progression [23], including neurodegenerative diseases [23,26]
such as Alzheimer’s and Parkinson’s [27,28], cancer, fibrosis, cardiovascular diseases, and
musculoskeletal disorders [26,29]. Understanding the biochemical mechanobiology mecha-
nisms between the ECM and cells enables the development of molecular tools to modulate
cellular responses to biophysical cues in health and disease. In this context, polymers can
serve as the ideal tool for creating biomaterials designed to mimic the characteristics of the
ECM, thereby triggering response mechanisms that closely resemble those induced by a
natural physiological system (Figure 1c) [2,21,24].

In the following paragraphs, we review the most widely used polymers, how they are
tailored to generate biomaterials with designed properties, and discuss how the properties
of biomaterial-based polymers can be applied to mimic the ECM properties with the
consequent biological functions.

2. Biomaterial-Based Polymers: Overview

Natural or synthetic polymers with biocompatibility characteristics are ideal for gen-
erating biomaterials for biotechnological and nanobiotechnological applications in health
and industry [30–40] (Tables 1 and 2).

Table 1 summarizes the major types of natural polymers and their biomedical appli-
cations. Natural polymers are ideal for this, because they interact with tissues and cells
without being treated as foreign bodies. They are used to build biomaterial with films or
scaffold structures that enhance cell growth and tissue formation and to generate envelopes
for encapsulation in therapeutic and diagnostic applications [41,42].

Synthetic polymers are used extensively, due to their structural and mechanical proper-
ties, reproducibility, cost-effectiveness, and customizable compositions (e.g., high flexibility
in chemical modifications and molecular change) [43,44]. Another advantage is the modu-
lation of biodegradability [45], which is suitable for both tissue regeneration or implants
for dental reconstruction, sutures, and contact lenses [46,47] (Table 2).

Synthetic polymers might have limitations, such as reduced cell attachment compared
to natural polymers, potential immune responses, and toxicity [48].
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Table 1. List of the main natural polymers, with the indication of the repeat unit, the source of origin, possible biomaterials’ structure, and their applications.

Polymer Repeat Unit Source Biomaterial
Structures Applications Reference

Alginate
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The combination of natural and synthetic polymers, as well as the generation of
synthetic-modified polymers (Table 2) makes it possible to create new biomaterials that
possess both the complex functionalities of natural polymers and the scalability of synthetic
polymers, including modification of their mechanical and physical properties, improving
their overall performance [89–93] and the limitation of the original polymers.

Both natural and synthetic polymers can be improved through material libraries,
generating modular and supramolecular interactions, which are necessary for the creation
of supramolecular aggregates with the ability to mimic ECM [94].

For example, natural and synthetic hydrogels can be used for the generation of
supramolecular interactions with proteins, peptides, and other polymers giving them char-
acteristics that mimic ECM (e.g., hybrid hydrogel BSA-polyelectrolytes; alginate/PEG) [94].

It has also been shown that a natural coating of the polymeric Bisurea (BU) material
with basement membrane proteins, laminin, and collagen IV, combined with catechol,
induces the formation of renal epithelial monolayers [95].

Table 2. List of the main synthetic polymers with the indication of the repeat unit, the source of
origin, possible biomaterial structures, and their applications.

Polymer Repeat Unit Source Biomaterial
Structures Applications Reference
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duces the formation of renal epithelial monolayers [95]. 

Table 2. List of the main synthetic polymers with the indication of the repeat unit, the source of 
origin, possible biomaterial structures, and their applications. 

Polymer Repeat Unit Source 
Biomaterial 
Structures 

Applications Reference 

Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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of supramolecular aggregates with the ability to mimic ECM [94]. 
For example, natural and synthetic hydrogels can be used for the generation of supramo-
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tics that mimic ECM (e.g., hybrid hydrogel BSA-polyelectrolytes; alginate/PEG) [94]. 
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origin, possible biomaterial structures, and their applications. 
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Biomaterial 
Structures 

Applications Reference 

Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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Hydrogels,
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Hydrogel for anticancer drug release; [101]
Hydrogel as an adhesive for medical technology; [102]
Scaffold for bone regeneration. [103]
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Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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The combination of natural and synthetic polymers, as well as the generation of syn-
thetic-modified polymers (Table 2) makes it possible to create new biomaterials that pos-
sess both the complex functionalities of natural polymers and the scalability of synthetic 
polymers, including modification of their mechanical and physical properties, improving 
their overall performance [89–93] and the limitation of the original polymers. 

Both natural and synthetic polymers can be improved through material libraries, 
generating modular and supramolecular interactions, which are necessary for the creation 
of supramolecular aggregates with the ability to mimic ECM [94]. 
For example, natural and synthetic hydrogels can be used for the generation of supramo-
lecular interactions with proteins, peptides, and other polymers giving them characteris-
tics that mimic ECM (e.g., hybrid hydrogel BSA-polyelectrolytes; alginate/PEG) [94]. 

It has also been shown that a natural coating of the polymeric Bisurea (BU) material 
with basement membrane proteins, laminin, and collagen IV, combined with catechol, in-
duces the formation of renal epithelial monolayers [95]. 

Table 2. List of the main synthetic polymers with the indication of the repeat unit, the source of 
origin, possible biomaterial structures, and their applications. 

Polymer Repeat Unit Source 
Biomaterial 
Structures 

Applications Reference 

Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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Scaffolds,
Nanoparticles,

Hydrogels

Scaffolds for bone cancer applications; [104]
Hydrogels for tendon tissue engineering; [105]
Hydrogels for promoting osteogenic
differentiation of adipose-derived stem cells; [106]

Scaffold for osteogenic differentiation; [107]
Implants for cranial reconstruction after burr hole
trephination. [108]
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Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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The combination of natural and synthetic polymers, as well as the generation of syn-
thetic-modified polymers (Table 2) makes it possible to create new biomaterials that pos-
sess both the complex functionalities of natural polymers and the scalability of synthetic 
polymers, including modification of their mechanical and physical properties, improving 
their overall performance [89–93] and the limitation of the original polymers. 

Both natural and synthetic polymers can be improved through material libraries, 
generating modular and supramolecular interactions, which are necessary for the creation 
of supramolecular aggregates with the ability to mimic ECM [94]. 
For example, natural and synthetic hydrogels can be used for the generation of supramo-
lecular interactions with proteins, peptides, and other polymers giving them characteris-
tics that mimic ECM (e.g., hybrid hydrogel BSA-polyelectrolytes; alginate/PEG) [94]. 

It has also been shown that a natural coating of the polymeric Bisurea (BU) material 
with basement membrane proteins, laminin, and collagen IV, combined with catechol, in-
duces the formation of renal epithelial monolayers [95]. 

Table 2. List of the main synthetic polymers with the indication of the repeat unit, the source of 
origin, possible biomaterial structures, and their applications. 

