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Abstract: Undaria pinnatifida is a temperate brown alga known to exert free radical-scavenging and
anti-inflammatory effects. In this study, we investigated the skin-whitening effects of U. pinnati-
fida sporophyll extracts (UPEs) in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10
melanoma cells. The crude polysaccharide fraction (UPF) was obtained via ethanol precipitation.
Four polysaccharide fractions (UPF1–4) were isolated and purified using ion-exchange column
chromatography, and their anti-melanogenic activity was evaluated. UPF3 exhibited the highest
anti-melanogenic activity, showing the highest sulfate (39.79%), fucose (143 µg/mg), and galactose
(208 µg/mg) contents. UPF3 significantly inhibited intracellular tyrosinase activity in B16F10 cells.
We also evaluated the melanogenic signaling pathway to determine the mechanism of action of
UPF3 in melanongenesis. UPF3 reduced the expression of tyrosinase-related protein-1 (TRP-1),
tyrosinase-related protein-2 (TRP-2), and tyrosinase, which play important roles in melanin pro-
duction. Therefore, UPF3 has high potential for use in skin-whitening functional pharmaceuticals
and cosmetics.

Keywords: Undaria pinnatifida sporophyll; polysaccharide; melanin; tyrosinase

1. Introduction

Melanin is a black or brown pigment present in various tissues, including hair, eyes,
and skin [1]. It protects the skin from various external environmental factors, including
temperature, humidity, and ultraviolet (UV) light [2]. Melanogenesis is a complex process
responsible for skin pigmentation. Melanin is produced in the melanosomes of melanocytes
and delivered to the keratinocytes of the epidermis [3]. Skin color is determined by the
amount of melanin produced by melanocytes. Melanin production can be stimulated by UV
rays and intrinsic factors such as adrenocorticotropin (ACTH), α-melanocyte-stimulating
hormone (α-MSH), endothelin (EDN1), and basic fibroblast growth factor (bFGF), which
increase the expression levels of microphthalmia-associated transcription factor (MITF) [4].

α-MSH stimulates the melanin production pathway. α-MSH binds to the melanocortin-
1 receptor (MC1R) and is involved in the regulation of melanogenesis and pigmenta-
tion. The main intracellular signaling pathway for melanogenesis is the cyclic monophos-
phate/protein kinase A (cAMP/PKA) pathway, which is induced by α-MSH [5]. MITF pro-
motes the transcription of tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2
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(TRP-2), and tyrosinase [6]. Tyrosinase is a rate-limiting enzyme that oxidizes L-tyrosine to
L-3,4 dihydroxyphenylalanine (L-DOPA), which is then converted into L-dopaquinone and
dopachrome [7]. TRP-2 converts dopachrome into 5,6-dihydroxyindole-2-carboxylic acid
(DHICA), and TRP-1 oxidizes DHICA to melanin [8].

Melanin offers protective benefits to the skin against various environmental factors.
Nevertheless, excessive melanin production can result in several skin pigmentation issues,
including melasma, freckles, age spots, and hyperpigmentation disorders [9]. Consequently,
the cosmetic and pharmaceutical industries are focused on tyrosinase activity inhibitors
such as arbutin, kojic acid, hydroquinone, and linoleic acid to address skin pigmentation
concerns [10]. However, certain chemicals can cause adverse effects, such as burns, skin
irritation, and redness [11]. Thus, there is a need for the development of safe and natural
whitening agents that do not carry these side effects.

Undaria pinnatifida is a temperate annual brown alga that is mostly found in Korea,
Japan, China, the west coast of the United States, and some European countries [12,13].
U. pinnatifida is bitter, salty, and naturally non-toxic and has been historically used for pur-
poses of reducing swelling and treating urological disease, thyroiditis, and gastrointestinal
disease [14]. It contains a variety of bioactive compounds, including polyunsaturated fatty
acids, polyphenols, peptides, vitamins, and polysaccharides [15,16]. Although U. pinnatifida
sporophyll is a poorly utilized byproduct of U. pinnatifida, it contains diverse bioactive
compounds, including polyphenols, polyunsaturated fatty acids, vitamins, polysaccha-
rides, and carotenoids [17,18]. U. pinnatifida sporophylls are known to have antioxidant and
melanogenesis-inhibitory effects [19,20]. However, the anti-melanogenic mechanisms of
the polysaccharides in ultrasonic extracts have not yet been elucidated. Therefore, the aim
of this study was to purify and characterize the polysaccharides in U. pinnatifida sporophyll
extracts (UPEs) and to confirm their inhibitory effects on α-MSH-induced melanogenesis
using in vitro models.

