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Abstract: Background: Osteosarcomas are rare malignancies (<1% of all cancers) that produce an
osteoid matrix. Osteosarcomas are the second most frequent type of primary bone tumor after
multiple myeloma and the most prevalent primary bone tumor in children. The spectrum of imaging
findings of these malignancies varies significantly, reflecting different histological subtypes. For
instance, conventional osteosarcoma typically presents with a mixed radiological pattern (lytic and
bone mineralization) or with a completely eburneous one; aggressive periosteal reactions such as
sunburst, Codman triangle, and soft-tissue components are frequently displayed. On the other hand,
telangiectatic osteosarcoma usually presents as a purely lytic lesion with multiple fluid–fluid levels
on MRI fluid-sensitive sequences. Other typical and atypical radiological patterns of presentation
in other subtypes of osteosarcomas are described in this review. In addition to the characteristics
associated with osteosarcoma subtyping, this review article also focuses on imaging features that have
been associated with patient outcomes, namely response to chemotherapy and event-free and overall
survivals. This includes simple semantic radiological features (such as tumor dimensions, anatomical
location with difficulty of radical surgery, occurrence of pathological fractures, and presence of distant
metastases), but also quantitative imaging parameters from diffusion-weighted imaging, dynamic
contrast-enhanced MRI, and 18F-FDG positron emission tomography and radiomics approaches.
Other particular features are described in the text. Overall, this comprehensive literature review
aims to be a practical tool for oncologists, pathologists, surgeons, and radiologists involved in these
patients’ care.

Keywords: sarcoma; osteosarcoma; magnetic resonance imaging; diagnostic imaging; computed
tomography; positron emission tomography; prognosis; response to treatment

1. Introduction

Osteosarcomas are malignant mesenchymal tumors that develop from bone-forming
sarcomatous cells and are the most common type of primary bone cancer—apart from those
originating in the bone marrow [1,2]. Although considered rare, osteosarcomas account for
about 20% of all primary bone tumors, making them the second most common malignant
bone tumor after multiple myeloma. Osteosarcomas can be categorized as primary or
secondary, with secondary osteosarcomas arising from a pre-existing condition or as a con-
sequence of prior treatments, such as radiotherapy. The World Health Organization (WHO)
classifies primary osteosarcomas into different subtypes, namely conventional (osteoblastic,
fibroblastic, and chondroblastic), telangiectatic, low-grade central, small cell, parosteal,
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periosteal, and high-grade surface osteosarcomas [3,4]. Otherwise, secondary osteosarco-
mas represent malignant degeneration of benign entities such as Paget disease, large bone
infarction, or post-radiotherapy. Osteosarcomas are also favored by germline abnormalities,
such as Li–Fraumeni syndrome, Werner syndrome, or hereditary retinoblastoma [5].

These malignancies tend to show a dual peak of incidence: one in children, adolescents,
and young adults and one in elderly patients (which, in this case, are more frequently
secondary osteosarcoma and arise from plate bone). An older age has previously been
associated with lower overall survival (OS) and event-free survival (EFS) [6,7].

Primary osteosarcomas typically prefer the meta-diaphysis of the long bones as the
site of occurrence. In particular, the distal femur and proximal tibial represent about 50–65%
of all sites. However, proximal locations in the femur and axial skeletons remain possible
and have been linked to lower EFS, OS, and survival after metastasectomy [6–8].

A rare form of osteosarcomas is extraskeletal osteosarcoma (ESOS), which represents
about 1% of all soft-tissue sarcomas and does not demonstrate any connection to the
skeleton. It has the ability to form cartilaginous and osteoid matrices. Histologically, ESOS
is completely indistinguishable from the classic osteogenic type. ESOS tends to present
around the fifth to sixth decades of life, with a minor prevalence in men. It most frequently
localizes to the lower limb in almost 50% of patients [9].

Further epidemiological characteristics depending on the osteosarcoma subtype are
summarized in Table 1.

Table 1. The epidemiological features of the subtypes of osteosarcoma.