Polymer Repeat Unit Source 
Biomaterial 
Structures 

Applications Reference 

Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 

O

OH

OH

HO

HO
O

n

O

OH

n

O
O

n

O

O

n

OH

O

O

n

Ethylene

Scaffolds,
Hydrogels

Hydrogels for cell proliferation and spreading; [109]
Hydrogels support human PSC pluripotency and
morphogenesis; [110]

Hydrogel for wound care management; [111]
Scaffolds with boosted in vitro osteogenic ability; [112]
Scaffold-based drug delivery in oral cancer
treatment. [113]
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The combination of natural and synthetic polymers, as well as the generation of syn-
thetic-modified polymers (Table 2) makes it possible to create new biomaterials that pos-
sess both the complex functionalities of natural polymers and the scalability of synthetic 
polymers, including modification of their mechanical and physical properties, improving 
their overall performance [89–93] and the limitation of the original polymers. 
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of supramolecular aggregates with the ability to mimic ECM [94]. 
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tics that mimic ECM (e.g., hybrid hydrogel BSA-polyelectrolytes; alginate/PEG) [94]. 
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with basement membrane proteins, laminin, and collagen IV, combined with catechol, in-
duces the formation of renal epithelial monolayers [95]. 

Table 2. List of the main synthetic polymers with the indication of the repeat unit, the source of 
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Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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The combination of natural and synthetic polymers, as well as the generation of syn-
thetic-modified polymers (Table 2) makes it possible to create new biomaterials that pos-
sess both the complex functionalities of natural polymers and the scalability of synthetic 
polymers, including modification of their mechanical and physical properties, improving 
their overall performance [89–93] and the limitation of the original polymers. 

Both natural and synthetic polymers can be improved through material libraries, 
generating modular and supramolecular interactions, which are necessary for the creation 
of supramolecular aggregates with the ability to mimic ECM [94]. 
For example, natural and synthetic hydrogels can be used for the generation of supramo-
lecular interactions with proteins, peptides, and other polymers giving them characteris-
tics that mimic ECM (e.g., hybrid hydrogel BSA-polyelectrolytes; alginate/PEG) [94]. 

It has also been shown that a natural coating of the polymeric Bisurea (BU) material 
with basement membrane proteins, laminin, and collagen IV, combined with catechol, in-
duces the formation of renal epithelial monolayers [95]. 

Table 2. List of the main synthetic polymers with the indication of the repeat unit, the source of 
origin, possible biomaterial structures, and their applications. 

Polymer Repeat Unit Source 
Biomaterial 
Structures 

Applications Reference 

Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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Lactic acid

Scaffolds,
Nanocomposites,

Biofilms,
Hydrogel

Scaffold for bone tissue engineering; [114]
Biofilms for improved in vitro bioactivity and stem
cell adhesion; [115]

Hydrogel promotes diabetic wound healing; [116]
Scaffolds promote cell alignment and
differentiation; [117]

Scaffold for the biological properties of human
dental pulp stem cells. [118]

Polylactide-co-glycol
(PLGA)
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Membrane for generation of biodegradable 
stent. 

[124] 

Polyhydroxybutyrate 
(PHB) 

 
3-Hydroxybutyric acid 

 
Prokaryotes 

Scaffolds, 
Nanocomposites, 

Hydrogels 

Scaffolds for bone tissue engineering; [125] 
Scaffolds for peripheral nerve regeneration; [126] 
Nanocomposites for bone tissue engineering; [127] 

Fibers for textile applications. [128] 

Polyglycolic acid (PGA) 

 
Glycolic Acid 

 
Glycolic acid 

Scaffold, 
Hydrogel 

Scaffold for bone tissue engineering; [129] 
Scaffold for irreparable meniscal tear; [130] 
Scaffolds to mimic human ear cartilage; [131] 

Hydrogels in cardiac regeneration. [132] 

2.1. Biomaterial-Based Polymer Structure Design 
2.1.1. Films 

The film structure offers advantages for generating biomaterials with tunable prop-
erties such as morphology toughness [133], large-scale processability, and optical, me-
chanical, electromagnetic, and thermal properties [134], which make them highly sought-
after for industry, including agricultural [33,135], food [136], pharmaceutics [137,138], bi-
oengineering, robotics, and bioelectronics [139] (Tables 1 and 2). 

The addition of nanofiller, the monomers units used, the chemical composition, and 
the film thickness, are parameters that influence the synthesis process and biomaterial 
properties [140]. Moreover, combining different types of polymers generates micro/nano-
composites with improved characteristics and properties [141–144]. For instance, the con-
trolled open-loop polymerization technique forming composite films allows the length of 
the polymer blocks to be adjusted to influence the properties of the resulting films. The 
functionalization of surfaces with polymer brushes through surface atom transfer radical 
polymerization offers potential applications as anti-fouling coatings in biological environ-
ments [141,142]. 

2.1.2. Scaffolds 
The scaffold structure provides biomaterials that can replicate the properties of na-

tive tissues, providing a three-dimensional structure that supports cell proliferation and 
differentiation and tissue regeneration, resembling the extracellular matrix of various tis-
sues [141–144] (Tables 1 and 2). For instance, the use of natural polymers such as gelatin 
and chitosan in scaffolds mimics the extracellular matrix, promoting cell growth [56,145–
147], while, among synthetic polymers, polycaprolactone is a popular choice for scaffold 
fabrication due to its mechanical properties, biodegradability, and solubility [107]. 

The characteristics and functionality of scaffolds are significantly influenced by the 
fabrication techniques used [125,148,149]. The fabrication of scaffolds using the Two-pho-
ton Polymerization technique has enabled the creation of highly detailed structures at the 
micro and nanoscale [150]. Melt Electrowinning enables the precise deposition of biocom-
patible polymers in a layered manner for application [151]. Moreover, hybrid-forming 
techniques combining traditional methods and newer technologies [152] or nanoparticle 
integration [153] can help to tailor polymeric-scaffold structure characteristics and func-
tionality. Templating with high internal-phase emulsions also produces porous polymer 
scaffolds with interconnected porosity [154]. Combining 3D printing with Gas Foaming 
techniques enables the obtaining of scaffolds tailored in dimensions, geometry, and me-
chanical strength conducive to cell growth. 
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The combination of natural and synthetic polymers, as well as the generation of syn-
thetic-modified polymers (Table 2) makes it possible to create new biomaterials that pos-
sess both the complex functionalities of natural polymers and the scalability of synthetic 
polymers, including modification of their mechanical and physical properties, improving 
their overall performance [89–93] and the limitation of the original polymers. 

Both natural and synthetic polymers can be improved through material libraries, 
generating modular and supramolecular interactions, which are necessary for the creation 
of supramolecular aggregates with the ability to mimic ECM [94]. 
For example, natural and synthetic hydrogels can be used for the generation of supramo-
lecular interactions with proteins, peptides, and other polymers giving them characteris-
tics that mimic ECM (e.g., hybrid hydrogel BSA-polyelectrolytes; alginate/PEG) [94]. 

It has also been shown that a natural coating of the polymeric Bisurea (BU) material 
with basement membrane proteins, laminin, and collagen IV, combined with catechol, in-
duces the formation of renal epithelial monolayers [95]. 

