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Abstract: In classical amyloidoses, amyloid fibres form through the nucleation and accretion of
protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel
β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to
form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating
inflammatory molecules (and also some originating from viruses and bacteria). Such pathological
clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic
analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting
a more complex mechanism than simple entrapment. We thus provide evidence against such
a simple entrapment model, noting that clot pores are too large and centrifugation would have
removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres
may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing
to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots
in different diseases shows no significant quantitative overlap with the normal plasma proteome
and no correlation between plasma protein abundance and their presence in fibrinaloid microclots.
Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent
from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand
factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found
that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting
their integration as cross-β elements into amyloid structures. This integration likely contributes
to the microclots’ resistance to proteolysis. Our findings underscore the role of cross-seeding in
fibrinaloid microclot formation and highlight the need for further investigation into their structural
properties and implications in thrombotic and amyloid diseases. These insights provide a foundation
for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in
blood clotting disorders.
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1. Introduction

Blood homeostasis is a finely tuned process involving a complex series of reactions
known as the blood clotting cascade. Central to this process is the conversion of fibrinogen
to fibrin, catalysed by the serine protease thrombin, resulting in the formation of polymeric
fibrin clots. Fibrinogen, a major plasma protein, is pivotal in this cascade, undergoing a
remarkable transformation from a soluble protein to an insoluble fibrin matrix. While the
mechanisms of normal clot formation are well understood, recent studies have unveiled the
formation of pathological clot structures, termed fibrinaloid microclots, in the presence of
inflammatory molecules, including those with viral and bacterial origins. These fibrinaloid
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microclots display unique proteomic profiles and amyloid-like properties, suggesting a
complex interplay between protein misfolding and aggregation beyond simple entrapment.
This paper explores the proteomic characteristics of fibrinaloid microclots, investigates the
mechanisms of their formation, and highlights their potential implications in thrombotic
and amyloid diseases.

An important part of blood homeostasis involves the blood clotting cascade. This is
well known (Figure 1A) and our focus is on the catalysis by the serine protease thrombin
of the conversion of fibrinogen to make polymeric fibrin. Fibrinogen is one of the most
abundant plasma proteins, present at some 2–4 g.L−1 (e.g., [1–4]). It is a cigar-shaped
molecule of ca 5 × 45 nm, and consists of several chains (e.g., [5–8]). The action of thrombin
leads to the serial removal of two fibrinopeptides, which sets in motion a remarkable
self-organisation by which the fibrinogen molecules interact to form protofibrils, fibrils,
and then fibres of some 50–100 nm diameter (Figure 1B), implying some hundreds of
fibrinogen molecules in each length element of the typical fibrin fibre. In normal clots, the
direction of the fibrinogen molecules and fibrin protofibrils is parallel to that of the fibres.

The pore sizes of typical clots are of the order 0.5–5 µm when fibrinogen is at its
physiological concentrations (e.g., [9–13]) (the pore diameters can be far lower at massively
extraphysiological fibrinogen concentrations [14]), so without specific binding of some
kind they are clearly incapable of simply entrapping molecules of globular proteins (with
diameters in the low nm range). A complex set of reactions also contribute to normal clot
degradation (fibrinolysis) [15].

1.1. Proteins of Identical Sequence Can Adopt Alternative, Stable Macrostates

The famous ‘unboiling an egg’ experiment of Christian Anfinsen [16,17] involved the
chemical denaturation of ribonuclease followed, upon removal by dialysis of the chemical
denaturant, by its refolding into what was considered to be the same native form as the
original made naturally following ribosomal synthesis. Importantly, this led to the con-
clusion that the information necessary for a protein’s tertiary structure could be encoded
solely in its primary amino acid sequence. Unfortunately, it was also widely assumed
that this structure was thus the thermodynamically most stable under the conditions of
interest. This latter assumption could only be just that (an assumption) because of the
astronomical number of conformations that a string of n amino acids might adopt even as a
single molecule [18,19], let alone when ensembles of a given protein form inclusion bodies.
Indeed, we now know of many classes of example in which proteins can adopt very differ-
ent conformations despite having the identical primary structure. Prions, amyloids, and
prionoids are three such classes [20–23]. In fact, the existence of very different macrostates
or folds, between which proteins can in fact switch physiologically, is surprisingly com-
mon [24–27]. Such proteins have been referred to as ‘metamorphic’ [28–32]. While the
present versions of Alphafold cannot (and were not designed to) predict such a multiplicity
of macroscopic conformations effectively [33,34] (though see their utility for isoenergetic
microstates [35]), the primary sequences do in fact contain such information [36,37]. There
is also evidence that proteins capable of adopting multiple macrostates were in fact selected
adaptively [38–41] and can be designed accordingly [42].

Given the above, and that our focus here is on amyloidogenic proteins, it is of special
interest that α-helix-to-β-sheet transitions are a noteworthy feature of such proteins [36],
and particularly, for our present purposes, some in SARS-CoV-2 [43], where several proteins
are amyloidogenic [44,45]. We note too that some alleles of the fibrinogen Aα chain may
produce highly amyloidogenic proteolytic fragments [46], and that fibrinogen can bind to
well-established amyloids such as Aβ [47–50].
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Figure 1. (A): The clotting cascade and (B) fibrinogen conversion to fibrin. The clotting cascade in-
volves the intrinsic, extrinsic, and common pathways, each comprising various clotting factors. The 
intrinsic pathway includes factors I (fibrinogen), II (prothrombin), IX (Christmas factor), X (Stuart-
Prower factor), XI (plasma thromboplastin), and XII (Hageman factor). The extrinsic pathway con-
sists of factors I, II, VII (stable factor), and X. The common pathway involves factors I, II, V, VIII, and 
X. These factors circulate in the bloodstream as zymogens and are activated into serine proteases, 
which catalyse the cleavage of subsequent zymogens into more serine proteases, ultimately activat-
ing fibrinogen. The serine proteases include factors II, VII, IX, X, XI, and XII, while factors V, VIII, 
and XIII are not serine proteases. The intrinsic pathway is activated by exposed endothelial collagen, 
whereas the extrinsic pathway is triggered by tissue factor released by endothelial cells after external 
damage. Drawn using Biorender.com. 