Osteosarcoma Subtype Frequency Age and Sex Prevalence Skeletal Regions Most Frequently
Involved

Conventional high-grade
osteosarcoma 1 75–80% 10–20 years old; M:F = 1.5:1 Distal femoral bone, proximal tibia, or

humerus (70%)

Telangiectatic 1 2–12% 10–20 years old; M:F = 1.5:1 Around knee or shoulder joint (70%)

Secondary 1 4% 50–80 years old; M:F = 1.5:1 Around knee or hip joint

High grade of bone surface 1 1–2% 10–40 years old;
M:F = 1.5:1

Tibia and femur (both near knee and in
diaphysis)

Small cell 1 1% 5–25 years old;
M:F = 1:1.5 Around knee joint

Extraskeletal 1,* 2–5% 50–80 years old;
M:F = 1:1.5 Thigh (soft tissue)

Parosteal 2 <4% 10–45 years old; M:F = 1:1.5 Around knee joint (in 60% of cases,
posterior aspect of distal femur)

Central low-grade 2 2–3% 10–50 years old;
M:F = 1:1 Around knee joint

Periosteal 2 >1% 10–20 years old; M:F = 1.5:1 Tibia and femur (both near knee and
in diaphysis)

1 High grade, 2 low grade, * soft-tissue location.

The diagnosis of osteosarcoma is confirmed through a pathological examination of
biopsies, which must be properly sampled by an interventional radiologist, an oncologic
radiologist with expertise in image-guided biopsy, or a surgeon from a bone sarcoma refer-
ence center. The biopsy should be performed using a co-axial technique, and the biopsy
tract must be clearly marked to ensure its removal during curative surgery. Currently,
curative management for patients with high-grade osteosarcoma includes perioperative
chemotherapy (with doxorubicin, cisplatin, and methotrexate as the most common regi-
men), which has significantly improved the disease-free survival and R0 surgery [8]. A
good response to neoadjuvant chemotherapy (defined as a necrosis rate > 90% of surgical
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specimen) is a strong but insufficient predictor of EFS and OS [10]. Afterwards, adjuvant
chemotherapy is indicated [8].

In this comprehensive review, we aim to provide an overview of the role of imaging
in the assessment of patients with osteosarcoma through the assessment of the imaging
features associated with the diagnosis of osteosarcoma and its subtypes, the response to
treatments, and, subsequently, EFS and OS.

2. Initial Radiological Features Associated with the Diagnosis of Osteosarcoma and Its
Histological Subtypes
2.1. Imaging Modalities Recommended for Local, Regional, and Distant Staging in Osteosarcomas

Investigations should always start with conventional radiographs including two
orthogonal planes and the entire bone.

A CT-scan is not mandatory but can be helpful to better examine the tumor matrix,
notably calcification or bone formation, and the periosteal reaction. Hence, contrast-
medium injection is generally not required.

If a malignancy cannot absolutely be excluded, radiographs must be complemented
with contrast-enhanced MRI without delay. Indeed, the time to the final diagnosis and start
of treatment should be as short as possible as it has been linked to patient outcome [11].
The MRI protocol should comprise at least T1-weighted imaging (WI) and T2-WI with
and without fat suppression, followed by contrast-enhanced T1-WI with a slice thickness
between 3 and 5 mm and in a plane resolution <1 × 1 mm2. The sequences must be acquired
in at least two orthogonal planes. All of these sequences can be acquired using the DIXON
method, which, notably, enables an analysis of the fat replacement due to the tumor on the
fat phase, the peritumoral edema on the water phase of the T2-WI, and the hemorrhagic
components on the water phase of the T1-WI in addition to the true T1 and true T2 signals
of the bone tumor [12]. It is crucial to include at least one acquisition with a large field of
view covering the whole bone in order not to miss a ‘skip metastasis’, i.e., a distinct bone
metastasis in the remaining of the involved bone. It must be noted that baseline quantitative
and functional MRI sequences, such as diffusion-weighted imaging (DWI) and dynamic-
contrast enhanced MRI (DCE-MRI), can be helpful to evaluate the response to neoadjuvant
treatments if a high-grade osteosarcoma is confirmed [13]. Interestingly, pseudo-CT MRI
sequences with very short echo times can be useful to depict mineralization, osteolysis, the
periosteal reaction, and destructions, but they are still to be evaluated in this context [14].

These examinations (X-rays ± CT scan and contrast-enhanced MRI) must be available
to guide the biopsy.

Regarding the assessment of metastatic spreading, different options can be discussed
depending on their availability [8]. The spread of the disease can at least be evaluated with
chest CT and bone scintigraphy. However, it must be noted that (i) whole-body 18-fluoro
2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) CT, possibly combined
with iodinated contrast-medium injection, and (ii) whole-body MRI are increasingly used
for distant staging [8].

2.2. Radiological Findings on Conventional Radiographs

In both imaging and histology, conventional and secondary osteosarcomas are indis-
tinguishable. They appear as aggressive, destructive bone masses with cloudlike bone
formation and permeative osteolysis in long bones, which are classified as types II and
III according to the Lodwick classification [15], and as a mass arising from a pre-existing
condition, respectively [2].