Table 2. List of the main synthetic polymers with the indication of the repeat unit, the source of 
origin, possible biomaterial structures, and their applications. 
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Biomaterial 
Structures 

Applications Reference 

Graphene oxide 

 
Graphite Oxide 

 
Graphite 

Scaffolds, 
Nanoparticles, 

Hydrogels, 
3D-Bioprinting 

Scaffolds for bone tissue engineering; [96] 
Scaffolds for cardiac tissue engineering; [97] 
Scaffold for controlled differentiation of hu-
man neural progenitor cells; 

[98] 

Nanocomposites for endodontic treatments; [99] 
Hydrogels for microfluidic 3D printing. [100] 

Polyacrylic acid (PAA) 
 

Acrylic Acid 

 
Acrylic acid 

Hydrogels, 
Scaffolds 

Hydrogel for anticancer drug release; [101] 
Hydrogel as an adhesive for medical technology; [102] 

Scaffold for bone regeneration. [103] 

Polycaprolactone (PCL) 
 

Caprolactone 

 
Crude oil 

Scaffolds, 
Nanoparticles, 

Hydrogels 

Scaffolds for bone cancer applications; [104] 
Hydrogels for tendon tissue engineering; [105] 
Hydrogels for promoting osteogenic differen-
tiation of adipose-derived stem cells; 

[106] 

Scaffold for osteogenic differentiation; [107] 
Implants for cranial reconstruction after burr 
hole trephination. 

[108] 

Polyethylene glycol 
(PEG)  

Ethylene Glycol 
 

Ethylene 

Scaffolds, 
Hydrogels 

Hydrogels for cell proliferation and spreading; [109] 
Hydrogels support human PSC pluripotency 
and morphogenesis; 

[110] 

Hydrogel for wound care management; [111] 
Scaffolds with boosted in vitro osteogenic 
ability; 

[112] 

Scaffold-based drug delivery in oral cancer 
treatment. 

[113] 

Polylactide (PLA) 

 
Lactic Acid 

 
Lactic acid 

Scaffolds, 
Nanocomposites, 

Biofilms, 
Hydrogel 

Scaffold for bone tissue engineering; [114] 
Biofilms for improved in vitro bioactivity and 
stem cell adhesion; 

[115] 

Hydrogel promotes diabetic wound healing; [116] 
Scaffolds promote cell alignment and differ-
entiation; 

[117] 

Scaffold for the biological properties of hu-
man dental pulp stem cells. 

[118] 

Polylactide-co-glycol 
(PLGA)  

Glycolic acid 

Scaffolds, 
Hydrogels, 

Nanoparticles 

Nanoparticles for drug delivery; [119] 
Scaffolds for bone regeneration; [120] 
Scaffolds for corneal regeneration; [121] 
Hydrogels as a treatment for osteomyelitis; [122] 
Scaffolds for cardiac tissue engineering. [123] 
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Glycolic acid
+

Lactic acid

Scaffolds,
Hydrogels,

Nanoparticles

Nanoparticles for drug delivery; [119]
Scaffolds for bone regeneration; [120]
Scaffolds for corneal regeneration; [121]
Hydrogels as a treatment for osteomyelitis; [122]
Scaffolds for cardiac tissue engineering. [123]
Membrane for generation of biodegradable stent. [124]
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Polyhydroxybutyrate 
(PHB) 

 
3-Hydroxybutyric acid 

 
Prokaryotes 

Scaffolds, 
Nanocomposites, 

Hydrogels 

Scaffolds for bone tissue engineering; [125] 
Scaffolds for peripheral nerve regeneration; [126] 
Nanocomposites for bone tissue engineering; [127] 

Fibers for textile applications. [128] 
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Glycolic Acid 

 
Glycolic acid 

Scaffold, 
Hydrogel 

Scaffold for bone tissue engineering; [129] 
Scaffold for irreparable meniscal tear; [130] 
Scaffolds to mimic human ear cartilage; [131] 

Hydrogels in cardiac regeneration. [132] 
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The addition of nanofiller, the monomers units used, the chemical composition, and 
the film thickness, are parameters that influence the synthesis process and biomaterial 
properties [140]. Moreover, combining different types of polymers generates micro/nano-
composites with improved characteristics and properties [141–144]. For instance, the con-
trolled open-loop polymerization technique forming composite films allows the length of 
the polymer blocks to be adjusted to influence the properties of the resulting films. The 
functionalization of surfaces with polymer brushes through surface atom transfer radical 
polymerization offers potential applications as anti-fouling coatings in biological environ-
ments [141,142]. 
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The scaffold structure provides biomaterials that can replicate the properties of na-

tive tissues, providing a three-dimensional structure that supports cell proliferation and 
differentiation and tissue regeneration, resembling the extracellular matrix of various tis-
sues [141–144] (Tables 1 and 2). For instance, the use of natural polymers such as gelatin 
and chitosan in scaffolds mimics the extracellular matrix, promoting cell growth [56,145–
147], while, among synthetic polymers, polycaprolactone is a popular choice for scaffold 
fabrication due to its mechanical properties, biodegradability, and solubility [107]. 

The characteristics and functionality of scaffolds are significantly influenced by the 
fabrication techniques used [125,148,149]. The fabrication of scaffolds using the Two-pho-
ton Polymerization technique has enabled the creation of highly detailed structures at the 
micro and nanoscale [150]. Melt Electrowinning enables the precise deposition of biocom-
patible polymers in a layered manner for application [151]. Moreover, hybrid-forming 
techniques combining traditional methods and newer technologies [152] or nanoparticle 
integration [153] can help to tailor polymeric-scaffold structure characteristics and func-
tionality. Templating with high internal-phase emulsions also produces porous polymer 
scaffolds with interconnected porosity [154]. Combining 3D printing with Gas Foaming 
techniques enables the obtaining of scaffolds tailored in dimensions, geometry, and me-
chanical strength conducive to cell growth. 
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Hydrogels 

Scaffolds for bone tissue engineering; [125] 
Scaffolds for peripheral nerve regeneration; [126] 
Nanocomposites for bone tissue engineering; [127] 

Fibers for textile applications. [128] 
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Hydrogel 

Scaffold for bone tissue engineering; [129] 
Scaffold for irreparable meniscal tear; [130] 
Scaffolds to mimic human ear cartilage; [131] 

Hydrogels in cardiac regeneration. [132] 
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the film thickness, are parameters that influence the synthesis process and biomaterial 
properties [140]. Moreover, combining different types of polymers generates micro/nano-
composites with improved characteristics and properties [141–144]. For instance, the con-
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the polymer blocks to be adjusted to influence the properties of the resulting films. The 
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tive tissues, providing a three-dimensional structure that supports cell proliferation and 
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and chitosan in scaffolds mimics the extracellular matrix, promoting cell growth [56,145–
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The characteristics and functionality of scaffolds are significantly influenced by the 
fabrication techniques used [125,148,149]. The fabrication of scaffolds using the Two-pho-
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integration [153] can help to tailor polymeric-scaffold structure characteristics and func-
tionality. Templating with high internal-phase emulsions also produces porous polymer 
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the film thickness, are parameters that influence the synthesis process and biomaterial 
properties [140]. Moreover, combining different types of polymers generates micro/nano-
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The addition of nanofiller, the monomers units used, the chemical composition, and 
the film thickness, are parameters that influence the synthesis process and biomaterial 
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2.1. Biomaterial-Based Polymer Structure Design
2.1.1. Films

The film structure offers advantages for generating biomaterials with tunable proper-
ties such as morphology toughness [133], large-scale processability, and optical, mechanical,
electromagnetic, and thermal properties [134], which make them highly sought-after for in-
dustry, including agricultural [33,135], food [136], pharmaceutics [137,138], bioengineering,
robotics, and bioelectronics [139] (Tables 1 and 2).

