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Abstract 

Methylation quantitative trait loci (meQTLs) quantify the effects of genetic variants 
on DNA methylation levels. However, most published studies utilize bulk methylation 
datasets composed of different cell types and limit our understanding of cell-type-spe-
cific methylation regulation. We propose a hierarchical Bayesian interaction (HBI) model 
to infer cell-type-specific meQTLs, which integrates a large-scale bulk methylation data 
and a small-scale cell-type-specific methylation data. Through simulations, we show 
that HBI enhances the estimation of cell-type-specific meQTLs. In real data analyses, we 
demonstrate that HBI can further improve the functional annotation of genetic variants 
and identify biologically relevant cell types for complex traits.
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Background
DNA methylation (DNAm) is one of the most widely studied epigenetic modifications that 
capture the cumulative effects of environmental and genetic factors. DNAm regulates cel-
lular differentiation and gene expression and plays a key role in human development and 
disease etiology [1, 2]. Single-nucleotide polymorphisms (SNPs) associated with DNAm 
levels are known as methylation quantitative trait loci (meQTLs) [3–6], which capture and 
represent the complex interplay between the genome and methylome.

To reveal cellular mechanisms for DNAm patterns and their link to complex traits, 
it is important to study cell-type-specific (CTS) genetic effects on DNAm (CTS-
meQTL). For example, SNP rs174548, which is mapped on FADS1, a key enzyme in the 
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metabolism of fatty acids, is associated with asthma [1]. At the same time, its effect on 
methylation at cg21709803 is the strongest in CD8+ T-cells. These results suggest a pos-
sible effect of rs174548 on asthma via immune dysregulation and fatty acid metabolism 
through methylation in CD8+ T-cells [1]. However, most meQTL studies to date have 
used bulk samples composed of distinct cell types [7–9]. MeQTLs identified from bulk 
DNAm samples reflect the aggregated genetic effects across all cell types, which provide 
no insights for genetic regulations in individual cell types. This approach is especially 
problematic for rare or less abundant cell types. The high cost and technical limitations 
for both cell sorting and single-cell DNAm approaches hinder the collection of large-
scale, CTS methylation profiles, and limit our ability to move meQTL studies from the 
“bulk level” to the “cell type level.”

Given the difficulty in generating large-scale CTS methylome data to directly estimate 
CTS effects and the broad availability of many bulk methylation datasets, several statisti-
cal methods have been developed to infer CTS meQTLs from bulk data. These methods 
can be classified into two categories. Methods in the first category estimate sample-level 
CTS DNAm profiles from bulk data in the first step, and then test the associations with 
outcomes of interest using the deconvoluted data for each cell type. Tensor Composi-
tion Analysis (TCA), a frequentist approach in this category, was originally designed to 
identify CTS differentially methylated CpG sites in epigenome-wide association stud-
ies of phenotypes (CTS-EWAS) [10]. There is also a similar algorithm designed for gene 
expression data [11], named Bayesian MIND (bMIND), which further incorporates 
information from single-cell RNA sequencing (scRNA-seq) data as a prior to refine 
the estimation of CTS expression for each bulk sample. bMIND innovatively integrates 
large-scale bulk data and small-scale CTS expression data from scRNA-seq to estimate 
CTS expression for large-scale bulk samples. In contrast, methods in the second cate-
gory are based on an interaction model to test the interaction between cell type fractions 
and variables of interest without deconvolution. Examples include CellDMC [12], which 
focuses on the interaction between cell type fractions and phenotypes (CTS-EWAS). 
Westra et al. also proposed an interaction model to estimate CTS expression quantita-
tive trait loci (CTS-eQTL) [13].

Here we introduce a hierarchical Bayesian interaction model (HBI) to infer CTS 
meQTLs from bulk methylation data. Our model allows the incorporation of cell-type-
specific DNAm data from a relatively small number of samples to improve the perfor-
mance of HBI. Compared with bMIND, which utilizes Bayesian techniques to infer the 
posterior mean of sample-level CTS expression (or as easily for methylation), the goal 
of HBI is instead to infer the posterior mean of CTS genetic effects by placing sparse 
hierarchical priors on regression coefficients for the interaction terms. In our model, we 
employ hierarchical double-exponential priors to induce different shrinkage for differ-
ent variables, which corresponds to the Bayesian adaptive lasso [14]. If cell-type-specific 
data are available for a small number of samples (e.g., 5–10% of the sample size in bulk 
data), the algorithm can incorporate this information to further refine the estimates for 
CTS genetic effects in the larger-scale bulk samples. In our case, cell-sorted Methyla-
tion Capture sequencing data (MC-seq) is used to derive CTS DNAm and since it offers 
the unique advantage of directly measuring CTS methylomes, incorporating strong and 
robust signals from the MC-seq data will improve the estimation of CTS-meQTLs.
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We show in simulations that HBI improves the estimation of CTS genetic effects when 
compared to other state-of-the-art methods [10–12]. We apply our method to identify cis 
CTS-meQTL using data from samples in the Women’s Interagency HIV Study (WIHS) 
(nbulk = 431, nCTS = 47), now the MACS/WIHS Combined Cohort Study (MWCCS) [15]. 
To demonstrate the utility of our method, we use an independent meQTL dataset derived 
from CTS methylation data [1] to evaluate the replication of HBI-identified signals. Finally, 
we perform downstream analyses to improve the annotation of functional genetic variants 
and to reveal the cellular specificity of complex traits.

Results
Estimation of CTS‑meQTLs using HBI

A linear regression framework including interaction terms between genotype/phenotype 
and estimated cell type fractions has been applied to identify CTS-QTL or CTS- differen-
tially methylated CpGs [12, 13]. Here, based on this idea, we propose HBI to incorporate 
prior information from CTS DNAm data and to improve the estimation of CTS-meQTLs 
(Fig. 1). We place hierarchical double-exponential priors on regression coefficients for the 
interaction terms:

βk |τ
2
k ∼ N (µk , τ

2
k ),

Fig. 1  Overview of the hierarchical Bayesian interaction model (HBI) to infer cell type-specific (CTS) 
meQTLs. With bulk methylation data and cell type proportions (we present an example of three cell types: 
CT1, CT2, CT3), HBI employs an interaction model with sparse hierarchical priors placed on the regression 
coefficients for the interaction terms. If the CTS DNA methylation data (in our case, generated by methylation 
capture-sequencing using cells sorted from PBMC using flow cytometry) are available for a small group of 
samples, HBI will further incorporate the information into priors to refine the estimates for CTS genetic effects 
in the larger-scale bulk samples
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where βk is the regression coefficient on the interaction term between genotype and cell 
type proportion for the k th cell type. Marginalizing over τ 2k  , βk conditional on sk follows a 
double-exponential distribution:

where parameter sk controls the degree of shrinkage. If sk is a fixed value for 
k = 1,2, . . . ,K  , each variable will be shrunk to the same degree. Here we model sk as a 
hyperparameter to allow for variable-specific penalty:

where a and bk are chosen based on empirical experiments (Methods).
In the case where only bulk data are available, we set µk = 0 for k = 1,2, . . . ,K  and the 

model would be similar to the adaptive Lasso approach [14, 16]: the regression coefficients 
for interaction terms are shrunk to 0 and the degree of shrinkage differs for different vari-
ables. Such shrinkage helps to take the sparsity of genetic effects into consideration. When 
the CTS methylomes are available for a small number of samples, we can first get a rough 
estimate of the genetic effect in the k th cell type βk ,seq using the small set. Then instead of 
setting µk = 0 and shrinking the coefficient to zero, we can shrink it to a more meaningful 
value by updating the prior mean µk : 

where µk is a weighted sum between β̂k ,seq (observed results from CTS methylomes) and 
zero (prior beliefs), while weight = 1− padjust and padjust is the p-value adjusted using the 
Bonferroni correction (Methods). Similar to other studies that propose weights based on 
posterior probabilities [17], the weights in our model are assigned based on p-values as 
p-value is a probability measuring the evidence against the null hypothesis ( βk ,seq = 0 ) [18] 
and can reflect the stability of the estimator β̂k ,seq . Intuitively, a small p-value closer to zero 
indicates β̂k ,seq estimated using the CTS DNAm data is relatively strong. In this case, we 
shrink the coefficient more towards µk = β̂k ,seq . In contrast, a large p-value closer to one 
indicates β̂k ,seq is not significantly different from zero, and thus we shrink it more towards 
µk = 0.

Along with updating prior means, we can also update prior variances:
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,

βk |sk ∼ DE(µk , 1/sk),

sk ∼ Gamma(a, bk),
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where ρjk can be updated as the genetic correlation between cell type k methylation 
and cell type j methylation, which can also be estimated from the CTS methylomes pro-
vided. The prior variance without CTS data can be seen as a special case with all ρjk = 0 . 
Of note, as the detection of genetic effects is always much harder in less abundant cell 
types, the incorporation of the estimated genetic correlation aims to improve the power 
in the less abundant cell types by borrowing information from the more abundant cell 
types.

More details of our model are summarized in “Methods”. We note the following key 
features for HBI: (1) because only a few SNPs among hundreds of SNPs surrounding a 
CpG may have detectable effects, placing a sharp prior centered at 0 helps to take the 
sparsity of genetic effects into consideration; (2) local shrinkage parameters sk and τ 2k  
make the algorithm more flexible: the degree of shrinkage could differ among variables; 
and (3) priors could be updated to incorporate information from CTS DNAm data, if 
they are available for a small group of samples.

HBI improves performance in simulations

We evaluated the performance of HBI in estimating CTS-meQTLs through extensive 
simulations. We considered three scenarios: (1) there are genetic effects only in the 
major/most abundant cell type; (2) there are genetic effects only in the minor/least abun-
dant cell type; and (3) there are correlated genetic effects in all cell types. We compared 
HBI to other state-of-the-art methods: bMIND, TCA, and the basic interaction model 
fitted by ordinary least squares (OLS) (Methods). In each scenario, we assessed the cor-
relation between the estimated and true effect sizes, mean squared error (MSE) between 
the estimated and true effect sizes, power, and false discovery rate (FDR) as a function of 
the proportion of causal SNPs.