1.2. Structure and Interconversion of Amyloid(ogenic) Proteins 
In contrast to the expectations of the Anfinsen experiment, it has become well estab-

lished that many (and maybe even most) proteins can fold into states that are considerably 
more stable than the one natively or most commonly adopted as they leave the ribosome, 
but that this thermodynamically favoured conformation (or, more accurately, the set of 

Figure 1. (A): The clotting cascade and (B) fibrinogen conversion to fibrin. The clotting cascade
involves the intrinsic, extrinsic, and common pathways, each comprising various clotting factors.
The intrinsic pathway includes factors I (fibrinogen), II (prothrombin), IX (Christmas factor), X
(Stuart-Prower factor), XI (plasma thromboplastin), and XII (Hageman factor). The extrinsic pathway
consists of factors I, II, VII (stable factor), and X. The common pathway involves factors I, II, V, VIII,
and X. These factors circulate in the bloodstream as zymogens and are activated into serine proteases,
which catalyse the cleavage of subsequent zymogens into more serine proteases, ultimately activating
fibrinogen. The serine proteases include factors II, VII, IX, X, XI, and XII, while factors V, VIII, and
XIII are not serine proteases. The intrinsic pathway is activated by exposed endothelial collagen,
whereas the extrinsic pathway is triggered by tissue factor released by endothelial cells after external
damage. Drawn using Biorender.com.



Int. J. Mol. Sci. 2024, 25, 10809 4 of 45

1.2. Structure and Interconversion of Amyloid(ogenic) Proteins

In contrast to the expectations of the Anfinsen experiment, it has become well estab-
lished that many (and maybe even most) proteins can fold into states that are considerably
more stable than the one natively or most commonly adopted as they leave the ribosome,
but that this thermodynamically favoured conformation (or, more accurately, the set of
isoenergetic conformations) is normally kinetically inaccessible due to a massive energy
barrier of some 36–38 kcal.mol−1 [21,51]. A particular class of these more stable confor-
mations involve a cross(ed)-β-sheet motif [52–58], and they become insoluble because
they tend to aggregate and self-assemble; following their discovery by Virchow in 1854
(reviewed by Sipe and Cohen [59]), they are referred to as amyloids (see, e.g., [60–65]). As
is well known, they are intimately (if at best only partially) involved in a variety of diseases,
including Alzheimer’s [66] and Parkinson’s. Such syndromes are collectively referred to as
amyloidoses (e.g., [67–73]). As phrased by Burdukiewicz et al. [74], “Despite their diversity,
all amyloid proteins can undergo aggregation initiated by short segments called hot spots”.
This is a massive field, so our focus is on those parts that most reflect the present core
question, which is around their self-assembly. This—commonly the transition from an
α-helix structure to a β-sheet one [75]—necessarily involves partial unfolding [76–80], and
this plausibly underpins the mechanism of cross-seeding.

1.3. Rules for Amyloidogenesis and Cross-β Formation

In contrast to the classical secondary structure of β-sheets, where the rules for their for-
mation in terms of amino acid sequence are broadly polar–apolar–polar–apolar–(etc.) [81],
the sequence rules for amyloidogenic potential generally, and for cross-β sheet forma-
tion [82] in particular, are rather more obscure. This is not helped by the relative paucity of
data on (sub)sequences that can encode amyloidogenicity, but experimental and computa-
tional progress is being made (e.g., [83–85] and Table 1) and databases of amyloidogenic
hexapeptides [86] and amyloid–amyloid interactions exist [87]. It is indeed reasonable that
the most predictive properties for residue amyloidogenicity are “hydrophobicity index [88],
average flexibility indices (a normalized fluctuational displacement of an amino acid
residue) [89], polarizability parameter [90] and thermodynamic β-sheet propensity [74,91].

Table 1. Some computational resources for predicting amyloidogenic regions in proteins.

Program Comments and/or URL Reference

AggreProt Webserver for predicting amyloid-prone regions promoting protein aggregation
https://loschmidt.chemi.muni.cz/aggreprot/ (accessed on 1 October 2024) [92]

Aggrescan
http://bioinf.uab.es/aggrescan/ (accessed on 1 October 2024) [93]

https://biocomp.chem.uw.edu.pl/A3D/ (accessed on 1 October 2024) [94]
https://biocomp.chem.uw.edu.pl/a4d/ (accessed on 1 October 2024) [95]

AMYGNN Seemingly no online server. Database reconstructable via
https://github.com/yzjizwz/AMYGNN.git (accessed on 1 October 2024) [96]

AmyLoad Database and server for amyloidogenic sequences
https://comprec-lin.iiar.pwr.edu.pl/amyload/ (accessed on 1 October 2024) [97]

AmyloComp Predicts co-aggregation of two proteins within an amyloid fibril
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&amp;tool=30 (accessed on 1 October 2024) [98]

Amylogram
http://biongram.biotech.uni.wroc.pl/AmyloGram/ (accessed on 1 October 2024)

Amyloidogenicity is strongly correlated with hydrophobicity, a tendency to form β-sheets, and
lower flexibility of amino acid residues

[74,99]

AmyloGraph Database of amyloid–amyloid interactions https://amylograph.com/ (accessed on 1
October 2024) [87]

AMYPred-FRL http://pmlabstack.pythonanywhere.com/AMYPred-FRL (accessed on 1 October 2024) [100]

https://loschmidt.chemi.muni.cz/aggreprot/
http://bioinf.uab.es/aggrescan/
https://biocomp.chem.uw.edu.pl/A3D/
https://biocomp.chem.uw.edu.pl/a4d/
https://github.com/yzjizwz/AMYGNN.git
https://comprec-lin.iiar.pwr.edu.pl/amyload/
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&amp;tool=30
http://biongram.biotech.uni.wroc.pl/AmyloGram/
https://amylograph.com/
http://pmlabstack.pythonanywhere.com/AMYPred-FRL
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Table 1. Cont.

Program Comments and/or URL Reference

AmyPro Database of validated amyloidogenic regions in proteins. http://amypro.net/ (accessed on 1
October 2024) [101]

ArchCandy https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=32 (accessed on 1 October 2024) [102,103]

AnuPP Aggregation Nucleation Prediction in Peptides and Proteins
https://web.iitm.ac.in/bioinfo2/ANuPP/homeseq1/ (accessed on 1 October 2024) [104]

Betascan http://cb.csail.mit.edu/cb/betascan/betascan.html (accessed on 1 October 2024) [105]

Beta-serpentine http://bioinfo.montp.cnrs.fr/index.php?%20r=b-serpentine (accessed on 1 October 2024) [106]

Bydapest amyloid
predictor Works on hexapeptides. https://pitgroup.org/bap/ (accessed on 1 October 2024) [107]

Cordax https://cordax.switchlab.org/ (accessed on 1 October 2024) [108]

CPAD Curated protein aggregation database https://www.iitm.ac.in/bioinfo/CPAD/ (accessed on 1
October 2024) [109]

ENTAIL “yEt aNoTher Amyloid fIbrILs cLassifier”. Code at https://github.com/luigidibiasi/ENTAIL
(accessed on 1 October 2024) [110]