The addition of nanofiller, the monomers units used, the chemical composition,
and the film thickness, are parameters that influence the synthesis process and bioma-
terial properties [140]. Moreover, combining different types of polymers generates mi-
cro/nanocomposites with improved characteristics and properties [141–144]. For instance,
the controlled open-loop polymerization technique forming composite films allows the
length of the polymer blocks to be adjusted to influence the properties of the resulting films.
The functionalization of surfaces with polymer brushes through surface atom transfer
radical polymerization offers potential applications as anti-fouling coatings in biological
environments [141,142].

2.1.2. Scaffolds

The scaffold structure provides biomaterials that can replicate the properties of na-
tive tissues, providing a three-dimensional structure that supports cell proliferation and
differentiation and tissue regeneration, resembling the extracellular matrix of various tis-
sues [141–144] (Tables 1 and 2). For instance, the use of natural polymers such as gelatin and
chitosan in scaffolds mimics the extracellular matrix, promoting cell growth [56,145–147],
while, among synthetic polymers, polycaprolactone is a popular choice for scaffold fabrica-
tion due to its mechanical properties, biodegradability, and solubility [107].

The characteristics and functionality of scaffolds are significantly influenced by the fab-
rication techniques used [125,148,149]. The fabrication of scaffolds using the Two-photon
Polymerization technique has enabled the creation of highly detailed structures at the
micro and nanoscale [150]. Melt Electrowinning enables the precise deposition of biocom-
patible polymers in a layered manner for application [151]. Moreover, hybrid-forming
techniques combining traditional methods and newer technologies [152] or nanoparticle
integration [153] can help to tailor polymeric-scaffold structure characteristics and func-
tionality. Templating with high internal-phase emulsions also produces porous polymer
scaffolds with interconnected porosity [154]. Combining 3D printing with Gas Foam-
ing techniques enables the obtaining of scaffolds tailored in dimensions, geometry, and
mechanical strength conducive to cell growth.

Three-dimensional bioprinting addressed the limitations of traditional 2D platforms
by enabling the fabrication of scaffolds that mimic the natural environment of tissues
and organs [155–158]. The evolution of 3D bioprinting has also been influenced by tech-
nological advances such as machine learning, improving the accuracy and efficiency of
printing accurate layered 3D structures [159]. Due to the precise control of biomaterial
deposition and the incorporation of biological additives such as cells and biomolecules,
bioprinting can fabricate preclinical implants, tissue constructs, and in vitro models tailored
to specific needs [160–162]. The choice of bio-ink is critical in 3D bioprinting, influencing
both the success of printing and the functionality of printed constructs. Silk fibroin-based
bio-inks offer standardized protocols for printing soft compositions, addressing stability
challenges in long-term culture [163]. Gelatin methacryloyl (GelMA) bio-inks are valued
for their thermo-responsive and photo-crosslinking properties, and they are widely used in
bioprinting applications [71]. Composite bio-inks like alginate and chitosan are essential
for creating organ-on-a-chip models of articular cartilage [164]. Bio-inks derived from the
decellularized extracellular matrix (dECM) are studied for their ability to enhance cell
growth and promote tissue regeneration [165].
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2.1.3. Hydrogel

Hydrogels are polymeric networks with a high affinity for water, formed by the
union of smaller or larger monomer units to form a cross-linked structure that is excellent
for the growth, development, and study of both monolayer and three-dimensional cell
systems [166]. Their high water content, porosity, and intrinsic mechanical tuning make
hydrogels particularly attractive as mimics of the ECM [167]. Hydrogels are conventionally
defined according to the nature of the polymers composing their chains, the mechanism and
subsequent organization of the network assembly, and the length scale of the assembled
network [168]. There are natural, synthetic, and hybrid hydrogels; the first class is derived
from natural sources and has the intrinsic advantage of being low-cost, non-toxic, and
degradable [168], with the limit of poor reproducibility. Synthetic hydrogels, obtained by
chemical synthesis and chemical polymerization of networks from artificial compounds,
increase the reproducibility of the system but also allow for the obtaining of polymers with
well-defined chemical, physical, and mechanical characteristics. Finally, hybrid hydrogels,
resulting from the copolymerization of both synthetic and natural monomers, are produced
to obtain new biomaterials having improved properties of both constituents (e.g., the
combination of hydrogels and porous polymer microparticles is promising for advanced
functionality in biomaterial design) [169,170].

2.1.4. Nanoparticles

Designing nanoparticles (NPs) is one of the significant tools in the science of nano-
materials explored in biology and medicine, due to their nanometric size (range from 1 to
100 nm) [171,172]. NPs can be produced by controlled synthesis processes to obtain spe-
cific shapes and sizes, as well as imparting various physicochemical properties, including
surface charge, the ability to form agglomerates, and the possibility of being function-
alized with other bioactive molecules [169,170,173–175], which is particularly useful in
regenerative medicine [20,173,176,177].

NPs are synthesized through two primary technical methods: the top–down approach
involves breaking down larger structures into nanoparticles, and the bottom–up approach
builds nanoparticles from smaller components [178,179].

The physical properties of nanoparticles, including crystal structure, size, and shape,
can influence their optical properties, affecting their performance in bioimaging applica-
tions [180] and functionality. Thus, NPs with selected sizes and structures have been shown
to possess robust photoacoustic and photothermal capabilities, making them suitable for
applications such as photo theranostics [181].

Noble metal nanoparticles have attracted significant attention, due to their high
stability, corrosion resistance, and catalytic activity [182]. These size- and shape-dependent
physical and chemical properties of noble metal nanostructures have led to widespread
applications in photonics, catalysis, and other fields [183,184]. Furthermore, noble metal
nanoparticles with materials such as metal–organic frameworks (MOFs) have created new
application opportunities in sonodynamic and photodynamic therapy [185].

3. Properties of Biomaterial-Based Polymers

As mentioned, biomaterial-based polymers, due to their unique properties [186], can
dictate biomaterial applications in health and biotechnological industries [39,187–190].

In this section, we discuss the different properties of biomaterial-based polymers, how
these are measured, and how cells collect and respond to them (Table 3).

3.1. Chemical Properties

The polymers’ chemistry defines the biomaterials’ identity [191–193]. Generally, the
chemical composition of biomaterials simulates the chemical characteristics of the ECM, pro-
viding chemical stimuli comparable to the physiological one, promoting integrin-mediated
adhesion and the differentiation of stem cells (Table 3). Thus, the type of polymer, functional
groups, and the method used for the synthesis are critical steps for designing biomaterials.
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For instance, functional groups, such as hydroxyl, carboxyl, amino, ester, phosphate, and
sulfonate, enhance the reactivity and biocompatibility of biomaterials, increasing the cell’s
adhesion [194]. Similarly, the methods used for generating homopolymers or heteropoly-
mers could leverage the final chemical properties [195]. Furthermore, the intramolecular
forces, such as hydrogen bonds, covalent bonds, and Van der Waals interactions, generated
among the functional groups, influence the chemical structure of the biomaterials and their
capability of providing chemical stimuli and interacting with cells [196].

The characterization of the chemical composition involves several techniques, such as
Fourier-Transform Infrared Spectroscopy, X-ray Diffraction, and Raman Microspectroscopy,
used for identifying the molecular composition, crystal structure, and degree of crystallinity
of polymers [197–199].

3.2. Physical Properties

Mechanical, electrical, and thermal properties can be distinguished at the level of
physical properties (Table 3).