HBI improved the point estimation of CTS-meQTLs by achieving higher cor-
relation and lower MSE (Fig. 2). For example, in scenario 1 when the proportion of 
causal SNPs fixed at 10%, the median of correlation across 10 simulations was 0.72 
for bMIND with only bulk data (denoted as “bMIND”), 0.71 for bMIND with CTS 
data incorporated (denoted as “bMIND_CTS-prior”), 0.68 for TCA, 0.77 for basic 
interaction model, 0.94 for HBI with only bulk data (denoted as “HBI”), and 0.94 for 
HBI with CTS data incorporated (denoted as “HBI_CTS-prior”). Across all scenarios, 
HBI generally achieved higher power compared with other methods. We note that in 
scenario 1, when genetic effects only occur in the most abundant cell type, further 
incorporating CTS DNAm data to update priors had comparable power to the case 
without incorporating CTS DNAm data. For example, in scenario 1 when the propor-
tion of causal SNPs fixed at 10%, the median of power across 10 simulations was both 
0.65 for HBI with only bulk data (denoted as “HBI”) and HBI with CTS data incor-
porated (denoted as “HBI_CTS-prior”). In contrast, in scenarios 2 and 3, when there 
were genetic effects in the minor/least abundant cell type, incorporating information 
from CTS DNAm data helped to improve the power. For example, in scenario 2 when 
the proportion of causal SNPs fixed at 10%, the median of power across 10 simula-
tions was 0.15 for HBI with only bulk data (denoted as “HBI”), and 0.24 for HBI with 
CTS data incorporated (denoted as “HBI_CTS-prior”). In each scenario, we varied 
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the proportion of causal SNPs from 10 to 20% to 40%, to compare the performance 
of these methods when the genetic effects became more polygenic. As expected, the 
power for all methods decreased as the proportion of causal SNPs increased. When 
the overall genetic effect (heritability) was fixed and diluted on a larger number of 
SNPs, it generally became harder to detect signals. We also note that the performance 
for bMIND and TCA was a result of fitting conditional models (Methods). In the case 
of fitting marginal models for bMIND and TCA, we observed inflated FDR, especially 
in scenarios 1 and 2 when there were genetic effects only in one single cell type (Addi-
tional file 1: Fig S1).

Of note, all methods included here relied on cell type proportions, but in reality 
the biological “ground truth” of the cell type proportions is rarely available and the 
computationally estimated proportions [19, 20] are used directly, which introduces 
additional noise. Therefore, to further evaluate the robustness of all methods when 
“noisy” cell type proportions (random error was added to the true proportions) were 
given, we repeated the simulation scenario 3 but with noisy proportions inputted for 
all methods (Methods). With the increase in the noise added to cell type proportions, 
the correlation and power decreased while the MSE increased (Additional file 1: Fig 
S2), as expected. HBI was robust in this “noisy” setting by achieving the highest cor-
relation and power and lowest MSE among all the methods considered. Additional 

Fig. 2  Comparisons of performance in estimating cell type-specific (CTS)-meQTLs. From top to bottom: 
scenarios with genetic effects only in the most abundant cell type (Scenario 1), only in the least abundant 
cell type (Scenario 2), and with correlated genetic effects in all cell types (Scenario 3) are shown. From left to 
right: correlation between estimated and true effect sizes, mean squared error (MSE) between estimated and 
true effect sizes, power, and false discovery rate (FDR) as a function of the proportion of causal SNPs. HBI_
CTS-prior, bMIND_CTS-prior represent the version of the corresponding methods with CTS DNA methylation 
data incorporated
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results comparing the performance across different allele frequencies and different 
numbers of SNP-CpG pairs are summarized in Additional file 1: Fig S3-4.

To further investigate the performance of HBI in real data for which we also have esti-
mates of the “ground truth”, we applied those methods to the Religious Orders Study 
and Memory and Aging Project (ROSMAP) gene expression and genotype data and the 
“ground truth” for QTLs was estimated with its single-cell RNA seq data [21]. We noted 
that HBI can also be used to identify CTS expression quantitative trait loci (eQTL). Sim-
ilar patterns were observed, where HBI achieved higher power across different scenarios 
(Additional file 1: Fig S5).

Genome‑wide CTS‑meQTLs identification using HBI

To identify genome-wide CTS-meQTLs, we applied HBI to the WIHS cohort with 
matched genotype data and bulk DNAm data measured in peripheral blood mono-
nuclear cells (PBMC) using the Illumina HumanMethylation EPIC beadchip (n = 431) 
(Additional file  2:  Table  S1). Furthermore, for a separate group of WIHS participants 
(n = 47), one aliquot of PBMC underwent CTS separation to obtain CD4+ T-cells 
(n = 28), CD8+ T-cells (n = 28), or monocytes (n = 27). The demographic characteristics 
of the WIHS participants are described in Additional file 2: Table S1. DNAm from each 
sorted cell type was profiled using Agilent SureSelectXT Methyl-seq, and the derived 
priors from these CTS DNAm data were incorporated in HBI (Methods). Significant cis-
meQTLs were selected as those reaching genome-wide significance level (p < 6E − 12; 
Bonferroni correction). The computational time for applying HBI is summarized in 
Additional file 1: Fig S6, and the median computational time was about 4 min.

HBI identified a total of 122,387 significant meQTLs in CD4+ T-cells, 34,310 in 
CD8+ T-cells, 25,020 in natural killer cells, 26,972 in B cells, 36,919 in monocytes, and 
12,231 in granulocytes (Fig.  3A) (Additional file  3: Table  S2). To replicate our identi-
fied CTS-meQTLs, we used publicly available data for meQTLs in isolated white blood 
cell subsets (CD4+ T-cells, CD8+ T-cells, monocytes) (n = 60 individuals) [1], and we 
defined replicated meQTLs as those with p < 0.05 and consistent direction of effect in 
this replication sample (Fig. 3B). We showed that among the shared SNP-CpG pairs in 
the replication sample, 98.2–98.4% had a consistent direction of effect and 79.0–93.9% 
were replicated (Fig. 3C). Of note, in all cell types, more than 99% of significant pairs 
(p < 0.05) had a consistent direction of effect (Rep/Sig), indicating a high level of con-
sistency between our results in the WIHS sample and those in the replication sample. 
We also investigated the replication rates using the version of HBI without priors incor-
porated from the WIHS participants with CTS data (n = 47), and did parallel analyses 
using SNPs in high LD to increase the number of shared pairs in the replication sample 
(Additional file 4: Table S3). An additional data with larger sample sizes for meQTLs in 
isolated blood cells (CD4+ T-cells, monocytes) (n = 197 individuals) was also used for 
replication [22]. The similar pattern was observed for replication rates of HBI (97.31% in 
CD4+ T-cells, 92.40% in monocytes) (Additional file 4: Table S3).

Integrating annotations of CpG islands (CGI), genomic functional regions, and 
open chromatin states with our derived CTS-meQTL, we observed that compared 
with SNPs that are not meQTLs (non-meQTLs), our identified meQTLs across all cell 
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types were enriched in important regulatory regions, such as active promotors and 
strong enhancers (Fig.  3D). Conversely, our meQTLs were depleted in regions with 
few active genes, including intergenic regions and regions with heterochromatic char-
acteristics, as previously reported [7]. Of note, meQTLs identified in each cell type 
exhibited similar functional enrichment patterns and are summarized in Additional 
file 1: Fig S7.

Using QIAGEN Ingenuity Pathway Analysis (IPA) to perform pathway enrichment 
analyses of genes mapped by the significant meQTLs in each cell type [23], we found that 
the antigen presentation pathway was significant in multiple cell types: CD4+ T-cells 
(p = 2.95E − 05), CD8+ T-cells (p = 1.12E − 09), B cells (p = 9.55E − 06), natural killer 
cells (p = 7.94E − 07) and monocytes (p = 1.41E − 10) (Additional file 5: Table S4). Other 
identified pathways included the pulmonary fibrosis idiopathic signaling pathway in 
CD4+ T-cells (p = 9.33E − 06), the multiple sclerosis signaling pathway and the IL-15 
production pathway in CD8+ T-cells (p = 9.55E − 07 and p = 3.63E − 05, respectively). 
These significant pathways indicated that the identified CTS-meQTLs by HBI might 
play a role in regulating immunity-related functions and activities.

Fig. 3  Overview of cell type-specific (CTS)-meQTLs identification using the hierarchical Bayesian interaction 
model (HBI). A Bar chart shows the number of HBI-identified meQTLs in each cell type (p<6E−12).B Flow 
chart indicates the replication of HBI identified CTS-meQTLs in an independent dataset for meQTLs in isolated 
white blood cell subsets (CD4+ T-cells, CD8+ T-cells, monocytes). C Table summarizes the replication results. 
D Functional enrichment for meQTLs across all cell types in CpG island (CGI) regions, gene body regions, and 
gene regulatory regions. The logarithm of odds ratio (OR) with 95% confidence interval is presented. TSS 1 
kb:<1 kb upstream of the transcription start site (TSS); CDS: coding sequence; UTR: untranslated exon region; 
Heterochrom/lo: regions that exhibit heterochromatic or heterochromatin-like characteristics; CD4T: CD4+ 
T-cells; CD8T: CD8+ T-cells; NK: natural killer cells; Mono: monocytes; Gran: granulocytes
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CTS meQTLs colocalize with risk variants for complex traits

While for most meQTLs the direct impact on complex traits has not been widely 
reported [24], there have been studies showing that some meQTLs are associated with 
complex traits and may identify underlying pathways and mechanisms related to dis-
eases [7, 8, 25]. To systematically identify potential associations between meQTLs and 
complex traits, we applied HyPrColoc (Hypothesis Prioritization for multi-trait Colocal-
ization) [26] to perform an meQTL-GWAS colocalization analysis in each cell type. We 
integrated the HBI-identified CTS-meQTLs with 57 GWAS datasets in four categories 
of blood cell counts, cardiometabolic, immune, and allergy [27].

A total of 2972 significant meQTL-GWAS colocalizations (posterior probability for 
colocalization (PPFC) > 0.50) were identified across all GWASs and cell types (Additional 
file  6: Table  S5A-F). Taking a further look into the number of meQTL-GWAS colo-
calizations per trait across all cell types, we found that GWAS traits in the category of 
blood cell counts had a larger number of colocalizations compared with traits in other 
categories (Additional file  1: Fig S8). This abundance of colocalizations was expected 
as the cis-meQTLs were identified in cell types from whole blood. To further illustrate 
how the meQTL-GWAS colocalizations could differ across cell types, we summarize 
one example in Fig. 4. The variant rs2395178 in the HLA-DRA gene was identified as a 
CD8+ T-cell-specific meQTL for cg00886432 (p = 5.46E − 12). As expected, we observed 
that rs2395178 showed a stronger correlation with DNAm in participants with a high 
abundance of CD8+ T-cells (Fig. 4A). Meanwhile, our colocalization analyses revealed 
that rs2395178 was colocalized between methylation at cg00886432 in CD8+ T-cells 
and type I diabetes (T1D) (PPFC = 0.9802) (Fig. 4B), while no significant colocalization 
was observed in other cell types. Of note, polymorphisms at the HLA-DQ and HLA-
DR regions have been recognized as the major genetic determinants of T1D [28]. Taken 
together, these results suggest that integrating DNA methylome and genome data may 
help link HLA-DR gene function in CD8+ T-cells to T1D.