2. Results
2.1. Analysis of the Compounds in Undaria pinnatifida Sporophyll Extracts (UPEs)

Crude polysaccharides from UPEs were isolated by adding ethanol to the UPEs, fol-
lowed by the separation of the polysaccharides through anion-exchange chromatography
using a DEAE cellulose column with a NaCl gradient ranging from 0 to 4 M. The chro-
matogram was divided into four fractions, which were quantified by the phenol–sulfuric
acid colorimetric method utilizing the polysaccharide fractions from the anion-exchange
column. The fractions in the chromatogram were indicated by four distinct peaks: UPF1,
UPF2, UPF3, and UPF4 (Figure 1).
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Figure 1. DEAE–cellulose chromatogram of polysaccharides from Undaria pinnatifida sporophyll
crude polysaccharides.

Table 1 shows that the UPEs were predominantly composed of polysaccharides and
sulfates. In particular, the UPF, which was prepared by ethanol precipitation, contained
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high levels of polysaccharides and sulfates. UPF3 of the DEAE fractions also contained
high levels of polysaccharides and sulfates. The monosaccharide compositions of the UPEs
listed in Table 2 show that the UPEs comprised four monosaccharides: fucose, rhamnose,
galactose, and glucose. In the UPEs, galactose was the predominant monosaccharide,
constituting 49.5% (82 µg/mg of dry weight extract) of the total polysaccharide content,
with fucose following at 41.65% (70 µg/mg of dry weight extract). Among the fractions,
UPF3 had the highest levels of fucose (143 µg/mg of dry weight extract) and galactose
(208 µg/mg of dry weight extract).

Table 1. Chemical composition analysis.

Sample
Chemical Composition (%)

Monosaccharides Proteins Total Polyphenols Sulfates

UPE 15.17 ± 0.44 4.39 ± 0.17 0.12 ± 0.00 25.02 ± 0.41
UPF 35.36 ± 1.42 7.92 ± 0.24 0.32 ± 0.01 29.56 ± 0.1
UPF1 12.69 ± 1.17 1.35 ± 0.12 nd 0.93 ± 0.12
UPF2 17.07 ± 2.94 0.47 ± 0.22 nd 1.24 ± 0.08
UPF3 29.46 ± 2.94 1.87 ± 0.1 nd 39.79 ± 0.21
UPF4 3.99 ± 0.8 1.83 ± 0.55 0.05 ± 0.00 1.14 ± 0.05

nd: not determined.

Table 2. Monosaccharide composition analysis.

UPE UPF UPF1 UPF2 UPF3 UPF4

Monosaccharide
composition
(µg/mg of
dry weight
extract (%))

Fucose 70 (41.65) 61 (37.09) 6 (7.62) 8 (26.68) 143 (36.49) 11 (22.73)
Rhamnose 2 (0.67) 2 (0.58) 7 (7.27) 1 (2.51) 3 (0.61) 0 (0.45)
Arabinose nd nd nd nd nd nd
Galactose 82 (49.5) 83 (50.88) 23 (32.18) 1 (3.54) 208 (58.38) 17 (36.76)
Glucose 5 (6.54) 9 (3.52) 21 (20.72) 9 (35.49) 2 (0.32) 5 (10.69)

N/A 5 (6.54) 7 (7.93) 13 (20.72) 7 (30.04) 12 (4) 5 (13.19)

nd: not determined. N/A: not available.

2.2. Effects of the UPEs on Cytotoxcity in B16F10 Cells

The cytotoxicity of the samples was evaluated using B16F10 cells. The cells were
treated with fractionated samples at concentrations of 12.5, 25, 50, 100, 200, and 400 µg/mL
to examine cytotoxicity. The cytotoxicity of the sample-treated group was not significantly
lower than that of the untreated group. These results indicated that the samples were not
cytotoxic to B16F10 cells up to a concentration of 400 µg/mL (Figure 2). Therefore, the
experiments were conducted at non-toxic concentrations of 100, 200, and 400 µg/mL.
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the untreated control group.