FISH Amyloid https://comprec-lin.iiar.pwr.edu.pl/ (accessed on 1 October 2024) [111]

FoldAmyloid http://bioinfo.protres.ru/fold-amyloid/ (accessed on 1 October 2024) [112]

GAP Generalised aggregation proneness https://www.iitm.ac.in/bioinfo/GAP/ (accessed on 1
October 2024) [113]

MILAMP “Multiple Instance Prediction of Amyloid Proteins”. Links to server and code are to be found at
http://faculty.pieas.edu.pk/fayyaz/software.html#MILAMP (accessed on 1 October 2024) [114]

PACT Prediction of amyloid cross-interaction by threading https://pact.e-science.pl/pact/ (accessed
on 1 October 2024) [115]

PAPA and TANGO Not clear if still available online [116]

Pasta 2.0 http://old.protein.bio.unipd.it/pasta2/ (accessed on 1 October 2024) [117]

ReRF-Pred Stated as http://106.12.83.135:8080/ReRF-Pred/ (accessed on 1 October 2024) but seemingly
inaccessible presently [118]

RFAmyloid Said to be at http://server.malab.cn/RFAmyloid/ (accessed on 1 October 2024) [119]

Tango Aggregating regions in unfolded protein chains http://tango.crg.es/. (accessed on 1 October
2024) Needs account [116]

TAPASS https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=32 (accessed on 1 October 2024) [103]

WALTZ https://waltz.switchlab.org/ (accessed on 1 October 2024) [120]

WALTZDB
Database

[86]
WALTZ-DB 2.0 [121]

ZipperDB https://zipperdb.mbi.ucla.edu/ (accessed on 1 October 2024) [122]

Figure 2A shows a prediction from AmyloGram [74] of a well-established amyloido-
genic protein in the form of the human prion protein PrPc, when a significant run of
residues towards the C-terminus has an amyloidogenicity score (referred to as a ‘probabil-
ity of self-assembly’) exceeding 0.75 (and see later). Figure 2B also shows the predictions
for the fibrinogen A/α chain, which shares some of these features. Figure 2C shows the
predictions for the fibrinogen A/α chain at AnuPP, giving a broadly similar picture.

http://amypro.net/
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=32
https://web.iitm.ac.in/bioinfo2/ANuPP/homeseq1/
http://cb.csail.mit.edu/cb/betascan/betascan.html
http://bioinfo.montp.cnrs.fr/index.php?%20r=b-serpentine
https://pitgroup.org/bap/
https://cordax.switchlab.org/
https://www.iitm.ac.in/bioinfo/CPAD/
https://github.com/luigidibiasi/ENTAIL
https://comprec-lin.iiar.pwr.edu.pl/
http://bioinfo.protres.ru/fold-amyloid/
https://www.iitm.ac.in/bioinfo/GAP/
http://faculty.pieas.edu.pk/fayyaz/software.html#MILAMP
https://pact.e-science.pl/pact/
http://old.protein.bio.unipd.it/pasta2/
http://106.12.83.135:8080/ReRF-Pred/
http://server.malab.cn/RFAmyloid/
http://tango.crg.es/
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=32
https://waltz.switchlab.org/
https://zipperdb.mbi.ucla.edu/
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Figure 2. Prediction of amyloidogenic regions of (A) human prion protein and (B) fibrinogen α chain 
on AmyloGram [74,99], and (C) fibrinogen α chain on AnuPP [104]. In the latter case, amyloidogenic 
regions are shown in green. Blue columns indicate residue numbers. 
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on AmyloGram [74,99], see later), as well as the classical amyloidoses, a very great many 
[123–125] (and possibly most [126]) proteins can exhibit amyloid formation under certain 
conditions [65,127]. Examples include insulin [128–130], lysozyme [131–139], proteins 
providing structure/texture in various processed foods and other gels [140–142], and even 
certain yeast [143–145] and bacterial [146] proteins, including some that can be ‘inherited’. 

1.5. Amyloid Structures 
Historically, establishing the structures of amyloid fibres formed even by single pro-

teins or peptides was difficult because of their insoluble nature, but this is being changed 
by techniques such as solid-state NMR (e.g., [147–151]) and nowadays, in particular, cry-
oEM (e.g., [152–157]). These make it clear that amyloidogenic stretches of proteins can be 
responsible for cross-β fibril and fibre formation. An example is given in Figure 3, repro-
duced from an open-access paper [157]. 

Figure 2. Prediction of amyloidogenic regions of (A) human prion protein and (B) fibrinogen α chain
on AmyloGram [74,99], and (C) fibrinogen α chain on AnuPP [104]. In the latter case, amyloidogenic
regions are shown in green. Blue columns indicate residue numbers.

1.4. Prevalence of Amyloidogenicity

As can be established by testing various sequences on the above servers (we fo-
cused on AmyloGram [74,99], see later), as well as the classical amyloidoses, a very great
many [123–125] (and possibly most [126]) proteins can exhibit amyloid formation under cer-
tain conditions [65,127]. Examples include insulin [128–130], lysozyme [131–139], proteins
providing structure/texture in various processed foods and other gels [140–142], and even
certain yeast [143–145] and bacterial [146] proteins, including some that can be ‘inherited’.

1.5. Amyloid Structures

Historically, establishing the structures of amyloid fibres formed even by single pro-
teins or peptides was difficult because of their insoluble nature, but this is being changed by
techniques such as solid-state NMR (e.g., [147–151]) and nowadays, in particular, cryoEM
(e.g., [152–157]). These make it clear that amyloidogenic stretches of proteins can be respon-
sible for cross-β fibril and fibre formation. An example is given in Figure 3, reproduced
from an open-access paper [157].
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Biancalana and Koide [161], “ThT binds to diverse fibrils, despite their distinct amino acid 
sequences, strongly suggesting that ThT recognizes a structural feature common among 
fibrils. Because amyloid fibrils share the cross-β architecture, it is generally accepted that 
the surfaces of cross-β structures form the ThT-binding sites”. Indeed, a number of such 
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and thus parallel to the fibrils themselves [52,147,169]. Figure 4 gives an example from an 
open-access publication [172]. 

Figure 3. Structures of amyloid fibres: Fibril formation by cross-ß elements. Reproduced from an
open-access paper [157].