MeQTL‑GWAS colocalizations exhibit enrichment in trait‑relevant cell types

To further investigate meQTL associations with traits in multiple cell types, we per-
formed enrichment analyses to study if the meQTL-GWAS colocalizations for each trait 
were enriched in certain cell types. Specifically, for each trait we defined the enrich-
ment score in one cell type as the ratio between the percentage of colocalized GWAS-
meQTLs in that cell type and the percentage of meQTLs in that cell type (see Methods). 
As the absolute number of colocalizations in each cell type was largely driven by the 
number of identified meQTLs in that cell type and cannot be compared directly, here 
the enrichment score was defined as the ratio between two percentages, which allowed 
us to compare this value across different cell types. We further excluded granulocytes 
due to the low number of colocalizations identified across traits (Additional file 1: Fig 
S8B), which indicated the less stable signals identified in this least abundant cell-type. 
We also evaluated the enrichment score for meQTLs derived at the bulk PBMC level 
(Additional file 6: Table S5G) to further evaluate whether CTS-meQTLs can reveal more 
cell-specific information.
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We summarize the traits with colocalizations enriched in at least one cell type in 
Fig.  5A, which we listed out in Additional file  7: Table  S6A. To evaluate whether the 
enrichment results matched existing biological knowledge, we performed heritability 
enrichment analyses across the same GWAS traits using GenoSkyline-Plus [29], which 
could be viewed as an independent tool to identify biologically relevant cell types for 
complex traits. We found that our significant findings generally agreed with the results 

Fig. 4  Example of the rs2395178-cg00886432 locus and colocalization results with type I diabetes (T1D). 
A An association plot for the rs2395178-cg00886432 locus, separated into individuals with high and low 
abundance of CD8+ T-cells (above and below the median, respectively). The y axis shows methylation 
beta-values, while the x axis shows genotypes. B LocusZoom plots for the association of rs2395178 
(mapped to HLA-DRA) with phenotypes/molecular traits. Panels illustrate the association of the SNP with 
GWAS T1D, cg00886432 meQTL signal in CD8+ T-cells, CD4+ T-cells, B cells, natural killer cells, monocytes, 
and granulocytes. The genetic variant rs2395178 was identified as a colocalized SNP between T1D and 
cg00886432 meQTL signal in CD8+ T-cells (posterior probability for colocalization (PPFC) is shown)
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of heritability enrichment analyses: 85.2% of our identified cell types with enriched 
colocalizations were replicated by GenoSkyline-Plus (Additional file 7: Table S6B). This 
indicates that the colocalizations between HBI-identified CTS-meQTLs and GWASs do 
help to reveal biologically relevant cell types for complex traits. For example, high-den-
sity lipoprotein cholesterol (HDL) had colocalization enrichment in monocytes: mono-
cytes only covered 1.5% of the total meQTLs but accounted for 9.5% of the colocalized 
meQTLs (enrichment = 6.32; p = 1.23E − 07) (Fig.  5B). Of note, GenoSkyline-Plus also 
identified heritability enrichment in monocytes for HDL (p = 1.31E − 06) (Additional 
file  7: Table  S6B). In T1D, we identified colocalization enrichment in CD8+ T-cells 
(enrichment = 6.15; p = 1.95E − 05) (Fig. 5B), while the heritability for this trait was also 
enriched in CD8+ T-cells (p = 4.77E − 02) (Additional file 7: Table S6B). This finding is 
further supported by the evidence that autoreactive CD8+ T-cells play a fundamental 
role in the progression of T1D by the destruction of pancreatic beta cells [30]. In addition, 
asthma was enriched in colocalizations derived from CD4+ T-cells (enrichment = 4.34; 
p = 5.14E − 19) and CD8+ T-cells (enrichment = 3.10; p = 4.91E − 05) meQTLs, which 
was also replicated by GenoSkyline-Plus (p = 3.43E − 03 and p = 3.92E − 05, respectively) 
(Additional file 7: Table S6B). Interestingly, the association between meQTLs and asthma 
has been investigated by Hawe et  al., who also employed colocalization and reported 
a shared causal variant rs174548 for methylation at cg21709803 in CD8+ T-cells and 
asthma [1]. Here our colocalization results in CD8+ T-cells replicated and extended 
their findings by identifying a nearby risk variant rs174587 (PPFC = 0.858) (Additional 
file 6: Table S5B), which impacts both DNAm at cg21709803 and asthma.

Fig. 5  Enrichment analyses for MeQTL-GWAS colocalizations. A Colocalization enrichment results across 
six cell types for traits with colocalizations enriched in at least one cell type. Asterisks highlight significance 
after Bonferroni correction. B Examples of colocalization enrichments in three traits. From left to right: the 
percentage of meQTLs covered by each cell type, and the percentage of colocalized meQTLs in that cell type. 
GWAS: genome-wide association studies; CD4T: CD4+ T-cells; CD8T: CD8+ T-cells; NK: natural killer cells; 
Mono: monocytes; bulk: a mixture of cell types from peripheral blood mononuclear cells (PBMC)
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From Fig. 5B, we show that more bulk meQTLs were identified than CTS meQTLs, 
which was consistent with simulations (Additional file  1: Fig S9), but we observed no 
colocalization enrichments (Fig. 5A). This suggests that the meQTLs identified in bulk 
tissue are a mixture of signals from different cell types, thus masking the CTS infor-
mation. Altogether, those results suggest that our identified CTS meQTLs can provide 
more insight into the cellular specificity of complex traits and aid the characterization of 
trait etiology.

Discussion
We have developed HBI to infer CTS meQTLs from bulk methylation data, with pri-
ors derived from CTS methylation data in a small group of samples. As far as we are 
aware, our model is the first one to integrate large-scale bulk DNAm data and small-
scale CTS DNAm data to estimate CTS-meQTLs. We show through simulations that 
HBI improves the estimation of CTS genetic effects. Applying our method to samples 
contributed by participants from the WIHS cohort [15], we systematically characterized 
the genome-wide SNP-CpG associations in multiple cell types of PBMCs. Through colo-
calization and enrichment analyses, we demonstrate the utility of HBI to improve the 
annotation of functional genetic variants and enhance the understanding of the cellular 
specificity of complex traits.

We considered extensive simulation scenarios to compare the performance of differ-
ent methods in detecting CTS QTLs. As TCA and bMIND were initially developed to 
detect differentially expressed or differentially methylated signals between compari-
son groups (e.g., cases versus controls) [10, 11], the differential effect was on a single 
phenotype of interest in their simulations. In contrast, in our simulations the genetic 
effects on a CpG were distributed across a number of SNPs and each SNP carried a small 
effect. Therefore, our simulation aims to detect all causal SNPs, which is more challeng-
ing than detecting the association with one single phenotype, and the simulation results 
may offer a more comprehensive evaluation of the performance of different methods to 
detect CTS-QTLs than those considered in other studies [10, 11, 31].

The simulation results show that all methods had decreased performance in scenario 
2 (the least abundant cell type harbored genetic effects). This is not surprising as the 
information from rare cell types is in general more limited in a bulk sample, and thus 
the statistical instability for estimating signals in rare cell types is much larger than that 
in abundant cell types. In this case, incorporating CTS DNAm information did help to 
alleviate this problem; we show that HBI with CTS information incorporated into priors 
(i.e., HBI_CTS-prior) was more powerful than other methods. Specifically, to improve 
the power to infer meQTL in rare cell types by borrowing information from more abun-
dant cell types, we used the small group with CTS methylation data to estimate ρjk , the 
genetic correlation between cell type k methylation and cell type j methylation, and 
incorporated the estimated genetic correlation into the prior variance. As cell-sorted 
MC-seq data offer the unique advantage of directly measuring CTS methylomes, incor-
porating strong and robust signals from such data improves the estimation of CTS-
meQTLs, especially in rare cell types.

We observed inflated FDR when fitting the marginal model for bMIND and TCA. 
As discussed by the authors of TCA, deconvoluted CTS methylation profiles are 
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expected to be correlated among different cell types [32], which results in false dis-
coveries in the non-causal cell type when using the marginal test model. To miti-
gate this problem, the TCA authors advised applying a marginal conditional test to 
account for the other cell types [32], which was also used in our simulations. The 
developers of bMIND also proposed an alternative testing procedure, in which they 
only detected the top cell type with the minimal differential expressed (DE) p-value 
within a gene. This testing procedure was supported by some single-nucleus RNA-
sequencing (snRNA-Seq) studies [33, 34] which reported that most CTS DE genes are 
only differentially expressed in one single cell type. In contrast, our meQTL analy-
ses aimed to capture not only meQTLs that are specific in one single cell type but 
also meQTLs that are shared across multiple or all cell types. Previous studies have 
reported the existence of a substantial proportion of meQTLs that exhibit this shared 
pattern across diverse cell types [1, 35]. Therefore, in our simulations, we did not 
adopt the alternative testing procedure proposed by bMIND. Instead, the marginal 
conditional test model was fitted for TCA and bMIND to control FDR and to provide 
a fair comparison with HBI. Although HBI generally outperformed other methods in 
our QTL-based simulations, we note that the deconvolution step in TCA and bMIND 
can output sample-level CTS profiles which enable other sample-level analyses (e.g., 
CTS co-expression networks), while methods based on the interaction model, like 
HBI, do not have this additional output.