On conventional radiographs, i.e., first-line imaging, high-grade conventional os-
teosarcomas manifest as permeative lytic or mixed lesions with cortical erosion; periosteal
reactions such as Codman triangle (Figure 1), sunburst, or hair-on-end patterns; and no
sclerotic margins (on the contrary, blurry and irregular), which reflect their aggressive
malignant nature [5,15]. It must be noted that small cell osteosarcoma, a very rare subtype
of conventional high-grade osteosarcomas, lacks distinctive radiological features.
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Figure 1. Periosteal reactions encountered on radiographs of osteosarcoma. (A) Conventional
radiography of the left knee (AP projection) in an 11-year-old male with osteosarcoma of the proximal
tibia presenting as a mixed (mainly lytic) pattern with an aggressive periosteal reaction: the ‘Codman
triangle’ type (arrows). (B) Conventional radiography of the right thigh in a 55-year-old female with
osteosarcoma of the distal femur presenting as a mixed (mainly eburneus) pattern with an aggressive
periosteal reaction: the ‘Sunburst’ type (dotted arrow).

The other histological subtypes can demonstrate different radiological appearances
that could guide diagnosis.

For instance, osteoblastic osteosarcoma and low-grade central osteosarcoma can
present as a purely sclerotic pattern (Figure 2) and can be misdiagnosed as giant osteoma
and enostosis [2,4,15–20]. Occasionally, it can be misdiagnosed with fibrous dysplasia on
X-rays, as these bone tumors can also display both lytic and sclerotic areas in addition to a
ground glass appearance.
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Figure 2. Pure bone-forming osteosarcoma. Conventional radiograph of the right knee (AP projection)
of a 10-year-old female diagnosed with conventional (osteoblastic) osteosarcoma of the proximal tibia.
A purely sclerotic pattern is observed at the proximal metaphysis of the tibia (arrow).

Parosteal osteosarcomas arise from the outer layer of the periosteum, in general at
the posterior face of the metaphysis of the distal femoral bone. They present as rather
well-defined lobulated and exophytic masses with dense central mineralization and a thin
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radiolucent line separating them from the normally appearing cortex (Figure 3). Classical
differential diagnoses include surface cartilaginous tumors, notably periosteal chondrosar-
coma. Parosteal osteosarcomas are considered to have a good prognosis (5-year OS of about
85–90%), though they can transform to high-grade osteosarcoma with poorer OS.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 5 of 24 
 

 

Figure 2. Pure bone-forming osteosarcoma. Conventional radiograph of the right knee (AP projec-
tion) of a 10-year-old female diagnosed with conventional (osteoblastic) osteosarcoma of the proxi-
mal tibia. A purely sclerotic pattern is observed at the proximal metaphysis of the tibia (arrow). 

Parosteal osteosarcomas arise from the outer layer of the periosteum, in general at 
the posterior face of the metaphysis of the distal femoral bone. They present as rather well-
defined lobulated and exophytic masses with dense central mineralization and a thin ra-
diolucent line separating them from the normally appearing cortex (Figure 3). Classical 
differential diagnoses include surface cartilaginous tumors, notably periosteal chondro-
sarcoma. Parosteal osteosarcomas are considered to have a good prognosis (5-year OS of 
about 85–90%), though they can transform to high-grade osteosarcoma with poorer OS. 

 
Figure 3. Parosteal osteosarcoma of the distal diaphysis of the femoral bone of a 20-year-old woman. 
(A) Conventional radiograph (AP projection) showing a bone-forming tumor at the surface of the 
diaphysis (white arrows). A CT scan can be useful to better depict the relationship to the cortex and 
periosteum (B,C). In particular, a thin radiolucent cleavage line separates the tumor from the bone 
cortex (black arrows). 

Periosteal ostesarcomas are other surface osteosarcomas arising from the inner ger-
minative layer of the periosteum. They are considered intermediate-grade OS. They are 
much more lytic than parosteal osteosarcomas and combine irregular and spiculated cor-
tical involvement with a heterogeneous mixed mass spreading in the soft tissue (Figure 
4). Subtle lucency can be observed in the cortex and medulla. The periosteal reaction is 
often perpendicular to the cortex. 

The last surface osteosarcoma corresponds to high-grade surface osteosarcomas, 
which resemble periosteal osteosarcomas but with a more aggressive presentation due to 
circumferential bone involvement, a larger size of up to 22 cm, and more extensive peri-
osteal reactions and bone destruction. 