2.3. Effects of the Samples’ Melanin Contents and Tyrosinase Activity in B16F10 Cells

The anti-melanogenic effects of the fractionated samples were assessed by measuring
the extracellular melanin content in α-MSH-stimulated B16F10 cells (Figure 3A). Compared
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with those in the α-MSH-stimulated group, the extracellular melanin contents of the
UPF, UPF1, and UPF3 were significantly reduced in a dose-dependent manner compared
to those in the positive group examining kojic acid. To confirm this, the intracellular
melanin contents and cellular tyrosinase enzyme activity of UPF1 and UPF3 were evaluated
(Figure 3B,C). These results indicated that UPF3 was a significantly effective fraction with
anti-melanogenic effects in B16F10 cells (Figure 3D). The anti-melanogenic effect of UPF3
was confirmed by L-DOPA staining. The reduction in tyrosinase enzyme activity following
UPF3 treatment in B16F10 cells was confirmed by the weak band intensity compared to
that observed in the α-MSH-stimulated cells (Figure 3E).
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(B) Intracellular melanin contents of UPF1 and UPF3. (C) Cellular tyrosinase activity of UPF1 and
UPF3. (D) Extracellular melanin content image of UPF3. (E) Cellular tyrosinase activity determined
by L-DOPA staining assay. ### p < 0.001 compared to the untreated control group. ** p < 0.01, and
*** p < 0.001 compared to the α-MSH-treated group.

2.4. Effects of UPF3 on the Expression of Melanogenic Proteins in B16F10 Cells

To validate the downregulatory effect of UPF3 treatment on melanogenic enzymes,
we compared the protein expression of tyrosinase, TRP-1, and TRP-2 in UPF3-treated
B16F10 cells using Western blotting. Their expression levels were significantly upregu-
lated in α-MSH-treated cells compared to the untreated group. Figure 4 shows that UPF3
treatment significantly reduced the protein expression of key enzymes involved in melano-
genesis (tyrosinase, TRP-1, and TRP-2). These results demonstrated that UPF3 inhibits
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cellular melanogenesis in cells stimulated by α-MSH by downregulating the expression of
melanogenic proteins in a dose-dependent manner.
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3. Discussion

Melanin is the pigment responsible for protecting the skin from various external
environmental factors [2]. However, excessive melanin production can cause several skin
pigmentation disorders, including freckles and hyperpigmentation [9]. This study focused
on developing a non-toxic and natural melanogenic inhibitor using UPEs.

Undaria pinnatifida sporophylls were extracted using ultrasonic extraction, as per
our previous research [20]. The extracts were precipitated using ethanol precipitation,
followed by purification through anion-exchange chromatography using a DEAE cellulose
column. The separated samples were divided into four fractions by measuring their
polysaccharide contents using the phenol–sulfuric acid method. This resulted in extracts
(UPEs), a precipitate fraction (UPF), and four separated fractions (UPF1–4).

In this study, we first analyzed the monosaccharide contents and chemical composi-
tions of the UPEs. UPEs contain high amounts of galactose and fucose, with UPF3 having
the highest fucose (143 µg/mg of dry weight extract, 36.49%) and galactose (208 µg/mg
of dry weight extract, 58.38%) contents. These contents are very high compared to the
6~10% fucose and 15~25% galactose contents observed in a previous study showing that
these monosaccharides have good whitening effects [21]. Galactose inhibits melanogenesis
by regulating the cAMP/PKA/Akt signaling pathways [22]. Among the UPEs, UPF3
exhibited the highest sulfate content. Fucoidan, a marine sulfated biopolysaccharide with a
heterogeneous and complex chemical structure, is known to be a fucose-containing sulfated
polysaccharide [23]. Since UPF3 is high in fucose and sulfates, it contains large amounts
of fucoidan. Fucoidan has been reported to inhibit melanin production by regulating the
ERK/CREB/MITF pathways [24,25]. The anti-melanogenic effects of the UPEs were evalu-
ated by measuring intracellular melanin contents and tyrosinase enzyme activity, which
confirmed the efficiency of UPF1 and UPF3 in reducing extracellular melanin contents. We
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found that UPF3 had a powerful inhibitory effect on melanin synthesis and also showed
the inhibition of tyrosinase enzyme activity, as demonstrated by tyrosinase zymography.
Therefore, the melanin-inhibitory activity of UPF3 was likely due to its high galactose and
fucoidan contents.