In real data applications, the use of stringent statistical thresholds and independ-
ent replication datasets [1] enables the identification of CTS-meQTLs with high con-
fidence and generalizability. Specifically, our identified meQTLs were supported by 
high replication rates in isolated CD4+ T-cells, CD8+ T-cells, and monocytes. We 
highlighted one example of the potential of our approach to identify biologically rel-
evant cell types for complex traits. The colocalization analyses between meQTLs and 
GWASs for T1D identified several SNPs in the HLA region. For example, rs2395178 
in HLA-DRA was identified as a CD8+ T-cell specific meQTL for cg00886432. HLA-
DRA belongs to the human leukocyte antigen (HLA) complex family, which plays an 
important role in antigen presentation and immune defense [36], and is well known as 
the major genetic determinant of T1D [28]. Our colocalization analyses revealed that 
rs2395178 was shared between methylation at cg00886432 in CD8+ T-cells and T1D 
(PPFC = 0.9802). There has also been evidence for the contribution of CD8+ T-cells 
to the progression of T1D by the destruction of pancreatic beta cells [30]. Altogether, 
our downstream analyses helped to explain the relationship between this SNP-CpG 
locus and T1D, especially in CD8+ T-cells. We also noted that the colocalized signals 
might be driven by haplotype structures or LD, as multiple studies identified strong 
signals for T1D at nearby SNPs in the HLA region (e.g., rs9271365 mapped to HLA-
DQA1) [37–39], which are close to but not identical to the colocalized SNPs that we 
identified. Similarly, for other complex traits, we also identified biologically relevant 
cell types through meQTL-GWAS colocalization, and our findings strongly agreed 
with heritability enrichment analyses [29]. We also investigated the computational 
time of HBI in this real data application. The computational time increased linearly 
with the number of SNP-CpG pairs in one CpG. The median of pairs in one CpG was 
1624 and the median of computational time was 4.05 min.
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We acknowledge several limitations of our study. First, similar to other methods [10–
12], our model depends on cell type proportions Wk as an input. Currently, the method 
described by Houseman et al. [19, 40] was widely applied to estimate this Wk for blood 
samples. There are also some efforts to quantify Wk for non-blood samples (i.e., brain 
samples) [41]. However, those estimated proportions are used directly to approximate 
the biological ground truth, which introduces additional error. For example, we identified 
significant meQTLs for granulocytes, which theoretically should have been filtered out in 
PBMC. This may result from technical issues including granulocyte contamination during 
PBMC processing [42], and the inaccuracy in the estimated granulocyte proportions. To 
alleviate this issue, we plan to extend the statistical model to estimate the cell type pro-
portions and incorporate the uncertainty in the estimated proportions at the same time. 
This approach will broaden the applications as we will not rely on other algorithms to esti-
mate cell type proportions, and help to obtain more accurate results as the uncertainty in 
the estimated proportions is considered and adjusted. Second, we used an meQTL dataset 
obtained from experimentally isolated white blood cells [1] as the “gold standard” to rep-
licate our findings. However, their CpG data were generated using the Illumina Human 
Methylation 450 K BeadChip while our results were based on the Illumina Infinium Meth-
ylation EPIC BeadChip. Additionally, only a total of 11.2 million SNP-CpG pairs that were 
preselected in their bulk meQTL analysis were available. As a result, not all our signifi-
cant results were represented in their database, even though we utilized SNPs in high LD 
to increase the number of shared pairs. Third, in colocalization enrichment analysis, we 
did not observe significant results for some traits (i.e., no significant enrichments for heart 
attack or stroke). The potential reasons might be that our CTS-meQTLs were only derived 
from white blood cells and may not cover the causal cell types, and the small number of 
identified colocalizations in some traits may impact our results as well. Therefore, re-
applying HBI on a dataset with a larger sample size and a wider range of causal cell types 
will help to obtain a more powered and complete CTS-meQTL catalog [35].

Conclusions
HBI provides a statistical strategy to leverage bulk data and CTS MC-seq data to 
improve the estimation of CTS meQTLs. Through in-depth real data analyses, we linked 
the methylome and genome data and illustrated the power of HBI to identify biologically 
relevant cell types for complex traits. We believe that HBI can have wide applications in 
identifying CTS meQTLs and annotating functional genetic variants.

Methods
Statistical model

We model the relationship between methylation level at one CpG and one SNP as:

where M is the bulk methylation level, Wk is the proportion of the k th cell type, G is 
the genotype of the SNP (the number of alternative alleles) of interest, Xc represents 
the c th covariate, such as age, sex, or ancestry, ǫ is a normally distributed error, and 
αk ,βk , γc are regression coefficients. The coefficients of the interaction terms βk are of 

(1)M =

C∑

c=1

γcXc +

K∑

k=1

αkWk +

K∑

k=1

βk(Wk ·G)+ ǫ,
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primary interest: intuitively, if there exist genetic effects of DNAm in cell type k , the 
observed association between methylation and genotype should be stronger in sam-
ples with a higher fraction of cell type k compared to samples with lower fractions 
[12]. Of note, this model without intercept is equivalent to the following one, due to 
the fact that cell type proportions add up to 1:

The difference between the two models lies in the interpretation of coefficients. In 
model (1), βk represents the genetic effects on DNAm in cell type k ( k = 1,2, . . . ,K  ). 
In model (2), β̃0 represents the genetic effects on DNAm in cell type K  and β̃k rep-
resents the changes in genetic effects in cell type k ( k = 1,2, . . . ,K − 1 ) compared 
to the effect β̃0 in cell type K  . Therefore, β̃0 + β̃k corresponds to the genetic effects 
in cell type k ( k = 1,2, . . . ,K − 1 ). For simplicity, we use model (1) in the following 
derivations.

In order to take the sparsity of genetic effects into consideration and to update 
information derived from CTS methylation data from a small group of samples, a 
hierarchical framework is used to construct priors for regression coefficients [43]. To 
achieve optimal performance, we recommend that the small group of samples with 
CTS methylation data can be a subset of the overall samples with bulk data, or be 
similar samples drawn from the same study or cohort as the bulk samples. We first 
assume a multivariate normal distribution for coefficients for interaction terms β:

•	 with general prior (no CTS methylation data)

•	 with prior derived from CTS methylation data of a small group of samples

 where µk and ρjk are updated from the CTS methylation data in the following ways:

(1)	 µk = wµ · β̂k ,seq + (1− wµ) · 0 , where β̂k ,seq is the estimated effect when regressing 
the cell type k methylome on the SNP, and wµ = 1− padjust where padjust is the 

(2)M =

C∑

c=1

γ̃cXc + α̃0 +

K−1∑

k=1

α̃kWk + β̃0G+

K−1∑

k=1

β̃k(Wk ·G)+ ǫ.

β

��������
τ =




β1
β2
...
βK




��������
τ ∼ N (µ,�)

(3)µ = 0,� =




τ 21 0 · · · 0

0 τ 22 · · · 0
...

...
. . .

...

0 0 · · · τ 2K




(4)µ =




µ1

µ2

...
µK


,� =




τ 21 ρ12τ1τ2 · · · ρ1K τ1τK
ρ12τ2τ1 τ 22 · · · ρ2K τ2τK

...
...

. . .
...

ρ1K τK τ1 ρ2K τK τ2 · · · τ 2K



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p-value adjusted by Benjamini & Hochberg (BH) or Bonferroni [17], as defined by 
users.

(2)	 ρjk = wρ · ρ̂jk ,seq + (1− wρ) · 0 , where ρ̂jk ,seq is the estimated genetic correlation 
between cell type k methylation and cell type j methylation, and wρ = 1− padjust 
where padjust is the corresponding p-value for ρ̂jk ,seq , adjusted by Benjamini & 
Hochberg (BH) or Bonferroni [17], as defined by users.

In both settings with and without CTS methylomes derived from CTS DNAm data, the 
variable-specific parameter τ 2k  controls the degree of shrinkage: as τ 2k  gets close to 0, βk is 
shrunk to µk , while as τ 2k  gets larger, the amount of shrinkage will be smaller. We further 
model τ 2k  using the exponential distribution with variable-specific hyperparameters sk:

where sk was modelled using a gamma distribution as a hyper-prior:

In this way, we allow different degrees of shrinkage for different variables by introduc-
ing the variable-specific parameters sk and τ 2k  . We also derive the conditional posterior 
distributions of sk and τ 2k  as follows:

These will be used in the model fitting algorithm.

EM‑IWLS algorithm for model fitting and inference

We fit the hierarchical Bayesian interaction model by a modified iterative weighted least 
squares (IWLS) algorithm, proposed by Yi et al. [43]. Compared with usual IWLS, the 
new method incorporates an expectation–maximization (EM) algorithm that treats 
the unknown variances τ 2k  and the hyperparameter sk as missing data and estimates the 
β by averaging over these missing values; hence, it is also referred to as the EM-IWLS 
algorithm.

In each iteration of the E-step, we update the missing values (sk , τ 2k ) by their condi-
tional expectations derived from (7) and (8). In the M-step, we update β by maximizing 
the expected log-likelihood. We need to incorporate the prior β|τ into the normal likeli-
hood as additional data points [44]. Let J  denote the total number of variables: ( J − K  ) 
covariates (e.g., αk , γc ) included to address potential confounding, and K  covariates ( β ) 
of our interest, and let θ =

[
γ T ,αT ,βT

]T
∈ R

J . Model (1) could be expressed as:

where X ∈ Rn×J is the original design matrix in model (1).
Then we update the regression coefficients by running the augmented linear 

regression:

(5)τ 2k |sk ∼ Exp

(
s2k
2

)
,

(6)sk ∼ Gamma(a, bk).

(7)sk |βk ∼ Gamma(a+ 1, bk + |βk − µk|),

(8)1/τ 2k |sk ,βk ∼ Inverse Gaussian
(

sk
|βk−µk|

, s2k

)
.

(9)M = Xθ + ǫ,
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where y
∗
=

[
MT , 0T ,µT

]T is an ( (n+ J )× 1 ) vector of methylation levels for n samples 

and prior means for J  covariates, X∗ =

[
X

IJ

]
 is an ( (n+ J )× J  ) matrix constructed by the 

design matrix X in (9) and the identity matrix, and �∗ =



In 0 0

0 1
φ
�22 0

0 0 1
φ
�33


 is an 

( (n+ J )× (n+ J ) ) matrix with �22 = diag(τ 21 , τ
2
2 , . . . , τ

2
(J−K ) ) and �33 = � is the ( K × K  ) 

prior variance matrix for β|τ. Then in each iteration, we can update the estimates:

 until convergence. We can also get the variance of regression coefficients:

The EM-IWLS algorithm is summarized as follows. 

We define convergence as each element of |θ (t) − θ (t−1)| smaller than δ , with δ to be a 
small value (e.g., 1E − 05). θ̂  and var

(
θ̂
)
 can then be obtained from the last updates.