1.6. Amyloid Detection with Thioflavin T and Other Stains

A continuing and historically important discovery is the fact that the dye thioflavin T
(ThT; https://pubchem.ncbi.nlm.nih.gov/compound/Thioflavin-T, accessed on 1 October
2024) binds to a whole series of amyloids, with a concomitant increase in its fluores-
cence [158]. This occurs because rotation of the normally rotatable single bond between
the benzothiazole and dimethylaniline rings allows for fluorescence from an excited state
to be dissipated and hence quenched. When the ThT is bound appropriately to a macro-
molecule, no such rotation is possible, fluorescence occurs, and thus ThT is a fluorogenic
stain for amyloids (e.g., [159–166]). Note too that in the absence of amyloid target, ThT
forms micelles with a critical micelle concentration of some 4 µM [159]. As phrased by
Biancalana and Koide [161], “ThT binds to diverse fibrils, despite their distinct amino acid
sequences, strongly suggesting that ThT recognizes a structural feature common among
fibrils. Because amyloid fibrils share the cross-β architecture, it is generally accepted that
the surfaces of cross-β structures form the ThT-binding sites”. Indeed, a number of such
crystal structures have been solved, e.g., [167], or the relevant structures determined by
other means (e.g., [168–171]), binding being seen as perpendicular to the cross-β elements
and thus parallel to the fibrils themselves [52,147,169]. Figure 4 gives an example from an
open-access publication [172].

https://pubchem.ncbi.nlm.nih.gov/compound/Thioflavin-T
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trated are of Aβ40 (A,B) and Aβ42 (C,D) fibrils [172]. 
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Figure 4. Thioflavin T (ThT) binds to amyloid fibrils by recognizing a structural feature common
among them. Amyloid fibrils share a cross-β architecture, where the β-sheets are oriented perpendic-
ular to the fibril axis. The surfaces of these cross-β structures form the binding sites for ThT, which
results in a characteristic increase in fluorescence upon binding. This property makes ThT a widely
used fluorescent stain for detecting and studying amyloid fibrils. ThT binding sites illustrated are of
Aβ40 (A,B) and Aβ42 (C,D) fibrils [172].

Note, however, that there can be quite subtle differences in the binding modes of ThT
to specific amyloids, leading to changes in fluorescence intensity [172–174]. All of this said,
and noting that ThT can in some cases bind to non-amyloid structures (e.g., [175]), ThT
certainly remains the most popular amyloidogenic dye (e.g., [21,160,161,164,165,176,177]).

This difference in the precise mode of binding of a given dye can be observed in the
studies of oligothiophene dyes (marketed as ‘Amytrackers’) by Nilsson and colleagues,
where spectral as well as intensity changes can be observed between different amyloid
structures (e.g., [178–183]).

Many other fluorogenic dyes that bind amyloid also exist, some with desirable spectral
properties. Examples include NIAD-4 [184] that has an enhanced Stokes shift [166,185–189], and
others that excite and emit towards the (near infra)red end of the spectrum (e.g., [187,190–193]).

1.7. Alternative Blood Clotting

In the same way that many proteins can adopt an amyloid form, as described above,
it was discovered [194,195] that fibrinogen can polymerise into an anomalous amyloid-
like form, that stained very strongly with thioflavin T and indeed other stains such as
Amytracker stains (see Figure 5 of confocal micrographs where ThT and Amytrackers were
exposed to plasma from healthy participants and those with type 2 diabetes [196]. The
typical size of these clots, which were termed microclots (e.g., [197–201]), is in the range
2–200 µm (e.g., [194,198,201–205]).
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Figure 5. Confocal micrographs where thioflavin T (T) and Amytrackers were used to stain plasma
from healthy participants (upper two rows) and those with type 2 diabetes (lower three rows) [196].
Stains used are as indicated.

According to AmyPro [101], the most amyloidogenic region of fibrinogen α chain
encompasses residues 148–160 (KRLEVDIDIKIRS), though Amylogram implies a second
region nearer the C-terminus is even greater (Figure 2A).

It is interesting to note that fibrinogen is itself able to interact with other small amyloids,
actually inhibiting their extension into larger fibrils [206–208], indicating that while it
is well capable of binding amyloidogenic sequences, its own amyloidogenicity is only
normally manifest during clotting itself, under the action of thrombin, though certain
amyloidogenic alleles can lead to a fibrin amyloidosis (e.g., [209–211]). Other peptides can
bind preferentially to (at least normal forms of) fibrin but not fibrinogen [212–214].
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1.8. Size of Fibres in Classical Amyloidoses and in Normal and Fibrinaloid Clotting

To assist in understanding the nature of the fibres and how they may differ between
‘normal’ and fibrinaloid microclots, it is worth rehearsing the diameter of a typical monomer
fibril of a cross-β element in a fibril. This depends, of course, on the length of the amyloido-
genic run of amino acids that forms it, but is typically 1–2 nm or so. A protofibril consisting
of 2–4 intertwined monomer fibrils may be 4–11 nm for molecules such as Aβ [215], 7 nm
for tau [216], 11 nm for the prion protein in its amyloid PrPSc form [217], 6–15 nm for
α-synuclein [218,219], and 7–13 nm for transthyretin [220].

By contrast (though cf. [99] for artificial super-amyloidogenic hexapeptides), the
diameter of individual clot fibres is roughly 100 nm for amyloid clots (e.g., [194]) and is
similar in many cases for normal ones [221], but can be as much as 400 nm or even more
for normal, non-amyloid ones [222–226]. For normal non-amyloid clots, this would require
several hundred elements, and for the amyloid version, very long runs of crossed-β features
(that run in a criss-cross manner perpendicular to the long axis of the fibre), and many,
many protofibrils intertwining around each other by lateral co-aggregation.

Normal clots are far better studied, and their diameter, for instance, depends on the
fibrinogen concentration, consistent with general chemical kinetics. However, what the
exact structures are, especially for the fibrinaloid ones, and what eventually stops them
increasing in both length and diameter indefinitely, is not yet known. The ability of normal
fibrinogen [227] and other proteins [228] to convert into a β-sheet-rich form is probably
highly relevant. These observations also depend, of course, on a variety of factors such as
the degree of hydration; initial fibrinogen [229] and thrombin [230] concentrations; levels
of small molecules [194,231], of metal, and other ions [232–235]; and so on. However, the
point of this paragraph is that these are clearly very much larger numbers for the fibre
diameters in fibrinaloid microclots than are those seen in classical amyloidoses.

1.9. Inclusion Bodies, Compared with the Growth and Aggregation of Classical Amyloid Fibrils

Inclusion body formation is a well-known feature of recombinant protein expression
(e.g., [236–243]) and is usually considered to occur due to the protein it is desired to fold
being unable to keep up with the rates of its synthesis. Inclusion body formation largely
involves a somewhat random or amorphous type of aggregation driven by interactions
between hydrophobic residues of proteins that have failed to fold properly, even if they may
sometimes contain or induce amyloid-like structures [127,244–250]. They mostly consist of
the same polypeptide (so are sometimes considered a useful means of recombinant protein
purification) but can certainly entrap other proteins via non-covalent interactions [248,251].