The mechanical characteristics of biomaterials encompass a range of properties, includ-
ing tensile strength, Young’s modulus, viscoelasticity, and stiffness [200]. These properties
are influenced by the polymer composition, methods used in processing, and the presence
of fillers or reinforcements [201,202]. Mechanical stimuli provided to cells can significantly
change their morphological structure, leading to various biological responses, such as
stem cell differentiation. This process is mediated by several mechanotransducer proteins,
including YAP and TAZ proteins, Focal Adhesion Kinase (which promotes adhesion and
interaction with actomyosin, facilitating the cytoskeletal network reorganization), and
GTPases activity (which regulates cell migration and activation of ionic channels, such as
Piezo 1) (Table 3).

Rheological analyses give information about the mechanical properties of biomaterials,
providing valuable insights into their viscoelastic properties [203–205], such as the crosslink
density in polymer-based hydrogels, which significantly influences their mechanical proper-
ties [206]. Non-destructive and contact-free methods, such as Dynamic Light Scattering and
Brillouin Spectroscopy, can also analyze the mechanical properties [207–213]. Additionally,
the mathematical models Voigt and Burger’s and the fractionate derivative model are useful
in predicting the deformation of the biomaterial under different conditions [207–213].

The electrical properties of biomaterials include conductivity, ion conductance, and
piezoelectricity [214]. The ability of biomaterials to conduct electricity activates several
signaling pathways at the cellular level, including MAPK/ERK, PI3K/Akt, NF-kB, Wnt/β-
catenin, and Notch. This activation promotes the proliferation and differentiation of
cardiac and neural cells and stimulates voltage-dependent ion channels, which enhance
electrophysiological activity (Table 3). Alternate Current Impedance Spectroscopy [215]
and Dielectric Relaxational Spectroscopy are the main techniques used to measure the
complex dielectric permittivity of polymers [216]. Another technique is Kelvin Probe Force
Microscopy, which enables the precise mapping of surface potential by measuring the
contact potential difference between the tip of an atomic force microscope and the sample
surface [217].

The thermal properties of biomaterials and their composites refer to their behavior
under different temperature conditions [218–220]. The principal parameter involved is
thermal conductivity, which is the ability of biomaterials to conduct heat. Biomaterials’
ability to minimize thermal fluctuation is necessary for biological applications, as it re-
duces cell thermal stress, decreases ROS production, and enhances mitochondrial function
(Table 3). The thermal properties are measured by Differential Scanning Calorimetry,
Thermogravimetric analysis, and Laser Flash analysis [221–227].

Computational modeling can be utilized to define and predict the properties of poly-
mers before synthesis, to achieve specific designs and stimuli. Molecular Dynamics (MD)
simulations are essential to progress the biomaterial design and mimic the sophisticated
features of the ECM. These tools can be used to reproduce the molecular structure and
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mechanical properties of synthetic polymer networks for both softness, hardness, and for
mechanical performance [228]. These tunable properties are essential for the development
of biomaterials that match the unique viscoelastic nature of native tissues, making them
affordable in regenerative medicine and tissue engineering (TE) [228]. Computational meth-
ods can also be used as a tool to understand how material properties affect cell behavior
and to predict biocompatibility and function [229]. With MD simulations, it is possible
to evaluate how changes in polymer chains or crosslinking density impact the material
capacity to enable cell attachment, proliferation, and differentiation. These computational
methods not only significantly improve the accuracy of biomaterial design, but also ex-
pedite the process through which new materials are designed without the requirement to
subject them to countless experimental trials [230].

3.3. Surface Properties of Polymer Films and Scaffolds

Surface properties of biomaterials include wettability, roughness/smoothness, poros-
ity, and micro- and nano-topography [231].

X-ray Diffraction, Fourier-Transform IR Spectroscopy, Scanning Electron Microscopy,
Atom Force Microscopy, and Micro-Computed Tomography are the most frequent instru-
ments used for the analyses of roughness and porosity of biomaterials [232–235]. The wetta-
bility of a polymer is usually evaluated through Water Contact Angle measurements [236]
or in silico analysis with Molecular Dynamic simulations, which provide insights into prop-
erties like water absorption on polymer surfaces and interactions with solid surfaces [237].
All these analyses also provide information on the degradation time and alterations in the
morphology of polymer blends.

The surface properties of polymers generate various deformations in cytoskeletal or-
ganization, leading to increased adsorption of extracellular matrix proteins and facilitating
integrin-mediated cell adhesion (Table 3). Additionally, different surface characteristics
promote specific types of cell differentiation: hydrophilic surfaces enhance osteogenic
differentiation, rough surfaces stimulate osteoblast differentiation, porous scaffolds encour-
age chondrogenic differentiation, and nano-patterned surfaces favor neurite outgrowth
(Table 3).
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Table 3. List of properties of biomaterial involvement in mechanobiology, and the molecular effect on the cells and the biological applications.

Roles in Mechanobiology

Properties Cues Cell Molecular Response Biological Applications Reference

Chemical
Properties Composition Functional groups, synthesis methods and intramolecular

forces determine the ability of biomaterials to simulate the
cues derived from the Extracellular Matrix

Increase in the integrin-mediated adhesion Chemical structure and the inclusion of
active biomolecules activate a specific

molecular pathway

[238]

Directing stem cell differentiation and proliferation [239]

Physical
Properties

Tensile
Strength,
Young’s

Modulus,
Viscoelasticity, Stiffness

Tensile strength stimulates cells to assume a flattened
morphology and generate strong adhesion

An elevated Young’s Modulus value stimulates cells to
assume a more rounded morphology, with less-pronounced

stress fiber

Viscoelastic Biomaterials exhibit a different time-depending
strain based on the external cues, which affect cell shape,

causing an initial spread of cells, but, over time, the cell might
relax and adopt more rounded morphology

Stiffness, which refers to the resistance to deformation,
provides mechanical cues, depending on the proper resistance

of biomaterials, which leads to changes in the cell’s shape,
adhesion strength, and differentiation fate

Promote activation of Focal Adhesion Kinase (AFK) by facilitating
autophosphorylation at Tyrosine 397, generating strong adhesion [240–242]

Stiff polymers cause the translocation of YAP and TAZ in the nucleus, promoting
Osteogenesis Bone tissue regeneration [243–246]

Stiff polymers cause the translocation of YAP and TAZ in the nucleus, promoting
Myogenesis Skeletal muscle regeneration [243–246]

Soft polymers lead the remaining YAP and TAZ in the cytoplasm, promoting
adipogenesis

Generation of adipose tissue for facial
and breast reconstructive surgery [247–251]

Soft polymers lead the remaining YAP and TAZ in the cytoplasm, promoting
neurogenesis Neural tissue regeneration [247–251]

Generation of higher contracting through actomyosin interactions, causing
well-defined cytoskeletal network and the tendency of nuclei to be elongated and

flattened, promoting Epithelial differentiation

Regeneration of epithelial tissue for
airway epithelium development and

kidney regeneration
[252–256]

Stiff substrates promote activation of RhoA GTPase, through its effector
Rho-associated kinase (ROCK), facilitating the formation of actin stress fiber

modulating the Epithelial-to-Mesenchymal Transition
The Activation of RhoA GTPase and
Rac1 GTPase is involved in different

proliferation and differentiation
pathways; the specificity depends on
other characteristics of biomaterials