For the choice of (a, bk) , we fix a = 0.5 as the default since the overall degree of shrink-
age can be determined by bk [43]. For the user-defined bk , we suggest taking the sample 
size and the abundance of the corresponding cell type into consideration. For moderate 
sample size (e.g., n = O

(
102

)
 ), we suggest bk = 0.2 for most cell types (average of cell 

type proportions > 10%), and bk = 5 to induce a less informative prior for the least abun-
dant cell type (average of cell type proportions < 5%). Otherwise, the estimation of the 

(10)y
∗
∼ N (X∗θ ,φ�∗),

(11)θ̂ =
(
XT
∗
�−1

∗ X∗

)−1
XT
∗
�−1

∗ y
∗
,

(12)φ̂ = 1
n

(
y
∗
− X∗θ̂

)T
�−1

∗

(
y
∗
− X∗θ̂

)
,

(13)var
(
θ̂
)
=

(
XT
∗
�−1

∗ X∗

)−1
φ̂.
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coefficient for the least abundant cell type might be overwhelmingly driven by the prior. 
For larger sample sizes (e.g., n = O

(
104

)
 ) or much more abundant cell type, bk could be 

decreased accordingly.

Simulation settings

In this section, we introduce the simulation procedure to evaluate the performance of 
HBI. CTS DNAm in our simulations were generated based on genotype data from the 
Wellcome Trust Case Control Consortium (WTCCC) (n = 15,918) [45]. In the cell type 
with genetic effects, the heritability of the DNAm was fixed as 0.3, the effect sizes of the 
causal SNPs were generated by a multivariate normal distribution [46], and GCTA [47] 
was applied to simulate the DNAm in this cell type. We also generated cell type propor-
tions using a Dirichlet distribution for three cell types with parameters 5.30, 1.27, and 
1.62. These parameters were chosen based on the suggestion from Li et al. that the mean 
cell type composition standard deviation is around 0.13, which was estimated from the 
Cibersort blood true proportions [48]. Then, for each sample, the bulk DNAm levels 
were computed as a weighted sum of the simulated CTS DNAm levels, weighted by the 
corresponding cell type proportions, plus an independent and identically distributed 
(iid) noise term ǫ ∼ N (0, 0.01).

We considered three main scenarios, and in each of them, we assumed that the total 
number of SNPs near the simulated CpG site to be 500 and varied the proportion of 
causal SNPs from 10% to 20% to 40%. All the SNPs were randomly selected from chro-
mosome 12 and all have minor allele frequency (MAF) > 0.01. To investigate whether 
variants with lower frequency have low power and high false positives, we further 
divided the SNPs into variants with low frequency (0.01 ≤ MAF < 0.05) and common var-
iants (MAF ≥ 0.05), and assessed their performance separately as supplementary results. 
Each simulation setting was repeated 10 times.

(1)	 Scenario 1: there were genetic effects only in the major/most abundant cell type.
(2)	 Scenario 2: there were genetic effects only in the minor/least abundant cell type.
(3)	 Scenario 3: there were correlated genetic effects in all three cell types, and the 

genetic correlation among the cell types was set to 0.5.

We compared our method HBI with TCA [10], bMIND [11], and the basic interaction 
model, which fits model (1) directly using OLS and is similar to the CellDMC algorithm 
[12]. For HBI and the basic interaction model, we inputted the simulated bulk DNAm 
and cell type proportions and directly obtained the genetic effects for each cell type as 
the estimated coefficients for the interaction terms ( Wk · G ). The choices of the HBI 
parameters in the hyper prior Gamma(a, bk) were as follows: a = 0.5 for all cell types, 
bk = 0.005 for the major cell type, bk = 0.1 for the other two cell types. For TCA and 
bMIND, we first inputted the bulk DNAm and cell type proportions to get deconvoluted 
CTS DNAm, and then tested the association between CTS DNAm and genotype using 
PLINK [49] to fit the following two models:

1.	 Marginal model which regresses the deconvoluted DNAm for cell j , Ẑj , on the geno-
type G (equivalent to marginal test in TCA) [32]:
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2.	 Conditional model which regresses the deconvoluted DNAm for cell j on the geno-
type with DNAm for all other cell types controlled (equivalent to marginal condi-
tional test in TCA):

	

The coefficients for genotype G would then be the estimated genetic effects in cell j . 
CTS-meQTLs were identified with FDR controlled at 0.05 for each cell type. In each 
setting, the performance of different methods was compared in terms of correlation 
between the estimated and true effect sizes, the MSE between the estimated and true 
effect sizes, power, and FDR calculated as follows:

Both HBI and bMIND had the optional step to incorporate CTS information to update 
priors (derived from cell-sorted MC-seq data in our case and from scRNA-seq data in 
bMIND’s original case). Here we also assumed that for a small proportion (5%) of all 
samples, their CTS methylation data were available. In each simulation setting, we fur-
ther compared HBI and bMIND both without this information incorporated and with 
this information incorporated (denoted as HBI_CTS-prior, bMIND_CTS-prior).

Since all methods included here relied on cell type proportions, we further evaluated 
the robustness of all methods when noisy cell type proportions were given. With the 
proportion of causal SNPs fixed as 20% in scenario 3, we randomly simulated noise from 
a left-truncated normal distribution (truncation point is zero), added noise to the true 
cell type proportions, and then normalized the sum of proportions to be 1. Two addi-
tional simulation settings were performed as we adjusted the standard deviation of the 
added noise so that the generated noisy cell type proportions would have mean absolute 
error (MAE) of 0.05 and 0.1, respectively. In addition, to assess the effect of the number 
of SNPs near the simulated CpG site, we performed additional simulations and varied 
the number of total SNPs from 500, 1000, to 2000, with the proportion of causal SNPs 
fixed as 10%.

To further investigate the simulation performance of HBI using real data, we uti-
lized the samples in ROSMAP data with matched gene expression and genotype [21] 
(n = 290). We first estimated the “ground truth” using its single-cell RNA seq data. We 
included three cell types: excitatory neurons, inhibitory neurons, and oligodendrocytes, 
and estimated their eQTLs separately. We then extracted the significant eQTLs (Bon-
ferroni-adjusted p < 0.05) fitting into 3 scenarios: (1) eQTLs only in excitatory neurons 

Ẑj ∼ G.

Ẑj ∼ G +
∑

l �=j
Ẑl .

power =
# identified true signals in all cell types

# true signals in all cell types
,

false discovery rate =
# identified false signals in all cell types

# identified signals in all cell types



Page 20 of 27Cheng et al. Genome Biology          (2024) 25:273 

(simulated as the major cell type in pseudo-bulk), (2) eQTLs only in oligodendrocytes 
(simulated as the minor cell type in pseudo-bulk), and (3) eQTLs in all three cell types. 
The effect sizes of those eQTLs estimated by single-cell RNA seq data were treated as 
“ground truth”. Pseudo-bulk data consisting of the 3 cell types were then created as the 
input for TCA, bMIND, the basic interaction model, and HBI. In each repeat, we ran-
domly sampled 500 eQTLs in each scenario and applied all the methods to evaluate their 
power to correctly identify those eQTLs. Similarly, the performance was compared in 
terms of correlation between the estimated and true effect sizes, the MSE between the 
estimated and true effect sizes, power, and FDR.

Study cohort for real data applications

The Women’s Interagency HIV Study (WIHS), now a part of MWCCS,  is a multi-center, 
prospective, observational cohort study [15]. All participants are women with HIV or at risk 
for HIV acquisition. Informed consent was provided by all WIHS participants via protocols 
approved by institutional review committees at each affiliated institution. In our analysis, par-
ticipants with matched genetic data and bulk DNA methylation measured in PBMC (n = 431) 
and a separate group of participants with CTS DNA methylation data (n = 47) were included. 
Demographic and clinical characteristics are summarized in Additional file 2: Table S1.

Genotyping, imputation, and quality control

The WIHS sample were genotyped using the Infinium Omni2.5 Bead-Chip that tar-
geted approximately 2.4 million SNPs. Minimac4 was used for imputation with the 1000 
Genomes Project 3 as the reference panel [50, 51]. We removed SNPs with minor allele 
frequency < 0.05, missing rate > 5%, imputation quality r2 < 0.8, and those that deviated 
significantly from Hardy–Weinberg equilibrium (p < 1e − 6). As a result, approximately 
4.6 million SNPs passed QC and were used for CTS-meQTL estimation.

DNA methylation

DNA methylation measured using DNA isolated from PBMC was profiled using the Illu-
mina Infinium MethylationEPIC BeadChip. We followed methods described in Lehne 
et al. [52] to perform methylation normalization and adjust for potential batch effects. A 
total of 852,073 CpGs for the 431 individuals passed quality control steps and were used 
as bulk DNAm data. We applied the method described by Houseman et al. to estimate the 
cell type proportions for CD4+ T-cells, CD8+ T-cells, natural killer cells, B cells, mono-
cytes, and granulocytes [19, 40]. Another separate group of the WIHS cohort (n = 47) were 
isolated for CD4+ T-cells, CD8+ T-cells, and monocytes. DNAm for each sorted cell type 
was profiled by the Agilent SureSelectXT Methyl-seq. After quality control and extracting 
CpGs that overlapped on both platforms, we had 390,851 CpGs measured in CD4+ T-cells 
(n = 28), 385,679 CpGs measured in CD8+ T-cells (n = 28), and 407,646 CpGs measured in 
monocytes (n = 27), which were used as CTS DNAm data to update priors.

CTS‑meQTL estimation and replication

We applied HBI to identify CTS meQTLs in the WIHS cohort for six cell types: 
CD4+ T-cells, CD8+ T-cells, natural killer cells, B cells, monocytes, and granulocytes. 
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For each CpG, we considered the following model for SNPs from 500 kb upstream to 500 
kb downstream [53–56]:

where M is the bulk methylation M-value, Wk is the cell type proportion of the k th cell 
type, G is the genotype of the SNP, Xc is a collection of previously identified relevant 
covariates: age, estimated global ancestry, local ancestry [55], tobacco use, alcohol con-
sumption, HIV infection status, log10 of HIV RNA viral load, the top 5 genotype princi-
pal components (PCs), and the top 10 PCs on DNA methylation levels of control probe. 
HBI was applied to estimate the regression coefficients in the above model, and for 
CD4+ T-cells, CD8+ T-cells, and monocytes, we further incorporated the priors derived 
from the CTS methylation data available in a small group of subjects. The choices of 
the parameters in the hyper prior Gamma(a, bk) were as follows: a = 0.5 for all cell 
types, bk = 5 for granulocytes, bk = 0.2 for natural killer cells, B cells, monocytes, and 
bk = 0.05 for CD4+ T-cells, CD8+ T-cells. Among the 852,073 CpGs, a total of 1.4 bil-
lion SNP-CpG pairs were tested, and significant meQTLs were selected using Bonferroni 
correction (p < 0.05/1,384,706,562/6 = 6.02E − 12). Due to the low proportion of granu-
locytes, we also conducted a sensitivity analysis with five-cell-type decomposition (pro-
portion of granulocytes removed). CpGs on chromosome 22 were used in the sensitivity 
analysis and results are summarized in Additional file 1: Fig S10.