This contrasts with the type of ordered self-organisation seen in amyloid fibrils where
multiple copies of the same protein also come together but into much more regular or
structured shapes (e.g., [61,76,77,252–257]). The hallmark is one of various parallel or
antiparallel cross-β sheet motifs [46,258–261] that run perpendicular to the fibril axis.
They provide for a very characteristic X-ray diffraction peak reflecting a spacing of some
4.7 Å [262–264].

A given protein can even adopt various amyloid forms, known here as polymor-
phisms (e.g., [52,265–278]). The same is true of prions (e.g., [279–283]), arguably the most
‘extreme’ forms of amyloid(ogenic) proteins, and indeed the coinage of the term ‘prionoid’
(e.g., [284–289]) reflects this kind of overlap or continuum. In one sense [21], it is obvious
that there must be parallels between the kinds of fibril formation that are seen in classical
amyloidogenesis (commonly in the range 2–25 nm diameter [255,290–293]) and that seen
in both normal and pathological blood clotting (although those fibrils are commonly at
least 10x larger in diameter [198], see above), since in both cases fibrils are an observable
result. Lengths of fibrils in classical amyloidoses can be 1 µm or so [294]. Consequently, in
this section, we review what is known of amyloid fibril formation in the classical amyloi-
doses [255].
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1.10. General Phases of Amyloid Fibril Formation

Extensive kinetic and imaging studies in vitro (e.g., [65,255,295–303]), often using ThT,
have recognised several stages of amyloid fibre formation [263], starting with a lag [166,304]
or nucleation phase creating oligomers (the most cytotoxic forms [305,306]); then an elon-
gation phase in which protofibrils then fibrils are formed, the latter via protofibrils twisting
round each other; and ending with a stationary phase in which fibril and plaque formation
is complete (or, more accurately, any elongation and fragmentation or inhibition are occur-
ing at the same rates [255,298,307,308]). Such sigmoidal curves are very similar to those
of the batch growth of microbes [309]. It is the fibrils in which the cross-β structures are
manifest, implying a structural transition whose detailed mechanism is far from clear.

1.11. Protein Entrapment in Microclots; Cross-Seeding

Our own work on the proteomics of fibrinaloid microclots has referred to ‘entrapment’
of non-fibrin proteins in the microclots. However, this cannot be a simple entrapment like a
fish in a in a mesh net; the pores are far too big and in any case the centrifugation would
have washed soluble proteins away from any weak binding or entrapment. Consequently,
the ‘entrapment’ must actually be a forcing of the other proteins to become insoluble, likely
by making cross-β sheets and thus joining the tightly-bound-but-noncovalent party and be
incorporated into the growing amyloid fibrils. In the terminology of Bondarev and colleagues
(Figure 6) and see below), these could be either or both of axial and lateral co-aggregation.
Evidence for this includes the fact that there is no relationship between what is ‘entrapped’ in
the fibrinaloid microclots and the normal plasma abundance of proteins (e.g., albumins and
transferrin are pretty well the most abundant and mostly do not appear). Specifically, i there
is an amyloidogenic transition such that different proteins line up to make the amyloids (axial
co-aggregation in Figure 6), only those proteins capable of doing this will be entrapped, and
others will be excluded. In some cases, anti-proteolytic substances such as antiplasmin [310]
and α1 antitrypsin (SERPINA1) [205] may also be present in some abundance.

In a similar vein, many proteins besides α-synuclein are found in the Lewy bodies
that can occur in dementia [311,312], while there is considerable experimental evidence for
the co-incorporation of different amyloidogenic proteins into the same fibrils [87,313–315].
The same is true in transthyretin amyloidosis [316]. This is sometimes referred to as ‘cross-
talk’ or ‘cross-feeding’, heterotypic interaction [317,318], and—perhaps most commonly—
‘cross-seeding’ [79,172,319–358]. Note that even simple polyQ features (occurring as C-
terminal ‘tails’ in various diseases) can do this [331,359–363], possibly also by incorporating
transition metals [364]. Equally importantly, not all amyloids (‘donors’) can cross-seed
other ones [142] (‘acceptors’) and hence be entrapped in the fibrils of the acceptors; there is
significant selectivity, whose sequence/structural basis remains unknown.

The occurrence of multiple amyloid proteins within the same fibril is reviewed by
Bondarev and colleagues [98,365], who refer to it as axial co-aggregation (Figure 6). The
server AmyloComp [98] (Table 1) also predicts the likelihood of proteins forming axial
co-aggregates; that for SERPINA1 and the fibrinogen alpha chain is especially high (un-
published). As phrased by them [98], “The core of these amyloid fibrils is a columnar
structure [79,172,319–358] produced by axial stacking of β-strand-loop-β-strand motifs
called ‘β-arches’ [366–370]”. Well-established examples include RIP1/RIP3, which can
induce necroptosis [371], and the HET-s protein, which also contains the Rip homotopic
interaction motif (RHIM) [372]. Clearly, any protein capable of forming these β-arches can
then do so, so as to make a hetero-fibril, which is what we suggest is the main means of ‘en-
trapment’ of other proteins in fibrinaloid microclots (provided the amyloidogenic regions are
of sufficient length [373]). The idea we develop here, with considerable evidence, is that while
normal clotting plausibly binds proteins by titration and sequestration in the terminology
of [98,365] (Figure 6), the amyloid-containing fibrinaloid microclots involve axial and lateral
co-aggregation. That fibrinogen can interact with a variety of known amyloidogenic proteins
is beyond dispute [374,375]; causing them thereby to create new epitopes can even account
for autoantibody generation [22]. A preprint has been lodged in bioRxiv [376].
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2. Results
2.1. Absence of Relationship between Microclot Proteome and Plasma Concentration