α-MSH, an intrinsic factor in the intracellular melanin production pathway, was
applied to B16F10 cells to stimulate melanogenesis. α-MSH released from UV-exposed
keratinocytes activates the cAMP/PKA/CREB axis, stimulating melanin biosynthesis [26].
Activated MITF increases the expression of TRP-1, TRP-2, and tyrosinase, leading to
intracellular pigmentation [27]. In this study, 100 nM α-MSH was applied to B16F10 cells as
an intracellular melanogenesis stimulator, along with different concentrations of UPEs, for
72 h. Figure 3 demonstrates that the UPEs inhibited melanogenesis, with UPF1 and UPF3
being particularly effective. Upon observing the intracellular responses of the cells to UPF3
treatment, the increased conversion of L-DOPA into dopachrome stimulated by α-MSH
during melanogenesis was found to be successfully decreased. UPF3 suppressed tyrosinase
enzyme activity and significantly reduced dopachrome production from L-DOPA. Figure 4
shows the effects of UPF3 on the expression of the melanogenic enzymes TRP-1, TRP-2,
and tyrosinase, revealing that UPF3 effectively inhibited melanin synthesis in B16F10 cells
stimulated by α-MSH.

Melanin synthesis is a complex process involving several molecular biological fac-
tors [5,6]. MITF is a pivotal factor that regulates the transcription of melanin synthesis
enzymes and is involved in the cAMP/PKA/CREB cascade [28]. α-MSH promotes the
production of cAMP, which induces phosphorylation of the CREB transcription factor,
in turn promoting MITF activation. This series of events upregulates the transcription
of the melanin synthesis enzymes TRP-1, TPR-2, and tyrosinase [29,30]. Therefore, we
hypothesized that UPF3 regulates the cAMP/PKA/CREB pathways to decrease the ex-
pression of the key melanogenic enzymes TRP-1, TRP-2, and tyrosinase, thereby inhibiting
melanin synthesis.

4. Materials and Methods
4.1. Materials and Reagents

DEAE Sepharose Fast Flow was purchased from Cytiva (Marlborough, MA, USA).
α-MSH, L-DOPA, Folin–Ciocalteu reagent, and RIPA lysis buffer were obtained from Sigma-
Aldrich (St. Louis, MO, USA). A Pierce BCA Protein Assay Kit, a Slide-A-LyzerTM Dialysis
Flask, and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) were pur-
chased from Thermo Fisher Scientific (Waltham, MA, USA). A Protease/Phosphatase
Inhibitor Cocktail and a primary antibody against β-actin were purchased from Cell Signal-
ing Technology (Danvers, MA, USA). Primary antibodies against tyrosinase, TRP-1, and
TRP-2 were purchased from Abcam (Cambridge, UK).

4.2. Ultrasonic Extraction of Undaria pinnatifida Sporophylls

U. pinnatifida sporophylls were obtained from a local market in Wando (Jeollanamdo,
Republic of Korea). The U. pinnatifida sporophylls were dried and powdered using a
blender. The powdered samples (400 g) were mixed with water (40 L). The samples were
extracted using MX Sonic (MX-12S2, Mirae Ultrasonic Tech., Bucheon, Republic of Korea)
at 1080 W, 80% amplitude, 20 kHz, and 30 ◦C for 8 h. After extraction, the extracts were
centrifuged (3000× g, 30 min, and 4 ◦C), and the Undaria pinnatifida sporophyll extracts
(UPEs) were lyophilized.

4.3. Crude Polysaccharide Separation

The UPEs in DW were mixed well with twice the volume of ethanol. Then, the mixture
was stored overnight at 4 ◦C. The crude polysaccharide separation fraction (UPF) was
collected by centrifugation (12,000× g, 30 min, and 4 ◦C) [31].
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4.4. Anion-Exchange Chromatography (DEAE)

The UPF obtained using the aforementioned procedure was subjected to a DEAE
cellulose column (40 × 3 cm), equilibrated with 50 mM sodium acetate, and washed
with 50 mM NaCl. Elution was carried out at a flow rate of 2 mL/min using a linear
gradient of 0 M to 4 M NaCl. Fractions (10 mL each) were collected and analyzed for their
polysaccharide contents using a phenol–H2SO4 assay. These fractions were then dialyzed
and freeze-dried to yield UPF1, UPF2, UPF3, and UPF4.