Independent data were used to replicate our identified CTS-meQTLs. We down-
loaded datasets for meQTLs in isolated white blood cell subsets (i.e., CD4+ T-cells, 
CD8+ T-cells, monocytes, neutrophils) (n = 60 individuals) [1]. For our identified SNP-
CpG pairs in the respective cell types, we calculated the percentage of pairs that were 
significant in the replication set (p < 0.05), the percentage of pairs with directional con-
sistency in effect sizes, and the percentage of replicated pairs (p < 0.05 and same effect 
direction). Among the replicated pairs, we also calculated the correlations of the effect 
sizes. Considering the limited sample size for this dataset (n = 60) [1], we also included 
another data with larger sample sizes for meQTLs in isolated blood cells (CD4+ T-cells, 
monocytes) (n = 197) [22] as supplementary results for replication.

To investigate the replication rates of the version of HBI with only bulk data, we 
conducted parallel analyses using HBI without priors incorporated from the WIHS 
participants with CTS data (n = 47). In addition, to increase the number of shared 
SNP-CpG pairs between our results and the replication data, we further utilized SNPs 
in LD to match pairs. Specifically, if one of our significant pairs SNP1-CpG1 could not 
be directly matched to the replication data, we would search for SNPs in LD (r2 > 0.6) 
with this SNP1. If we found one SNP in high LD (i.e., SNP2) and SNP2-CpG1 was 
present in the replication data, then this original pair SNP1-CpG1 could be matched 
to replication data. In this way, we increased the number of shared pairs among our 
identified CTS-meQTLs. We also included other methods for comparison (condi-
tional models for bMIND and TCA).

M =

C∑

C=1

γcXc +

6∑

k=1

αkWk +

6∑

k=1

βk(Wk · G),
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MeQTL enrichment in genomic functional annotations

For all the variants tested for SNP-CpG associations, we used annotatr [57] and its 
built-in annotation databases to make CpG annotations (CGI, CGI shelves, CGI 
shores, inter CGI regions), gene body annotations (regions < 1 kb upstream of the 
transcription start site, coding sequence, exons, introns, intergenic regions, 5′UTRs, 
3′UTRs), gene regulatory and open chromatin annotations (active promotor, weak 
promotor, strong enhancer, weak enhancer, insulator, regions with heterochromatic 
or heterochromatin-like characteristics). For gene regulatory and open chromatin 
annotations [58], we used the database for the K562 cell line, which is commonly used 
to study hematopoiesis [59]. To test whether the identified meQTLs were enriched in 
some functional regions, we performed functional enrichment analysis using Fisher’s 
exact test [60, 61]. A 2 × 2 contingency table was built as follows:

MeQTLs Non-meQTLs Row sum

In functional region R MR R-MR R

Not in functional region R M-MR T-R-(M-MR) T-R

Column sum M T-M T

The total sum of the contingency table (T) was the number of variants that were 
tested for SNP-CpG associations. The number of identified meQTLs that were 
mapped in one specific functional region corresponds to the upper-left cell of the 
table (MR). The remaining three cells of the table can be calculated based on MR and 
the row/column sums. Based on the 2 × 2 contingency table, we tested whether the 
meQTLs were enriched in the functional region more often than by chance expected 
by the genome background (non-meQTLs) [62, 63]. For each cell type, we performed 
this analysis separately and derived the enrichment estimates as log of odds ratios 
and its 95% confidence intervals. Enrichment across all cell types was conducted by 
combining CTS-meQTLs into a union set comprising meQTLs identified in at least 
one cell type.

Pathway analyses based on identified CTS‑meQTLs

For the identified meQTLs in each cell type, we used ANNOVAR to map variants to 
their nearest gene, and for variants in intergenic regions, the closest gene was kept [64]. 
Pathway enrichment analyses were conducted with QIAGEN Ingenuity Pathway Analy-
sis (IPA) (QIAGEN Inc., https://​digit​alins​ights.​qiagen.​com/​IPA) [23]. In each cell type, 
we reported significant pathways at Bonferroni-adjusted p < 0.05.

Colocalization of meQTL with GWAS loci

To identify potential associations between meQTLs and complex traits, we applied HyPr-
Coloc (Hypothesis Prioritization for multi-trait Colocalization) [26] in multiple genomic 
regions. We downloaded GWAS summary statistics published by Barbeira et al. [27], and 
used the 57 traits in the categories of blood cell counts, cardiometabolic, immune, and 
allergy. Since colocalization reports the posterior probability that two traits are colocal-
ized in a specific linkage disequilibrium (LD) region [26, 65], we first performed clump-
ing on the meQTLs identified in each cell type. For each CpG, highly correlated genetic 

https://digitalinsights.qiagen.com/IPA
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variants were clustered into one clump with an LD r2 > 0.1 [66], resulting in 7766 meQTL 
clumps for CD4+ T-cells, 4211 clumps for CD8+ T-cells, 4568 clumps for monocytes, 
3219 clumps for B cells, 2649 clumps for natural killer cells, and 1821 clumps for granu-
locytes. For each cell type, the genetic variants in each meQTL clump were matched with 
GWAS summary statistics. Then for each meQTL-GWAS region pair, HyPrColoc was 
applied on the effect size and the corresponding standard errors. The PPFC was used to 
identify significant (PPFC > 0.50) colocalizations [35, 67].

Cell type‑specific enrichment in meQTL‑GWAS colocalizations

To investigate the cellular specificity of complex traits, we performed enrichment analy-
ses to study if the meQTL-GWAS colocalizations for each trait were enriched in certain 
cell types. Here, meQTLs in granulocytes were excluded due to low numbers of colo-
calizations identified across traits, and meQTLs in bulk level (282,965 clumps) were 
included to assess if CTS-meQTLs can reveal more cellular-specific information. We 
also excluded three traits with a very small number of meQTL-GWAS colocalizations 
(< 10) across all cell types. As a result, 54 of the 57 GWAS traits remained in the enrich-
ment analyses. For each trait, in each cell type the enrichment score was defined as the 
ratio between the percentage of meQTL-GWAS colocalizations (colocalized meQTL 
clumps) in that cell type and the percentage of meQTL clumps covered by that cell type:

To determine significant colocalization enrichments in certain cell types, the 
test for equality of proportions with continuity correction was performed to test if 
Enrichmentk > 1 (p < 0.05/54/6 = 1.5E − 04). To evaluate the identified enrichment 
results, for the same GWAS traits we also performed heritability enrichment analyses 
using 66 functional annotations from GenoSkyline-Plus (v1.0.0) [29]. For our identified 
traits with colocalizations enriched in certain cell types, we determined if the heritability 
of this trait also enriched in this cell type at p < 0.05.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​024-​03411-7.

Additional file 1: Supplementary Figures. Supplementary figures 1-10

Additional file 2: Table S1. Demographic information for the WIHS participants

Additional file 3: Table S2. Results for the significant cell-type-specific meQTLs

Additional file 4: Table S3. Replication results for the identified cell-type-specific meQTLs

Additional file 5: Table S4. Canonical Pathways identified using genes mapped by the meQTLs

Additional file 6: Table S5. GWAS-meQTL colocalizations in each cell type

Additional file 7: Table S6. Colocalization enrichment results

Additional file 8: Review history

Acknowledgements
The authors appreciate the support of the WIHS cohort and Yale Center of Genomic Analysis. The simulation results are 
in part based on ROSMAP gene expression and genomic variants data obtained from the AD Knowledge Portal (https://​
adkno​wledg​eport​al.​org), (https://​www.​synap​se.​org/#​!Synap​se:​syn23​446022). ROSMAP study data were provided by 
the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago. Data collection was supported through 

Enrichmentk =
% colocalized meQTL clumps in cell type k

%meQTL clumps in cell type k

https://doi.org/10.1186/s13059-024-03411-7
https://adknowledgeportal.org
https://adknowledgeportal.org
https://www.synapse.org/#!Synapse:syn23446022


Page 24 of 27Cheng et al. Genome Biology          (2024) 25:273 

funding by NIA grants P30AG10161 (ROS), R01AG15819 (ROSMAP; genomics and RNAseq), R01AG17917 (MAP), 
R01AG30146, R01AG36042 (5hC methylation, ATACseq), RC2AG036547 (H3K9Ac), R01AG36836 (RNAseq), R01AG48015 
(monocyte RNAseq) RF1AG57473 (single nucleus RNAseq), U01AG32984 (genomic and whole exome sequencing), 
U01AG46152 (ROSMAP AMP-AD, targeted proteomics), U01AG46161(TMT proteomics), U01AG61356 (whole genome 
sequencing, targeted proteomics, ROSMAP AMP-AD), the Illinois Department of Public Health (ROSMAP), and the Transla-
tional Genomics Research Institute (genomic).
Data in the application part of this manuscript were collected by the Women’s Interagency HIV Study (WIHS), now the 
MWCCS. The contents of this publication are solely the responsibility of the authors and do not represent the official 
views of the National Institutes of Health (NIH). MWCCS (Principal Investigators): Atlanta CRS (Ighovwerha Ofotokun, 
Anandi Sheth, and Gina Wingood), U01-HL146241; Baltimore CRS (Todd Brown and Joseph Margolick), U01-HL146201; 
Bronx CRS (Kathryn Anastos, David Hanna, and Anjali Sharma), U01-HL146204; Brooklyn CRS (Deborah Gustafson and 
Tracey Wilson), U01-HL146202; Data Analysis and Coordination Center (Gypsyamber D’Souza, Stephen Gange and Eliza-
beth Topper), U01-HL146193; Chicago-Cook County CRS (Mardge Cohen and Audrey French), U01-HL146245; Chicago-
Northwestern CRS (Steven Wolinsky, Frank Palella, and Valentina Stosor), U01-HL146240; Northern California CRS (Bradley 
Aouizerat, Jennifer Price, and Phyllis Tien), U01-HL146242; Los Angeles CRS (Roger Detels and Matthew Mimiaga), 
U01-HL146333; Metropolitan Washington CRS (Seble Kassaye and Daniel Merenstein), U01-HL146205; Miami CRS (Maria 
Alcaide, Margaret Fischl, and Deborah Jones), U01-HL146203; Pittsburgh CRS (Jeremy Martinson and Charles Rinaldo), 
U01-HL146208; UAB-MS CRS (Mirjam-Colette Kempf, Jodie Dionne-Odom, Deborah Konkle-Parker, and James B. Brock), 
U01-HL146192; UNC CRS (Adaora Adimora and Michelle Floris-Moore), U01-HL146194. The MWCCS is funded primarily 
by the National Heart, Lung, and Blood Institute (NHLBI), with additional co-funding from the Eunice Kennedy Shriver 
National Institute Of Child Health & Human Development (NICHD), National Institute On Aging (NIA), National Institute 
Of Dental & Craniofacial Research (NIDCR), National Institute Of Allergy And Infectious Diseases (NIAID), National Institute 
Of Neurological Disorders And Stroke (NINDS), National Institute Of Mental Health (NIMH), National Institute On Drug 
Abuse (NIDA), National Institute Of Nursing Research (NINR), National Cancer Institute (NCI), National Institute on Alcohol 
Abuse and Alcoholism (NIAAA), National Institute on Deafness and Other Communication Disorders (NIDCD), National 
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute on Minority Health and Health 
Disparities (NIMHD), and in coordination and alignment with the research priorities of the National Institutes of Health, 
Office of AIDS Research (OAR). MWCCS data collection is also supported by UL1-TR000004 (UCSF CTSA), UL1-TR003098 
(JHU ICTR), UL1-TR001881 (UCLA CTSI), P30-AI-050409 (Atlanta CFAR), P30-AI-073961 (Miami CFAR), P30-AI-050410 (UNC 
CFAR), P30-AI-027767 (UAB CFAR), P30-MH-116867 (Miami CHARM), UL1-TR001409 (DC CTSA), KL2-TR001432 (DC CTSA), 
and TL1-TR001431 (DC CTSA).
The authors gratefully acknowledge the contributions of the study participants and dedication of the staff at the MWCCS 
sites.