At least two lines of evidence indicate the lack of relationship between the amount
of a protein in plasma and its appearance in fibrinaloid microclots. First, the only overlap
between the proteomic data of Kruger and colleagues [377] (who did not report on fibrino-
gen) and those of Schofield et al. [205] was the protein apolipoprotein A2 (marked in blue
in Figure 7). The data were taken from two quite different diseases (acute sepsis [205] vs.
long COVID [377]), with ‘normal’ proteome levels spanning several orders of magnitude,
and so while the content of these proteins in the average proteomes will not have differed
by more than a factor of two at most, their appearance in the microclots differed massively.
Secondly, we extracted the ‘top 20’ data from the pie chart representing the average of
three individuals in Figure 3 of [205] and related those (where available) to the average
plasma protein concentration [378], indicating that there was no such relation (r2 = 0.1 for
the data in Figure 7). We also assessed some of the most abundant plasma proteins as
tabulated in [379] for their presence or otherwise in the microclots in either study [205,377]
(Figure 8); it is obvious that many of the most abundant proteins are not notably entrapped
in the microclots, so those that are clearly selected, presumably by integration into the
amyloid mixtures. (The data underpinning all these analyses are given in a spreadsheet in
Supplementary Materials.)
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Figure 7. Prevalence of proteins (y-axis) in fibrinaloid microclots in the Schofield ‘top 20’ (green)
and the one example also seen in the Kruger study (blue) versus average plasma concentrations
that are taken from [378] except for TGFB1 [380] and periostin [381]. Abbreviations as in the list of
abbreviations. The line of ‘best fit’ is not shown as it has a correlation coefficient r2 of only 0.1.
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A chief source of protein abundances in plasma is [378]. In addition, we used other
sources for high-abundance and other detected proteins including C9 [382,383], com-
plement factor H [384], thyroxine-binding globulin [385], retinol-binding protein [386],
TGFβ1 [380], periostin [381], CXCL7 (PFA4) [387], (pre)kallikrein [388], galectin-3-binding
protein (LG3BP) [389], thrombospondin-1 [390], and ITIH1/2 [391]. LG3BP is of interest,
as it is substantially lowered in the plasma of those with mild cognitive impairment or
Alzheimer’s [392], arguably because it has been removed in amyloid microclots. Similarly,
thrombospondin-1 also interacts with Aβ [393]. Reference [391] is very valuable in its
own right, since while its coverage lacks some of the low-abundance proteins of interest
here, it does list quantitative values for 197 plasma proteins; where both are available, the
concentrations are well correlated (Figure 9) (slope = 1.06, r2 = 0.87), taking as the values
for the Heck study [391] the averages of six data points for the controls of two patients at
the first three time points. Consequently, we use the Heck dataset in most of what follows.
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Figure 9. Relationship between the standard plasma proteome concentrations (taken from [391]) and
their detection in the Kruger (K), Schofield (S), both (B) studies, or neither (N). Size of symbol encodes
protein length in residues. Abbreviations as in list of abbreviations. (A) protein concentrations from
other studies delineated in the text and the supplementary spreadsheet. (B) Proteins from the study
of Heck and colleagues [391].

Using both sets of plasma proteome data (since some important markers do not appear
in both), we again see large number of proteins that are high in abundance in the plasma
proteome that nevertheless are not ‘entrapped’ in the fibrinaloid microclots, and similarly
others in low abundance in the proteome nonetheless appear in the fibrinaloid microclots.
The conclusion is very clear: there is a significant selectivity with regard to proteins that are
entrapped within fibrinaloid microclots. We note too that atomic force microscopy [394]
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has provided evidence for both axial [395] and lateral [396] co-aggregation, and that cross-
seeding can also explain the comorbidities seen with protein misfolding diseases [397].

What is not always clear is whether these heterotypic interactions tend to promote or to
inhibit amyloidogenesis (or even both at different stages, as can occur with the curli protein
CsgA and fibrinogen [398]; the same is true for fibrinogen and phenol-soluble modulins [399]).

SERPINA1 (α1 antitrypsin), as found by Schofield et al. [205] as a major constituent
of microclots, contains four β-sheets and is also able to interact with the amyloidogenic
transthyretin [400–402].

Some amyloidogenic proteins, such as apolipoprotein B-100, which contains a massive
crossed-β (‘β-belt’) structure [403], were not detected; however, this is plausible because
they were fully embedded within lipoproteins and thus not in plasma. (They are, however,
capable of becoming embedded in neurofibrillary tangles [404].)

2.2. Amyloidogenicity of Proteins ‘Entrapped’ in Microclots

If axial or lateral co-aggregation is responsible for the ‘entrapment’ of proteins in
fibrinaloid microclots, one would suppose that all the proteins involved would themselves
be amyloidogenic. This can be tested using amyloidogenicity prediction programs of the type
given in Table X. We chose AmyloGram [74], available at http://biongram.biotech.uni.wroc.
pl/AmyloGram/ (accessed on 1 October 2024). For the proteins entrapped within microclots,
we took the proteomics data from Table 2 from the long COVID study of Kruger and colleagues
(who did not report on fibrinogen) and the Table 3 of the study of microclots in intensive
care patients of Toh and colleagues [205]. The conclusion is very clear: every single one of
the proteins detected in the microclots is highly amyloidogenic, and the microclots evidently
involve cross-seeding. However, there was little correlation between amyloidogenicity and
protein length (Figure 10) (r2 = 0.275). However, all but three of the Kruger proteins and all
but four of the Schofield ‘top 20’ had an amyloidogenicity score exceeding 0.8 (Figure 10).
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However, there was no correlation with the overall amyloidogenicity as calculated
using AmyloGram and either the plasma proteome abundance or whether the proteins
were in the fibrinaloid microclots (Figure 11) (r2 = 0.02):
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first three time points averaged over two controls).

The presence of von Willebrand factor and adiponectin in the fibrinaloid microclots is
very interesting, despite their comparatively low plasma concentrations (Figure 11). The
former is among the most amyloidogenic proteins in the list (Figure 11) and is notably
entrapped and removed by microclots in SARS-CoV-2 infection [405], while the latter
is correlated with amyloid Aβ deposition [406] and may be protective [407]. LPLC1
(Figure 10, so low in concentration it does not appear in Figure 11; the human protein atlas
https://www.proteinatlas.org/ENSG00000125999-BPIFB1/blood+protein (accessed on
1 October 2024 ) estimates its plasma concentration by mass spectrometry to be 2.7 µg/L)
is also of interest. LPLC1 stands for “Long palate, lung and nasal epithelium carcinoma-
associated protein 1” or also “BPI fold-containing family B member 1” (BNIB1), and to
be clear, it is Uniprot Q8TDL5; again, it has a very high amyloidogenicity (~0.91). Finally,
thrombospondin-1 is also very over-represented, and it too was neuroprotective against
Aβ [393,408,409]. A clear pattern emerges.