[257,258]

Soft substrate favorites the activation of Rac1 GTPase, which promotes the
formation of lamellipodia and membrane ruffles, associated with

Epithelial-to-Mesenchymal Transition
[257]

Stiffer substrates cause modification of the cytoskeletal arrangement, causing
activation of Piezo channels, allowing the influx of Calcium and Sodium cations

that promote osteogenic differentiation
Bone tissue regeneration [18,246]

Soft Biomaterials can simulate the action of the Tympanic Membrane, transmitting
the vibration to hair cells of the cochlea, activating Mechanical Gated Channels

providing the conversion of mechanical stimulus to an electric one

Biodevices for the restoration of
tympanic membrane [259,260]

Conductivity,
Ion

Conductance,
Piezoelectricity

Conductivity and Piezoelectricity provide electrical cues that
simulate the physiological one, promoting differentiation and

electrophysiological activity

Ion Conductance provides movement of ions, generating
ionic cues that stimulate the cell’s proliferation and activity

Activation of MAPK/ERK, PI3K/Akt, and NF-kB, promoting the proliferation of
Neuronal cells Neural tissue regeneration [261–263]

Activation of MAPK/ERK, PI3K/Akt, and NF-kB, promoting the proliferation of
Cardiac cells Cardiac muscle regeneration [261,262]

Activation of MAPK/ERK, Wnt/β-catenin, and Notch signaling, causing the
differentiation of Neuronal progenitor stem cells Neural tissue regeneration [261]

Activation of MAPK/ERK, Wnt/β-catenin, and Notch signaling, causing the
differentiation of Cardiac progenitor stem cells Cardiac muscle regeneration [261,262]

Activation of TGF-B, BMP, Wnt/β-catenin, and Notch signaling, causing the
differentiation of Osteogenic cells Bone tissue regeneration [246,262]

Activation of voltage-gated channels with the enhancement of Synaptic
Transmission and Action Potential propagation Neural function regeneration [264,265]

Thermal
Conductivity

Thermal conductivity provides the maintenance of uniform
temperature, reducing cell stress

Minor stress causes lower levels of ROS and reduced activation of the Heat Shock
Response pathway The thermal conductivity of biomaterials,

in combination with other characteristics,
allows possible biological application

[266–268]

Regulation of the temperature causes increased mitochondrial
functions such as ATP production and electron chain transport [269,270]
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Table 3. Cont.

Roles in Mechanobiology

Properties Cues Cell Molecular Response Biological Applications Reference

Surface Properties

Wettability, Roughness,
Porosity,

Micro- and Nano-
Topography

Wettability is a surface parameter that indicates if a
biomaterial is hydrophilic or hydrophobic; this affects how

cells spread, shape themselves, and differentiate

The roughness of the biomaterial’s surface influences the
spreading of cells and the formation of cellular protrusion

The porosity of a biomaterial could create a
microenvironment that mimics the natural tissue structure,

affecting the cells’ spread, shape, and differentiation

Micro- and Nano- Topography refers to the three-dimensional
features and texture of biomaterial’s surface, which affects the

cells’ morphology and differentiation by influencing cell
spread, alignment, and forming of shapes

Increased adsorption of fibronectin, collagen, and lamin promote
integrin-mediated binding and Extracellular Matrix production

Generation of extracellular matrix
studies model [271–274]

Hydrophilic surfaces enhance the adsorption of Bone Morphogenetic Proteins,
fibronectin, and

osteopontin, and influence the deposition of calcium ions and the formation of
hydroxyapatite crystals, promoting osteogenic differentiation

Bone tissue regeneration [275]

Rough surfaces induce a conformational change in the adsorbed proteins such as
fibronectin, collagen, and osteopontin, causing the exposition of binding sites,
enhancing focal adhesion formation, and promoting osteoblast differentiation

Bone tissue regeneration [276]

A porous scaffold mimics the mechanical properties of native cartilage, and also
adsorbs and exhibits chondrogenic growth factors such as TGF-B and IGF-1,

promoting chondrogenic differentiation
Chondrogenic tissue regeneration [277–281]

Nano-patterned surfaces provide topographical cues that influence the
organization and dynamics of actin cytoskeleton and microtubules, causing

neurite outgrowth
Neural tissue regeneration [282,283]
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4. Biomaterial-Based Polymer for Biological Applications

In this section, we discuss the correlation between the specific chemical/physical
characteristics of biomaterials, the activated cellular mechanobiological pathways, already
introduced in Table 3, and the induced biological responses. These are highlighted in
the biomedical application of biomaterials, such as tissue engineering and biodevices
(Figures 2 and 3).

4.1. Tissue Engineering

Tissue engineering (TE) is a multidisciplinary science dedicated to generating and
restoring tissues using the principles of engineering, chemistry, and physics, combined
with an understanding and application of the biological sciences and medicine [284]. In
TE, biomaterials can serve as a scaffold for treating and repairing different body tissues.
Herein, the successful application of biomaterials in the biomedical field is a function of
critical characteristics: biocompatibility, biodegradability, specific mechanical properties
(e.g., elasticity, stiffness), specific properties at the biological level (e.g., stimulation cell
growth, cell migration), and specific structural design, which can stimulate an equally
specific response at the cellular, and thus, tissue, level. Examples of biomaterials applied in
TE are summarized in Figure 2.
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Figure 2. The figure highlights the different fields of application of biomaterials at the biomedical
level. (a) Cells cultured on magnesium-functionalized biomaterials can be directed toward osteogenic
differentiation [285]. (b) Cells cultured on composite materials enriched with differentiation factors
are directed toward bone tissue regeneration [56]. (c) Biomaterials with a specific stiffness can exert
forces that drive toward epidermal differentiation. (d) PLA enables trans-differentiation of stem cells
to corneal cells for corneal reconstitution [286]. (e) Stem cells subjected to a given mechanical stimulus
can be directed toward neural differentiation by changing their fate [287]. (f) Biomaterials implanted
at the dental level can stimulate regeneration of the dental pulp after damage [288]. (g) shows the
use of composite materials (graphene scaffolds + Nanoparticles) that can regenerate skeletal muscle
tissue from stem cells [289]. (h) The use of a composite material of carbon and PLA enriched with
electrical charges enables the differentiation of stem cells to adult myocardial cells, reconstituting
possibly damaged heart tissue [139]. (i) highlights how the production of a mold made of PLA, PGL,
and PCL represents an excellent substrate in which stem cells can grow and differentiate toward
cartilage cells, regenerating an auricle [290].
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Hydrogel systems are widely studied in the regeneration of new cartilage, due to
their unique porous structure, and, most importantly, their similarity to the natural ECM,
capable of creating an environment and stimuli as similar as possible to the original tissue
that allows cell adhesion, migration, development and differentiation of chondrocytes and
osteoblasts, and the passage of nutrients and growth factors [291]. Similarly, the use of
collagen I or esterified hyaluronic acid mesh porous scaffolds [292] has been shown to
elicit differentiation towards chondrocytes, as evidenced by Extracellular cartilaginous
proteoglycan formation, over time. This differentiation can also be achieved through TGF-β
and IGF-1 in the porous scaffolds [288] (Table 3).