Review history
 The review history is available as Additional file 8.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Authors’ contributions
YC, BC, and HL developed the statistical framework. YC implemented the algorithm and performed statistical analysis. 
HL and XZ assisted in data analysis. BEA, GD, SS, AE, JM, MF, SK, KA, and MC provided DNA samples and contributed to 
manuscript preparation. KX and HZ were responsible for the study design. KX advised on sample preparation and the 
biological interpretation of findings. HZ advised on statistical and genetics issues. YC drafted the manuscript. All authors 
contributed to manuscript editing and approved the manuscript.

Funding
The project was primarily supported by the National Institute on Drug Abuse (R03DA039745, R01DA038632, 
R01DA047063, R01DA047820). Supported was also provided by NIH grants U01HG013840 and R01 GM134005, and NSF 
grant DMS1902903.

Availability of data and materials
Genotype data used in the simulation were downloaded from the Wellcome Trust Case–Control Consortium (https://​
www.​wtccc.​org.​uk) [68]. Real data used in the simulation were from the ROSMAP gene expression and genomic variants 
data (https://​www.​synap​se.​org/#​!Synap​se:​syn23​446022) [21, 69]. Those are third party data. Genotype and DNA methyla-
tion data in the application part were from the WIHS cohort, which has been identified as one with multiple vulnerabili-
ties (e.g., racial/ethnic minority women, coinfected). The data was generated by the MWCCS sites (not belong to third 
party). Whereas participants from the cohort who contributed to the findings summarized in this manuscript provided 
written consent for genetic studies, said consent was collected prior to the most recent guidelines and requirements 
for data sharing. The WIHS cohort operates under an alternative data sharing plan registered with the National Institutes 
of Health and access to data can be requested by submitting a Concept Sheet. The instructions for the Concept Sheet 
submission could be found at https://​www.​state​pi.​jhsph.​edu/​mwccs/​wp-​conte​nt/​uploa​ds/​2023/​10/​MWCCS-​Conce​
pt-​Sheet-​and-​Publi​cation-​Polic​ies_​10423.​pdf. Investigator(s) should work with the Principal Investigator (PI) of a MWCCS 
site or MWCCS liaison to draft the concept sheet. External investigators may first request a MWCCS liaison from the Data 
Analysis and Coordination Center (DACC) at MWCCS@jhu.edu). The accession number for the WIHS in dbGaP genomic 
data is now provided (phs001503) [70]. The cohort is currently being re-approached to obtain informed consent for shar-
ing of their data. This has been consistent with other genomic studies in the WIHS cohort. The GWAS summary data used 
in the meQTL-GWAS colocalizations can be downloaded at Zenodo (https://​doi.​org/​10.​5281/​zenodo.​36297​42) [71]. HBI 
algorithm is publicly available at https://​github.​com/​Yoush​uCheng/​HBI. The code has also been deposited at Zenodo 
with https://​doi.​org/​10.​5281/​zenodo.​13131​440 [72]. The repository is released under the MIT license.

https://www.wtccc.org.uk
https://www.wtccc.org.uk
https://www.synapse.org/#!Synapse:syn23446022
https://www.statepi.jhsph.edu/mwccs/wp-content/uploads/2023/10/MWCCS-Concept-Sheet-and-Publication-Policies_10423.pdf
https://www.statepi.jhsph.edu/mwccs/wp-content/uploads/2023/10/MWCCS-Concept-Sheet-and-Publication-Policies_10423.pdf
https://doi.org/10.5281/zenodo.3629742
https://github.com/YoushuCheng/HBI
https://doi.org/10.5281/zenodo.13131440


Page 25 of 27Cheng et al. Genome Biology          (2024) 25:273 	

Declarations

Ethics approval and consent to participate
The study was determined as non-Human Subject by Yale Human Investigation Committee. All data in this study are 
de-identified. Informed consent was provided by all WIHS participants via protocols approved by institutional review 
committees at each affiliated institution.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biostatistics, Yale School of Public Health, New Haven, CT 06511, USA. 2 VA Connecticut Healthcare 
System, West Haven, CT 06516, USA. 3 Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA. 
4 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 5 Department 
of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA. 6 The 
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 7 Department of Psychiatry, SUNY Downstate Health Sci-
ences University School of Medicine, Brooklyn, NY, USA. 8 Department of Medicine, University of Miami School of Medi-
cine, Miami, FL, USA. 9 Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, 
USA. 10 Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA. 11 Hektoen Institute for Medical 
Research, Chicago, IL, USA. 12 Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, 
NY, USA. 13 Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA. 

Received: 19 December 2023   Accepted: 30 September 2024

References
	1.	 Hawe JS, Wilson R, Schmid KT, Zhou L, Lakshmanan LN, Lehne BC, et al. Genetic variation influencing DNA methyla-

tion provides insights into molecular mechanisms regulating genomic function. Nat Genet. 2022;54(1):18–29.
	2.	 Hongyu L, Jiawei W, Dianne AC, Jennifer LM, David LC, José Jaime M-M, et al. Functional annotation of the 

human PTSD methylome identifies tissue-specific epigenetic variation across subcortical brain regions. medRxiv. 
2023:2023.04.18.23288704. https://​doi.​org/​10.​1101/​2023.​04.​18.​23288​704.

	3.	 Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, et al. Disease variants alter transcription factor 
levels and methylation of their binding sites. Nat Genet. 2017;49(1):131–8.

	4.	 McClay JL, Shabalin AA, Dozmorov MG, Adkins DE, Kumar G, Nerella S, et al. High density methylation QTL analysis in 
human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol. 2015;16:291.

	5.	 Lemire M, Zaidi SH, Ban M, Ge B, Aïssi D, Germain M, et al. Long-range epigenetic regulation is conferred by genetic 
variation located at thousands of independent loci. Nat Commun. 2015;6:6326.

	6.	 Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic identification of genetic influ-
ences on methylation across the human life course. Genome Biol. 2016;17:61.

	7.	 Huan T, Joehanes R, Song C, Peng F, Guo Y, Mendelson M, et al. Genome-wide identification of DNA methylation 
QTLs in whole blood highlights pathways for cardiovascular disease. Nat Commun. 2019;10(1):4267.

	8.	 Gao X, Thomsen H, Zhang Y, Breitling LP, Brenner H. The impact of methylation quantitative trait loci (mQTLs) on 
active smoking-related DNA methylation changes. Clin Epigenetics. 2017;9:87.

	9.	 Perzel Mandell KA, Eagles NJ, Wilton R, Price AJ, Semick SA, Collado-Torres L, et al. Genome-wide sequencing-
based identification of methylation quantitative trait loci and their role in schizophrenia risk. Nat Commun. 
2021;12(1):5251.

	10.	 Rahmani E, Schweiger R, Rhead B, Criswell LA, Barcellos LF, Eskin E, et al. Cell-type-specific resolution epigenetics 
without the need for cell sorting or single-cell biology. Nat Commun. 2019;10(1):3417.

	11.	 Wang J, Roeder K, Devlin B. Bayesian estimation of cell type-specific gene expression with prior derived from single-
cell data. Genome Res. 2021;31(10):1807–18.

	12.	 Zheng SC, Breeze CE, Beck S, Teschendorff AE. Identification of differentially methylated cell types in epigenome-
wide association studies. Nat Methods. 2018;15(12):1059–66.

	13.	 Westra HJ, Arends D, Esko T, Peters MJ, Schurmann C, Schramm K, et al. Cell specific eQTL analysis without sorting 
cells. PLoS Genet. 2015;11(5):e1005223.

	14.	 Leng C, Tran M-N, Nott D. Bayesian adaptive Lasso. Ann Inst Stat Math. 2014;66(2):221–44.
	15.	 Barkan SE, Melnick SL, Preston-Martin S, Weber K, Kalish LA, Miotti P, et al. The women’s interagency HIV study. WIHS 

Collab Study Group Epidemiol. 1998;9(2):117–25.
	16.	 Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006;101:1418–29.
	17.	 Iain MJ, Bernard WS. Needles and straw in haystacks: empirical bayes estimates of possibly sparse sequences. Ann 

Stat. 2004;32(4):1594–649.
	18.	 Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle P value generates irreproducible results. Nat Meth-

ods. 2015;12(3):179–85.
	19.	 Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as 

surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13(1):86.

https://doi.org/10.1101/2023.04.18.23288704


Page 26 of 27Cheng et al. Genome Biology          (2024) 25:273 

	20.	 Rahmani E, Schweiger R, Shenhav L, Wingert T, Hofer I, Gabel E, et al. BayesCCE: a Bayesian framework for estimat-
ing cell-type composition from DNA methylation without the need for methylation reference. Genome Biol. 
2018;19(1):141.