The precise nature and extent of the amyloidogenicity necessary to induce or be
entrapped in fibrinaloid microclots is as yet unclear, but inspection of the detailed data
from the analyses at AmyloGram (unpublished) showed that each of the proteins involved
possessed a segment of amyloidogenicity (referred to on its website and in the subset of
figures displayed here as a ‘probability of self-assembly’) that exceed 0.75 in the data that
could be acquired at the AmyloGram website. Figures 12–15 show four examples of results
from such an analysis at the Amylogram website: the first (Figure 12) is α-2-antiplasmin

https://www.proteinatlas.org/ENSG00000125999-BPIFB1/blood+protein
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(prominent in the findings of [310]), where there is an initial run plus two further prominent
peaks. α-2-antiplasmin is of course well known as an inhibitor of fibrinolysis [410].
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site given in Supplementary Table S1 and run on the Amylogram website http://biongram.biotech.
uni.wroc.pl/AmyloGram/ (accessed on 1 October 2024) with the results as indicated.

The next (Figure 13) is SERPINA1 (α1-antitrypsin), where there is a long run at the be-
ginning just exceeding 0.75. SERPINA1 is the most abundant anti-protease in plasma (see
also Figure 11) and has several parallel–antiparallel β-sheets in its ground-state conforma-
tion [411–415], which, interestingly, is metastable [416–418]. It can also interact with amyloido-
genic transthyretin [401] and is associated with the severity and progression of SARS-CoV-2 [419],
consistent with its role in assisting fibrinaloid microclot formation. It is thus entirely plausible
that it could participate in amyloid formation, and fragments of it certainly do [420,421].
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The third is the inflammatory marker periostin, representing 1.17% of the ‘top 20’
proteins in Schofield et al. [205], and containing no fewer than eight regions of amyloido-
genicity with a score exceeding 0.75. It features in these fibrinaloid microclots despite being
one of the least abundant plasma proteins of those under consideration (372 ng/mL accord-
ing to [381], 98 ng/mL in [422] and just 10 ng/mL according to [423,424]) (209 ng/mL is
stated for serum [425]). Notably, however, as well as being among the most amyloidogenic
of those surveyed (Figure 10), it is highly predictive of Aβ deposition [392,426] and is also
involved in lung fibrosis [427,428].
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Finally, the fourth is LPLC1 (also known as BPIB1 or BPIFB1). This protein has a very
high amyloidogenic propensity of 0.9176, Figure 10) and no fewer than eight regions in
which the amyloidogenicity score exceeds 0.75 (Figure 15), despite a minuscule concen-
tration in normal plasma. Interestingly, it is involved in innate immunity [429], especially
in mucosa [430], and bears similarities to lipopolysaccharide-binding protein (LPS being
a molecule that can trigger fibrinaloid formation [194,195,431]). BPIB1 can also inhibit
Epstein–Barr virus proliferation [432–434] (something of major potential relevance in long
COVID [435–437]). Overall, the fact that it is so concentrated in fibrinaloid microclots in
the case of long COVID is thus very notable.

2.3. Comparison with the Normal Clot Proteome

Undas and colleagues [438] provided (their Table 2) a quantitative list of protein-bound
proteins in normal clots (that were presumably non-amyloid, though that was not in fact
tested). Figure 16 compares the prevalence of proteins in their clots with that of plasma
proteins, showing a reasonable correlation (slope = 0.67, r2 = 0.29) between the two. This
contrasts with that for the fibrinaloid microclot proteome (Figure 7), where the value for r2

was just 0.1.
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Figure 17 shows those that were also assessed in the Kruger and Schofield studies,
along with their amyloidogenicity. There is no correlation whatsoever (r2 ~0.02), again
showing how very different the composition of fibrinaloid microclots is from that of
normal clots.
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A particularly noteworthy observation here (Figure 17) is the relatively high amounts
of fibronectin seen in normal clots (130 mg/g protein [438], fibronectin typically being
present in plasma at 300–400 mg/L [439–441]), as it was not seen in the fibrinaloid micro-
clots. While fibrin is highly amyloidogenic (Figures 10 and 17) and in vivo can produce in-
soluble fibrillar components that may be incorporated in the extracellular matrix [442–444],
fibronectin is somewhat unusual for two reasons: first, it is large (2477 residues). Secondly,
it is relatively thermostable [445], especially in some of its domains [446]. Together, these
features can plausibly account for the difficulty of unfolding and incorporating it into an
amyloid clot compared to a normal one (see also the next paragraph for amyloidogenicity
vs thermostability). Similar comments relate to α-2-macroglobulin (27 mg/g, 1474 residues,
Figure 17) and to Factor XIII (12 mg/g, 732 residues), which is in fact inhibited by α-2-
macroglobulin. Factor XIII is a transglutaminase (linking glutamate and lysine residues)
that is responsible for stiffening normal clots by crosslinking them [447–449]—mainly via
the γ but also partly the α chains [450]—yet does not appear in the fibrinaloid microclot
proteomes. This would be entirely consistent with their completely different structures
relative to that of normal clots. Lastly, complement factor 3 is fairly well represented in both
plasma (Figure 16; 778 mg/L in the Heck study) and in normal clots (Figure 17; 12 mg/g)
yet is not found in fibrinaloid microclots; consistent with the thrust of our arguments,
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its total amyloidogenic propensity at just 0.73 is among the lowest of those evinced in
this study.

2.4. Amyloidogenicity vs. Thermostability

As noted, amyloidogenesis of a non-amyloid form of a protein necessarily requires a
significant unfolding [76–80], and in general terms, the resistance to a protein unfolding is
reflected in its thermostability. The point about the experimental lack of amyloidogenicity
in a thermostable protein thus leads to the question of whether experimental amyloidogenic
proteins are in fact normally relatively non-thermostable in their non-amyloid forms. This
turns out to be strongly supported by substantial evidence [252,261,451–457].

3. Discussion

An important question about amyloid(ogenic) protein fibres in general, and fibrinaloid
microclots (our main focus) in particular, is the nature and location of the proteins that
they contain. A variety of studies have provided data on both normal clots and fibrinaloid
microclots, as well as the normal plasma proteome. With occasional exceptions (such as
C-reactive protein—not involved here) their concentrations are fairly constant, and since
(i) they cover four orders of magnitude in the proteins considered here, and (ii) they were
well correlated in two studies (Figure 8), we consider their standard concentrations to be
a good guide as to the likelihood of non-fibrinogen proteins being entrapped in a clot if
entrapment simply reflects their plasma concentrations. In normal clots, that expectation is
broadly borne out (Figure 15). However, this is far from being the case with the fibrinaloid
microclots that form in certain diseases, stain strongly with thioflavin T, and are far more
resistant than are normal clots to fibrinolysis (Figure 18). Seemingly, as with prion proteins,
the presence of a small amount of the thermodynamically stabler amyloid form is enough
to trigger conversion of a very large number of monomers in the amyloid polymer form in
almost an ‘all-or-nothing’ manner (Figure 19).