4.5. Polysaccharide, Protein, Polyphenol, and Sulfate Content Analyses

The polysaccharide concentrations of the UPEs were quantified using the phenol–
sulfuric acid assay [32]. The samples were dissolved in DW, transferred into tubes, and
mixed with 5% phenol solution. Subsequently, H2SO4 was added, and the mixture
was cooled to room temperature. The absorbance of the final solution was measured
at 470 nm. The total polysaccharide content was then calculated using glucose as the
reference standard.

The protein contents of the UPEs were determined using the Pierce BCA Protein Assay
Kit. The samples were mixed with the BCA reagent and shaken for 30 min. The absorbance
of the mixture was measured at 562 nm. The total protein content was calculated using
Bovine Serum Albumin (BSA) as the standard.

The polyphenol contents of the UPEs were determined using the Folin–Ciocalteu
reagent [33]. The samples were mixed with the Folin–Ciocalteu reagent (1N), and 20%
Na2CO3 was added to the wells. After 30 min, absorbance was measured at 700 nm. The
total polyphenol content was calculated using gallic acid as the standard.

The sulfate concentrations of the UPEs were analyzed using the barium chloride
gelatin assay [34]. The samples were combined with HCl and heated in a drying oven at
105 ◦C for 5 h. Afterward, the samples were treated with a 6.25% HNO3 and Gum–Arabic–
HAc–BaCl2 mixture and left to react for 10 min in the dark. The absorbance was recorded at
440 nm, and the sulfate content was determined using (NH4)2SO4 as the reference standard.

4.6. Analysis of Molecular Weights and Monosaccharide Compositions through High-Performance
Liquid Chromatography

Size exclusion chromatography was employed to determine the molecular weights
of the UPEs [35]. All samples (5 mg/mL in deionized water) were filtered through a
0.45 µm syringe filter, and the filtered samples were injected into a column (protein KW-803;
8 mm × 300 mm, 4 µm; Shodex, Tokyo, Japan). The injection volume was 10 µL, and the
flow rate was maintained at 0.8 mL/min. Peaks were detected using a JASCO HPLC system
equipped with a refractive index (RI) detector (RI-2031 Plus) with a runtime of 25 min
per injection. The molecular weight was determined using pullulan standards (Shodex
Standard P-82; Showa Denko, Tokyo, Japan).

For the analysis of monosaccharide compositions, high-performance anion-exchange
chromatography with pulsed amperometric detection (Dionex, Sunnyvale, CA, USA)
was employed [36]. A CarboPacTM PA1 column (2 mm × 250 mm, 10 µm particle size)
was utilized for the separation process. Each sample (2 mg/mL) was hydrolyzed using
trifluoroacetic acid before being injected into the column. The injection volume was set at
20 µL, and the eluent (18 mM NaOH/200 mM NaOH) was run at a flow rate of 1.0 mL/min.

4.7. Cell Culture and Viability Assays

B16F10 mouse melanoma cells were purchased from the American Type Culture Col-
lection (ATCC, Rockville, MD, USA). The B16F10 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin (P/S). The cells were incubated at 37 ◦C in a humidified atmosphere
containing 95% air and 5% CO2. Cell viability was analyzed using a 3-(4,5-Dimethylthiazol-
2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. The cells were seeded in a 96-well
plate at 1 × 104 cells/well and incubated for 24 h. The cells were then treated with UPEs at
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various concentrations (12.5, 25, 50, 100, 200, and 400 µg/mL) for 24 h. After the treatment,
the cells were incubated with MTT solution for 2 h. Formazan crystals were then dissolved
in DMSO, and the absorbance was measured at 540 nm.

4.8. Melanin Content Assay

B16F10 cells were seeded in a 60 mm culture dish at a density of 1 × 105 cells/dish.
After 24 h of incubation, the cells were pretreated with UPEs (100, 200, and 400 µg/mL)
for 1 h and then treated with α-MSH (100 nM) for 72 h. Extracellular melanin contents
were measured in the culture media by assessing the absorbance at 490 nm. The cells were
washed twice with DPBS and incubated with 1 M NaOH solution to dissolve intracellular
melanin. Dissolved melanin was quantified by measuring the absorbance at 490 nm using
a microplate reader.