Biomaterials are equally helpful for the complete reconstruction of an entire cartilagi-
nous organ, as reported in the study by Zhou and co-authors [293], in which the use of 3D
PLA-PGA and PCL biomimetic polymers enabled the reconstruction of an entire auricle
in patients with Microtia. Specifically, an exact and mirrored replica of the auricle having
similar and stable mechanical properties compared to that of healthy tissue was produced
through 3D printing techniques. Autologous cartilage cells were placed on the surface of
the scaffold and allowed to develop until complete tissue regeneration and the subsequent
implantation of the regenerated tissue in the patient [294].

Recent approaches in bone restoration led to the generation of bioactive scaffolds that
mimic the natural microenvironment present in natural bone tissue, to provide a substrate
like the natural environment. Besides the biological characteristics and mechanical proper-
ties, porosity is essential to reaching the bone restoration goal. In silico modeling could
help project-specific bone scaffolding supports, guaranteeing the development of new
devices for tissue engineering applications. As such, hydroxyapatite shows excellent osteo-
inductive properties, thanks to its ability to mimic the natural bone environment, providing
an ideal substrate for cell attachment, growth, and development [295]. Biodegradable and
biocompatible polymers such as PLA and PCL, alone or in combination, are promising ma-
terials generating a specific scaffold explicitly designed for bone restoration in structure and
function [296]. Moreover, including osteo-inductive molecules, such as Magnesium (Mg2+),
might improve the osteogenic potential of PLA-based biomaterials, as demonstrated by the
activation of the expression of osteogenic genes [297]. Magnesium-based biodevices for
bone repair show a significant advantage over other materials, such as ceramic scaffolds or
PLA and PLGA polymers, due to excellent mechanical properties compared to other biode-
vices, strong osteo-inductive capabilities, and biodegradability [298]. Similar effects were
also obtained by using β-Tricalcium phosphate (β-TCP) ceramics or Gelatin methacryloyl
(GelMA) polymer [299]. These biomaterials determined a passive mechanical signal that
culminates with the translocation of YAP and TAZ within the nucleus [241,243], promoting
the osteogenesis process. Modification of the surface characteristics of pure titanium or
functionalized titanium (Ti6AL4V) allows the generation of cell protrusions, the formation
of new focal adhesion, and osteogenic differentiation, as shown by the expression of bone
morphogenetic proteins, fibronectin, and osteopontin and the enhancement of calcium ion
deposition and hydroxyapatite crystal formation (Table 3) [287].

Nanocellulose-based (NC) composite materials scaffolds have also proven functional
in bone tissue regeneration, generating softer and stiffer tissues, as the scaffold’s mechanical
properties can be shaped as needed [300].

The intervention techniques available for the correction of vision defects, to date,
make it possible to regain excellent visual abilities by resorting, however, to less invasive
surgical practices that require the removal of corneal tissue from a donor and reimplantation
in the patient. To date, the technique of in vitro expansion of Corneal Endothelial Cells
(CECs) and their subsequent injection, along with scaffold-based Corneal Endothelial Tissue
Engineering (CECT) techniques, is the most innovative and cutting-edge technique. In this
case, scaffolds are produced from both synthetic and natural polymers, using 3D-printing
or electrospinning techniques on which different cell lines, human pluripotent stem or
corneal endothelial cells isolated from donors, can be grown, generating a corneal tissue
graft that can be transplanted into individuals with defects in this area of the body [56].
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Dental pulp regeneration using biomaterials has become increasingly popular, re-
placing traditionally used intervention techniques such as removing damaged teeth or
occluding caries using sealing pastes. There are many biomaterials used today, including
collagen, silk fibroin, and chitosan, to reconstitute dental pulp naturally. In dentistry, gelatin-
based biomaterials have excellent characteristics, due to their biocompatibility and ability to
support the adhesion and growth of this natural polymer’s dental pulp stem cells (DPSCs).
Furthermore, they are excellent natural polymers for generating three-dimensional het-
eropolymer scaffolds with well-defined micro- and macroscopic characteristics like specific
tissues and organs [301]. Studies in which heteropolymer scaffolds consisting of gelatin
and fibroin were generated have been shown to have chemical–physical and biological
characteristics that can promote migration, proliferation, and odontogenic differentiation
of DPSCs [302]. The production of biomimetic, chitosan-based scaffolds has successfully
pushed dental pulp stem cells toward differentiation into mature cells expressing osteogenic
and odontogenic differentiation markers [288].

In vitro TE experiments based on the interaction between stem cells and biomaterials
have proved helpful in demonstrating how it can influence a cell’s fate and differentiation,
based on mechanical stimulus/cellular response crosstalk. In this sense, human bone mar-
row progenitor mesenchymal stem cells (hBM-MSCs) were cultured on the cycloaliphatic
polyester biomaterial poly (butylene 1,4-cyclohexane dicarboxylate) (PBCE) [287]. The cells
respond to mechanical stimuli, rearranging their morphology due to the reorganization of
F-actin filaments, assuming a shape like that of neural progenitor cells, confirmed by the
expression of elevated levels of neural differentiation markers [287].

Moreover, soft and easily modifiable materials, e.g., polydimethylsiloxane (PDMS),
were used to promote neural differentiation of cells from a mechanical perspective [303].
The retention of YAP and TAZ at the cytoplasmic level is controlled by these polymers,
which results in differentiation into nerve cells.

In addition, biomaterials that transmit an electrical stimulation, such as Electrospun
poly(caprolactone)/gelatin + evaporated AuNps and Silk Fibroin gel-graphene, allow
the activation of the MAPK/ERK, PI3K/Akt, and NF-kB pathways, promoting the pro-
liferation of neural cells. Finally, neural differentiation is also dependent on the nano-
topographic characteristics of the biomaterial, and, therefore, on the mechanical stimuli
that the cell perceives, to which it responds by changing and reorganizing the cytoskeletal
actin filaments and microtubules, culminating in the generation of neurite-like growths
(Table 3) [247,249,261,282,283].

The concept of mimicking the ECM to influence cellular processes for therapeutic
purposes has also been applied in vitro to the reconstitution of skeletal muscle tissue. Stem
cells can be used in combination with biomaterials of different natures, allowing them to
generate stimuli and thus cellular responses culminating in differentiation into skeletal
muscle cells [304]. Graphene and graphene functionalized with chemical oxygen species
are two examples of biomaterials that successfully lead to skeletal muscle regeneration due
to their strength, tensile strength, and surface characteristics and the ability to stimulate
cell adhesion and increase the content of myogenic proteins such as myosin heavy chain
and myogenin, thus driving cells to myogenic differentiation [289]. At the molecular
level, following a mechanical stimulus, the cell’s mechanosensitive calcium channels are
activated, determining a cascade of downstream signals, for the rearrangement of F-actin
microfilaments, inhibition of Pax7 expression, and induction of myogenin. During the early
stages of cell proliferation, YAP is overexpressed, while during the differentiation phase,
YAP activity is inhibited, thanks to the phosphorylation of YAP in serine residue. This event
causes its translocation from the nucleus to the cytoplasm and leads to an overexpression
of the MyoD protein [305].