First, their proteome varies strongly with the disease (Figure 7), in a way that cannot
reflect changes in the bulk plasma proteome. Secondly, their proteome constitution is far
from being related to the concentrations of bulk plasma proteins, with some being excluded
and others being highly concentrated (Figure 9, Figure 10, Figure 11, and Figure 16; twelve
are summarised for convenience in Table 2). Clearly, there must be special mechanisms
at work, the most obvious, given their strikingly high amyloidogenicity scores, being
a cross-seeding where the various proteins are actually incorporated into the cross-β
elements of the fibrils themselves. This said, there is a consonance in Table 2 between the
proteins highlighted as being in fibrinaloid microclots and biological explanations based
on their known roles. Most of those that are higher are in the Kruger [377] long COVID
study (Table 2). Long COVID is of course a chronic disease, and very different from the
acute conditions characterising individual in an ICU such as those in the Toh study [205].
Long COVID exhibits similarities with myalgic encephalopathy/chronic fatigue syndrome
(ME/CFS), however [435,458–464], so it is of interest that thrombospondin and platelet
factor 4 are both raised in the plasma of individuals with ME/CFS [463].
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Table 2. Twelve proteins whose levels differ greatly between fibrinaloid microclots and normal blood
clots as seen in proteomics studies (data from Figures 9–11, 16 and 17). Those higher are coded as
being from the Kruger (K) [377] or Schofield (S) [205] studies.

Protein (Which Study, When Higher) Higher or Lower in Fibrinaloid Microclots
wrt both Normal Clots and Normal Plasma

Adiponectin (K) Higher

α-2-macroglobulin Lower

Complement factor 3 Lower

Extracellular matrix protein 1 Lower

Factor XIII Lower

Fibronectin Lower

Kallikrein (K) Higher
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Table 2. Cont.

Protein (Which Study, When Higher) Higher or Lower in Fibrinaloid Microclots
wrt both Normal Clots and Normal Plasma

LBLC1/BNIB1/BNIFB1/LPLUNC1 (K) Higher

Platelet factor 4 (K) Higher

Periostin (S) Higher

Thrombospondin-1 (K) Higher

von Willebrand factor (K) Higher
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Figure 19. Individual fibrinogen molecules upon polymerisation either polymerise into a normal clot
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which are not (Taken from [465]). Created with Biorender.com.

Clot Fibrinaloids vs. Classical Amyloid Fibrils

Much is known about classical amyloids, and plausibly this knowledge will contribute
to our emerging understanding of fibrinaloids, but there is one crucial difference, and that
is the size of the fibres. A typical oligomer made up of a standard cross-β amyloid chain
crisscrossing in a direction perpendicular to the fibril direction has a diameter in the range
2 to 5 nm [466], and these can aggregate to make protofibrils in the range 4–11 nm diame-
ter [467]. The amyloid fibrils themselves typically involve a few intertwined protofibrils per
unit length [276], and thus have a diameter of the order of 6 to 12 nm [468–470], although
in principle they could become larger [276]. This means that generally most fibrils consist
of only a few intertwined protofibrils per unit length. By contrast, the fibrils observed in
fibrinaloid microclots in plasma samples have a diameter that is often in the range 50 to
100 nm. This means that they must contain many more lateral fibres per unit length, likely
of the order of 100–300. This ability to increase numbers laterally obviously bears strongly
on the potential ability of microclots to aggregate further to become macroclots, and maybe
ultimately to lead to the kinds of occlusions involved in stroke and myocardial infarctions.

It has been suggested [471,472] that at least some types of classical amyloidoses
have a ‘proteome signature’ that would include serum amyloid P-component (SAP) and
heparan sulphate proteoglycans (HSPG), as well as apolipoprotein A4, apolipoprotein
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E, and vitronectin (see also [62,473–476]), consistent with some kind of cross-seeding;
interestingly, none of these was reported in either the Schofield or Kruger studies, though
the latter three proteins were easily observed in normal clots (Figure 17). This adds
to the evidence that while amyloid in character, the proteomic contents of fibrinaloid
microclots are different in many other ways (besides diameter) from the amyloid fibrils in
classical amyloidoses.

Another particular feature of the fibrinaloid microclots is their resistance to fibrinolysis
(see [21,22,198,310,477,478]), most easily seen in our proteome studies, where a double
trypsin digestion was required for successful peptide-based mass spectrometric proteome
analysis [310,377]. The presence of molecules such as α-2-antiplasmin [310] and SERPINA1
will certainly have contributed, but it is of course well known that amyloid forms of
protein are far more resistant to proteolysis than their native unfolded or globular versions,
especially among prion proteins where PrPSc is even resistant to proteolysis by proteinase
K (e.g., [479–483]).

Some molecules such as bacterial cell wall compounds can clearly serve as trig-
gers for amyloidogenesis in both fibrinaloid microclots [194–196,431,484–488] and other
cases [489–491]. What we propose here is that the massive changes in fibrinogen structure
necessary for its conversion to an amyloid form, as also observed by others [204,205,492],
must then involve cross-seeding, as this provides a simple mechanism that at once accounts
for (i) the proteomics, (ii) the resistance to proteolysis, and (iii) the amyloid nature of the
mixed clots. At the same time, we recognise that while our analysis is both clear and robust,
future studies would benefit from comparing the proteomes of fibrinaloid and normal clots
at the same time on the same instrument.

Overall, however, while the present findings make it clear that cross-seeded proteins
must be involved in fibrinaloid formation, we are far from knowing their specific locations
and whether and how they co-aggregate axially and/or laterally (as per Figure 6). Such
studies would require the resolution of an atomic force microscope (e.g., [226,394,493,494]),
which, on the basis of the present findings, it now seems worthwhile to pursue.

4. Materials and Methods

Data were downloaded from the sources indicated and were not otherwise trans-
formed save to average the first three timepoints and two individuals representing the
controls in [391]. The values from Figure 3 of Schofield et al. [205] were determined digitally
from the averaged pie chart therein. An Excel file provided as Supplementary Information
summarises the data, that are commonly displayed in this paper using the Spotfire program
(https://www.spotfire.com/ (accessed on 1 October 2024), version 12.0). Other methods
run on websites for analysing the proteomic datasets for amyloidogenicity were as follows:
Amylogram was run on its website http://biongram.biotech.uni.wroc.pl/AmyloGram/
(accessed on 1 October 2024) using the FASTA sequences of the relevant proteins obtained
from Uniprot (addresses as set down in the Supplementary data). Fibrinogen α was also
run on the AnuPP website https://web.iitm.ac.in/bioinfo2/ANuPP/homeseq1/ (accessed
on 1 October 2024).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms251910809/s1.
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