	21.	 Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious orders study and rush memory 
and aging project. J Alzheimers Dis. 2018;64(s1):S161–89.

	22.	 Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, et al. Genetic drivers of epigenetic and transcriptional 
variation in human immune cells. Cell. 2016;167(5):1398-414.e24.

	23.	 Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformat-
ics. 2014;30(4):523–30.

	24.	 Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, et al. Genomic and phenotypic insights from 
an atlas of genetic effects on DNA methylation. Nat Genet. 2021;53(9):1311–21.

	25.	 Morrow JD, Glass K, Cho MH, Hersh CP, Pinto-Plata V, Celli B, et al. Human lung DNA methylation quantitative trait 
loci colocalize with chronic obstructive pulmonary disease genome-wide association loci. Am J Respir Crit Care 
Med. 2018;197(10):1275–84.

	26.	 Foley CN, Staley JR, Breen PG, Sun BB, Kirk PDW, Burgess S, et al. A fast and efficient colocalization algorithm for 
identifying shared genetic risk factors across multiple traits. Nat Commun. 2021;12(1):764.

	27.	 Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, et al. Exploiting the GTEx resources to deci-
pher the mechanisms at GWAS loci. Genome Biol. 2021;22(1):49.

	28.	 Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep. 
2011;11(6):533–42.

	29.	 Lu Q, Powles RL, Abdallah S, Ou D, Wang Q, Hu Y, et al. Systematic tissue-specific functional annotation of the 
human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease. PLoS Genet. 
2017;13(7):e1006933.

	30.	 Tsai S, Shameli A, Santamaria P. CD8+ T cells in type 1 diabetes. Adv Immunol. 2008;100:79–124.
	31.	 Chen L, Li Z, Wu H. CeDAR: incorporating cell type hierarchy improves cell type-specific differential analyses in bulk 

omics data. Genome Biol. 2023;24(1):37.
	32.	 Elior R, Brandon J, Regev S, Brooke R, Lindsey AC, Lisa FB, et al. Calling differential DNA methylation at cell-type 

resolution: addressing misconceptions and best practices. bioRxiv. 2021:2021.02.14.431168. https://​doi.​org/​10.​1101/​
2021.​02.​14.​431168.

	33.	 Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. Single-cell genomics identifies cell type-
specific molecular changes in autism. Science. 2019;364(6441):685–9.

	34.	 Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al. Single-cell transcriptomic analysis of 
Alzheimer’s disease. Nature. 2019;570(7761):332–7.

	35.	 Oliva M, Demanelis K, Lu Y, Chernoff M, Jasmine F, Ahsan H, et al. DNA methylation QTL mapping across 
diverse human tissues provides molecular links between genetic variation and complex traits. Nat Genet. 
2023;55(1):112–22.

	36.	 van Lith M, McEwen-Smith RM, Benham AM. HLA-DP, HLA-DQ, and HLA-DR have different requirements for invariant 
chain and HLA-DM. J Biol Chem. 2010;285(52):40800–8.

	37.	 Qu H-Q, Qu J, Bradfield J, Marchand L, Glessner J, Chang X, et al. Genetic architecture of type 1 diabetes with low 
genetic risk score informed by 41 unreported loci. Commun Biol. 2021;4(1):908.

	38.	 Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunol. 
2017;6(12):e162.

	39.	 Michalek DA, Tern C, Zhou W, Robertson CC, Farber E, Campolieto P, et al. A multi-ancestry genome-wide association 
study in type 1 diabetes. Hum Mol Genet. 2024;33(11):958–68.

	40.	 Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome 
Biol. 2014;15(2): R31.

	41.	 Hannon E, Dempster EL, Davies JP, Chioza B, Blake GET, Burrage J, et al. Quantifying the proportion of different cell 
types in the human cortex using DNA methylation profiles. BMC Biol. 2024;22(1):17.

	42.	 Agashe C, Chiang D, Grishin A, Masilamani M, Jones SM, Wood RA, et al. Impact of granulocyte contamination on 
PBMC integrity of shipped blood samples: Implications for multi-center studies monitoring regulatory T cells. J 
Immunol Methods. 2017;449:23–7.

	43.	 Yi N, Ma S. Hierarchical shrinkage priors and model fitting for high-dimensional generalized linear models. Stat Appl 
Genet Mol Biol. 2012;11(6). https://​doi.​org/​10.​1515/​1544-​6115.​1803.

	44.	 Andrew G, Aleks J, Maria Grazia P, Yu-Sung S. A weakly informative default prior distribution for logistic and other 
regression models. Ann Appl Statist. 2008;2(4):1360–83.

	45.	 Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Genome-wide association study of 
14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

	46.	 Yiliang Z, Youshu C, Yixuan Y, Wei J, Qiongshi L, Hongyu Z. Estimating genetic correlation jointly using individual-
level and summary-level GWAS data. bioRxiv. 2021:2021.08.18.456908. https://​doi.​org/​10.​1101/​2021.​08.​18.​456908.

	47.	 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 
2011;88(1):76–82.

	48.	 Li Z, Guo Z, Cheng Y, Jin P, Wu H. Robust partial reference-free cell composition estimation from tissue expression. 
Bioinformatics. 2020;36(11):3431–8.

	49.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome asso-
ciation and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

	50.	 Siva N. 1000 Genomes project. Nat Biotechnol. 2008;26(3):256.
	51.	 Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and 

methods. Nat Genet. 2016;48(10):1284–7.
	52.	 Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan ST, et al. A coherent approach for analysis of the Illumina 

HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. 
Genome Biol. 2015;16:37.

https://doi.org/10.1101/2021.02.14.431168
https://doi.org/10.1101/2021.02.14.431168
https://doi.org/10.1515/1544-6115.1803
https://doi.org/10.1101/2021.08.18.456908


Page 27 of 27Cheng et al. Genome Biology          (2024) 25:273 	

	53.	 Schulz H, Ruppert A-K, Herms S, Wolf C, Mirza-Schreiber N, Stegle O, et al. Genome-wide mapping of genetic deter-
minants influencing DNA methylation and gene expression in human hippocampus. Nat Commun. 2017;8(1):1511.

	54.	 Pierce BL, Tong L, Argos M, Demanelis K, Jasmine F, Rakibuz-Zaman M, et al. Co-occurring expression and 
methylation QTLs allow detection of common causal variants and shared biological mechanisms. Nat Commun. 
2018;9(1):804.

	55.	 Li B, Aouizerat BE, Cheng Y, Anastos K, Justice AC, Zhao H, et al. Incorporating local ancestry improves identification 
of ancestry-associated methylation signatures and meQTLs in African Americans. Commun Biol. 2022;5(1):401.

	56.	 Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, Small KS, et al. The presence of methylation quantita-
tive trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS ONE. 
2013;8(2):e55923.

	57.	 Cavalcante RG, Sartor MA. annotatr: genomic regions in context. Bioinformatics. 2017;33(15):2381–3.
	58.	 Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 

2012;9(3):215–6.
	59.	 Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, et al. Properties of the K562 cell line, derived from a 

patient with chronic myeloid leukemia. Int J Cancer. 1976;18(4):421–31.
	60.	 Fisher RA. On the Interpretation of χ2 from Contingency Tables, and the Calculation of P. J Roy Stat Soc. 

1922;85(1):87–94.
	61.	 Bedrick EJ, Hill JR. [A Survey of Exact Inference for Contingency Tables]: Comment. Stat Sci. 1992;7(1):153–7.
	62.	 da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinfor-

matics resources. Nat Protoc. 2009;4(1):44–57.
	63.	 da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive func-

tional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.
	64.	 Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequenc-

ing data. Nucleic Acids Res. 2010;38(16):e164.
	65.	 Cheng Y, Dao C, Zhou H, Li B, Kember RL, Toikumo S, et al. Multi-trait genome-wide association analyses leverag-

ing alcohol use disorder findings identify novel loci for smoking behaviors in the million veteran program. Transl 
Psychiatry. 2023;13(1):148.

	66.	 Cheng Y, Justice A, Wang Z, Li B, Hancock DB, Johnson EO, et al. Cis-meQTL for cocaine use-associated DNA meth-
ylation in an HIV-positive cohort show pleiotropic effects on multiple traits. BMC Genomics. 2023;24(1):556.

	67.	 Thom CS, Voight BF. Genetic colocalization atlas points to common regulatory sites and genes for hematopoietic 
traits and hematopoietic contributions to disease phenotypes. BMC Med Genomics. 2020;13(1):89.

	68.	 Wellcome trust case control consortium. 2009. https://​www.​wtccc.​org.​uk.
	69.	 AMP-AD knowledge portal. 2014. https://​adkno​wledg​eport​al.​synap​se.​org.
	70.	 Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of genotypes and 

phenotypes. 2007. https://​www.​ncbi.​nlm.​nih.​gov/​gap.
	71.	 Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Ardlie K, et al. Publicly available GWAS summary statistics, 

harmonized and imputed to GTEx v8’ variant reference. 2020. Zenodo. https://​doi.​org/​10.​5281/​zenodo.​36297​42.
	72.	 Cheng Y. YoushuCheng/HBI: HBI (v1.0.0). Zenodo. 2024. https://​doi.​org/​10.​5281/​zenodo.​13131​440.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.wtccc.org.uk
https://adknowledgeportal.synapse.org
https://www.ncbi.nlm.nih.gov/gap
https://doi.org/10.5281/zenodo.3629742
https://doi.org/10.5281/zenodo.13131440

	HBI: a hierarchical Bayesian interaction model to estimate cell-type-specific methylation quantitative trait loci incorporating priors from cell-sorted bisulfite sequencing data
	Abstract 
	Background
	Results
	Estimation of CTS-meQTLs using HBI
	HBI improves performance in simulations
	Genome-wide CTS-meQTLs identification using HBI
	CTS meQTLs colocalize with risk variants for complex traits
	MeQTL-GWAS colocalizations exhibit enrichment in trait-relevant cell types

	Discussion
	Conclusions
	Methods
	Statistical model
	EM-IWLS algorithm for model fitting and inference
	Simulation settings
	Study cohort for real data applications
	Genotyping, imputation, and quality control
	DNA methylation
	CTS-meQTL estimation and replication
	MeQTL enrichment in genomic functional annotations
	Pathway analyses based on identified CTS-meQTLs
	Colocalization of meQTL with GWAS loci
	Cell type-specific enrichment in meQTL-GWAS colocalizations

	Acknowledgements
	References