Heart tissue disease and damage are increasingly common nowadays, and remain
a significant cause of death. The development of electroconductive biomaterials for the
reconstitution of a functioning myocardium is one possible avenue for solving the com-
plete reconstitution of this complex tissue. Carbon-based nanomaterials such as carbon



Int. J. Mol. Sci. 2024, 25, 10386 15 of 29

nanotubes (CNTs) and graphene have been extensively investigated in cardiac tissue re-
generative biomedicine. CNTs exhibit excellent electrical conductivity capabilities and
specific surface area, stimulating myocardial differentiation and possible cardiac tissue
regeneration [139]. In heart regeneration, Chitosan, a derivative of chitin, has proven
helpful in suggesting a potential tool for heart TE regeneration. In addition, Chitosan has
proven helpful in the regeneration of bone, dental pulp, and epithelial tissue [306]. Other
biomaterials with electrical conductivity, for example, the membrane of Poly-l-Lysine-PANI
nanotube membranes, PLCL, and PANI electrospun membranes [307], provide electrical
stimuli capable of inducing the restoration of cells functioning from an electrophilic point
of view. Molecular-active conductive materials promote the activation of MAPK/ERK,
PI3K/Akt, and NF-kB, promoting the regeneration and proliferation of Cardiac cells [261].

In conclusion, the success of TE must recognize the principles governing mechanobiol-
ogy and, thus mimic the cell/ECM interaction. This is highlighted by the effectiveness of
TE application in recent clinical trials which are FDA-approved (Table 4).

Table 4. Examples of FDA approval of clinical trials in TE.

Biomaterial Clinical Trial Aim of Study ID Number

Bioengineered Bilayered Living
Cellular Construct

A bioengineered living-cell construct
activates an acute wound-healing

response in
venous leg ulcers

Treatment of Chronic nonhealing
venous leg ulcers (VLUs)

NCT01327937
(2017)

Tricalcium Phosphate EUDRA-CT Atrophic Nonunion of long bones NCT02483364
(2020)

Hydroxyapatite + collagen

A multilayer biomaterial for
osteochondral regeneration shows

superiority vs. microfractures for the
treatment of osteochondral lesions in a
multicenter randomized trial at 2 years

Assess the benefit provided by a
nanostructured

collagen–hydroxyapatite
(coll-HA) multilayer scaffold for

the treatment of chondral and
osteochondral knee lesions

NCT01282034
(2021)

Carbon nanomaterials Carbon nanomaterials for cardiovascular
theranostics: promises and challenges

Drug-delivery
Biosensor

Tissue engineering
Immunomodulation

NCT02698163
(2016)

Autologous cartilage cells
expanded ex vivo

Autologous chondrocyte implantation
(ACI) in the knee: systematic review and

economic evaluation

Assess the clinical effectiveness
and cost-effectiveness of ACI in

chondral defects in the knee,
compared with microfracture

(MF)

TIG/ACT/01/2000
(2017)

Collagen Alginate Dressing Omega3 Wound Fish Skin Graft in the
Treatment of DFUs

Treatment of diabetic foot ulcers
(DFUs)

NCT04133493
(2019 to 2022)

Platelet-Rich Plasma
(PRP)

Study on the healing of the partial
skin-graft donor site in burn patients Skin burn regeneration 2016-000968-42

(2016)

Mucopolysaccharides (Hyaluronic
acid + Chondroitin sulfate)

Regeneration of ischemic damage in the
cardiovascular system using Wharton’s

jelly as an unlimited source of
mesenchymal stem cells for

regenerative medicine

Regeneration of cardiovascular
damaged tissue

2016-004684-40
(2018)

Autologous Chondrocyte
implantation product

A Clinical Study to Evaluate the Safety
and Effectiveness of NOVOCART® 3D
Plus Compared to Microfracture in the

Treatment of Articular Cartilage Defects of
the Knee.

Repair of localized, full-thickness
cartilage defects of the femoral

condyle (medial, lateral, or
trochlea) of 2–6 cm2

2011-005798-22
(2012)

4.2. Biodevices

Research in biomaterials has also developed innovative tools for health biotechnologi-
cal applications (Figure 3).
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Advances in applications are increasingly moving towards producing wearable elec-
tronic devices that can detect and monitor the health of the person wearing them [308–310].
This includes so-called biosensors, devices containing biological elements that can specifi-
cally bind to a target analyte. These components comprise a bioreceptor and a recognition
molecule, which can be an enzyme, protein, antibody, DNA, virus, or similar substances
(Figure 3) [313]. Natural and synthetic degradable biomaterials such as starch, gelatin, silk,
cellulose, polylactic acid, polyurethane, etc., have been widely explored as building blocks
for the construction of disposable or transient electronics [314].

Research in biosensors has led to the development of bioactive CTN polymers spe-
cializing in various biosensor functions, including the ability to monitor glucose levels,
hydrogen peroxide, cholesterol, and immune-sensing (Figure 3) [313]. In this context,
the technology of aptamers [315] represents a further advancement, as they can include
single-stranded DNA/RNA oligonucleotides as biosensors.

Neoplastic diseases are one of the leading causes of death worldwide. Traditionally
applied therapies have the disadvantage of producing significant side effects in patients. Re-
cently, research has investigated devices that can provide targeted, non-invasive treatment
to resolve malignancies (Figure 3). Nanomaterials have gained much attention, due to their
specificity and small size. Nanoparticles with a non-spherical shape are potentially very
effective in targeted therapy against different types of tumors, being injected into the area
of interest and functioning as a drug carrier. This allows surrounding healthy organs and
tissues to be left intact. In addition, nanometric biomaterials of natural origin (animal or
plant proteins, gelatin, and silk fibroin) offer significant advantages over synthetic ones in
the drug delivery system, due to their marked biocompatibility and biodegradability. This
makes it possible to avoid further interventions on patients [316]. Moreover, innovative
carbon-based nanomaterials have attracted attention, due to their geometrical, electrical,
and surface properties, which make them excellent substrates for binding molecules such as
antibodies, proteins, or peptides. These make the CNTs a valuable candidate for delivering
active biomolecules with enzymatic, antioxidant, and antigen-recognition functions of
specific target antigens and nucleic acid molecules.

5. Conclusions

Biomaterials, with their unique characteristics of polyhedrality and versatility, repre-
sent a thrilling frontier in research. Their properties, intricately linked to the nature of the
polymer used (natural, synthetic, and synthetic-modified), the methods of synthesis, and
the combination of different polymers, hold huge potential.
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By manipulating these processes, with the help of computational predicational tools,
we can obtain biomaterials with specific and diverse physical, chemical, and surface
properties, opening new avenues in research fields, either in health (tissue engineering,
and molecular mechanisms responding to mechano-physical stimuli) or in biotechnological
industries (food packaging and antimicrobial devices for the food industry). It should be
borne in mind that, in recent years, the polymer sector has gained a foothold in the field of
food packaging, thanks to the properties of some of the biomaterials being antimicrobial
and sustainable from a biomedical point of view.

The latest research in the field of biomaterials applied to tissue engineering is pushing
the boundaries, aiming to produce biodevices that mimic the extracellular environment’s
chemical characteristics and mechanical forces. This could revolutionize tissue repair mech-
anisms, producing mechanical and biochemical events comparable to the native environ-
ment. This research argues that a specific design triggers a specific response at the cellular
level, and, by shaping the properties of a polymer, we can also alter the generated response.
The latest goal to be reached in the field of biomaterials is the surgical/clinical applicability
and scalability of these biomaterials, a prospect that is both exciting and promising.
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