4.9. Cellular Tyrosinase Assay

B16F10 cells were seeded in a 60 mm culture dish at a density of 1 × 105 cells/dish
and incubated for 24 h. The cells were pretreated with UPEs (100, 200, and 400 µg/mL)
for 1 h, followed by treatment with α-MSH (100 nM) for 72 h. Afterward, the cells were
harvested and lysed using RIPA lysis buffer and then centrifuged at 12,000× g for 10 min,
and the supernatants were collected. The protein content in the lysate was determined
using the Pierce BCA Protein Assay Kit. Then, 40 µL of the lysate (30 µg) and 100 µL of
L-DOPA (10 mM) were mixed in a 96-well plate and incubated at 37 ◦C for 1 h. Cellular
tyrosinase activity was assessed by measuring dopachrome absorbance at 475 nm.

4.10. L-DOPA Staining

The L-DOPA staining assay was conducted as previously described [37]. B16F10 cells
were seeded in a 60 mm culture dish at a density of 3 × 105 cells/dish and incubated for
24 h. The cells were pretreated with UPEs (100, 200, and 400 µg/mL) for 1 h, followed by
treatment with α-MSH (100 nM) for 72 h. The cells were then washed twice with DPBS,
lysed with RIPA lysis buffer, and centrifuged at 12,000× g for 10 min, after which the
supernatant was collected. The protein concentration in the lysate was determined using
the Pierce BCA Protein Assay Kit. The proteins (30 µg) were combined with loading buffer
without β-mercaptoethanol. Then, the proteins were separated on a 10% SDS gel and
washed three times with 0.1 M sodium phosphate monobasic buffer for 30 min. The gel
was subsequently immersed in a staining solution containing 0.1 M sodium phosphate
monobasic buffer containing 10 mM L-DOPA and incubated in the dark at 37 ◦C for 2 h.
After staining, tyrosinase activity was detected as dark melanin-containing bands on the
gel through PrintGraph 2M (ATTO, Tokyo, Japan).

4.11. Western Blotting Analysis

B16F10 cells (3 × 105 cells/dish) were seeded in a 60 mm dish and incubated for
24 h. The cells were pretreated with UPEs (100, 200, and 400 µg/mL) for 1 h and then
treated with α-MSH (100 nM). After 24 h, proteins were extracted using RIPA lysis buffer
supplemented with a Protease/Phosphatase Inhibitor Cocktail. The protein concentration
of the lysate was assessed using the Pierce BCA Protein Assay Kit. The extracted proteins
were separated on 10% SDS acrylamide gels and transferred onto polyvinylidene difluoride
(PVDF) membranes. The membranes were blocked with EveryBlot Blocking buffer (Bio-
Rad, Hercules CA, USA) for 15 min at room temperature followed by overnight incubation
with primary antibodies (β-actin: 4970s; tyrosinase: ab1709015; TRP-1: ab1708676; and
TRP-2: ab74073) at 4 ◦C. After washing with TBST several times, the membranes were
incubated with secondary antibodies (anti-rabbit IgG and HRP-linked antibody: 7074s;
anti-mouse IgG and HRP-linked antibody: 7076s) at room temperature for 1 h. Protein
expression was visualized using an ECL reagent and observed using a chemiluminescence
reader (EZ-Capture MG, ATTO, Tokyo, Japan).
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4.12. Statistical Analysis

All the experiments were repeated at least three times, and the results are presented
as the mean ± standard deviation. Normality tests were carried out to assess whether the
data followed a normal distribution. For data that were normally distributed, statistical
significance was assessed using Student’s t-test with the SPSS program 22.0 (Chicago, IL,
USA), and significant differences were considered at p < 0.05. Pearson’s correlation analysis
was also performed using SPSS, with the significance level set at p < 0.01.

5. Conclusions

The UPEs extracted from U. pinnatifida sporophylls by ultrasonication exhibited anti-
melanogenic activity. In particular, UPF3, which was isolated by anion-exchange chro-
matography, demonstrated potent anti-melanogenic effects on α-MSH-stimulated B16F10
melanoma cells by inhibiting tyrosinase signaling pathways and enzyme activity. The anti-
melanogenic effects of UPF3 were attributed to its high galactose and fucoidan contents;
however, further experiments, such as skin organoid cell, 3D cell culture, and human skin
experiments, are needed to substantiate its whitening effects more conclusively. These
findings strongly suggest that UPF3 is a promising natural skin-whitening agent for the
prevention of pigmentary disorders.
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