Telangiectatic osteosarcomas are an atypical variant of osteosarcoma that can mimic 
primary and secondary aneurysmal bone cysts (for instance, secondary to giant cell tu-
mors). This is due to the large hemorrhagic and necrotic cystic areas that make up almost 
the entire mass [2]. Asymmetric expansion, bone lysis, and an aggressive growth rate with 
limited periosteal reaction and poor bone component are other usual radiographic presen-
tations of telangiectatic osteosarcomas. 

ESOS frequently show up on radiographs as soft-tissue opacity with varying degrees 
of mineralization, which develop gradually with time (Figure 5) [9]. 

Figure 3. Parosteal osteosarcoma of the distal diaphysis of the femoral bone of a 20-year-old woman.
(A) Conventional radiograph (AP projection) showing a bone-forming tumor at the surface of the
diaphysis (white arrows). A CT scan can be useful to better depict the relationship to the cortex and
periosteum (B,C). In particular, a thin radiolucent cleavage line separates the tumor from the bone
cortex (black arrows).

Periosteal ostesarcomas are other surface osteosarcomas arising from the inner germi-
native layer of the periosteum. They are considered intermediate-grade OS. They are much
more lytic than parosteal osteosarcomas and combine irregular and spiculated cortical
involvement with a heterogeneous mixed mass spreading in the soft tissue (Figure 4).
Subtle lucency can be observed in the cortex and medulla. The periosteal reaction is often
perpendicular to the cortex.
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Figure 4. Periosteal osteosarcoma. Conventional radiography of the ankle (lateral projection) of
a 13-year-old female with periosteal osteosarcoma of the distal tibia (meta-diaphyseal region); a
disorganized aggressive periosteal reaction with partial superficial cortical disruption is seen on the
anterior aspect of the tibia (arrow).
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The last surface osteosarcoma corresponds to high-grade surface osteosarcomas, which
resemble periosteal osteosarcomas but with a more aggressive presentation due to circum-
ferential bone involvement, a larger size of up to 22 cm, and more extensive periosteal
reactions and bone destruction.

Telangiectatic osteosarcomas are an atypical variant of osteosarcoma that can mimic
primary and secondary aneurysmal bone cysts (for instance, secondary to giant cell tumors).
This is due to the large hemorrhagic and necrotic cystic areas that make up almost the entire
mass [2]. Asymmetric expansion, bone lysis, and an aggressive growth rate with limited
periosteal reaction and poor bone component are other usual radiographic presentations of
telangiectatic osteosarcomas.

ESOS frequently show up on radiographs as soft-tissue opacity with varying degrees
of mineralization, which develop gradually with time (Figure 5) [9].
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Figure 5. Conventional radiograph of the pelvis of a 51-year-old female diagnosed with extraskeletal
osteosarcoma of the right proximal thigh in the abductor region. A mineralized mass with irregular
large calcifications/ossifications can be observed (arrow).

Radiographic investigation has limitations in precisely depicting the tumor matrix
(i.e., chondroid, osteoid, hemorrhagic, fibrous, or cystic), the medullary involvement, and
spreading in soft tissue; thus, for specific anatomical regions, such as the spine, iliac
bones, or posterior parts of the vertebrae, where tissues overlap on 2D planes, traditional
radiography is inadequate.

2.3. Radiological Findings on CT

A CT-scan is required as a complementary investigation to conventional radiographs.
When radiographs are insufficient due to limited contrast resolution, multidetector CT
enables detailed anatomical delineation and evaluation of the lesions in complex anatomical
locations [21]. In addition, a CT-scan can show small calcifications, tumor mineralization,
cortical alterations, and periosteal responses with greater accuracy than plain X-rays. A
CT-scan allows to better appreciate the proportion of mineralized matrix compared to X-ray
and MRI.
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2.4. Radiological Findings on MRI

In MRI, the classic appearance of osteosarcoma is a mass with inhomogeneous low
signal intensity on T1-WI sequence, high signal intensity on T2-WI, and intense enhance-
ment after gadolinium chelate injection. However, bone-forming areas can display a low
signal intensity on all sequences. The chondroid signal can be encountered in periosteal
and parosteal osteosarcomas as well as dedifferentiated osteosarcomas. This signal is
recognized as a low signal intensity on T1-WI, a very high signal intensity on T2-WI and
heterogeneous, rather peripheral and lobulated contrast enhancement. Necrotic areas are
characterized by a heterogeneous signal on T1-WI, possibly high after fat suppression due
to bleeding, a high signal intensity on T2-WI, and no contrast enhancement.

It must be noted that fat-suppressed T2-WI can overestimate the real intramedullary
extent of the tumor because of false positive findings due to peritumoral reactive marrow
edema, and, in children, red marrow hyperplasia [22,23]. Hence, DIXON fat imaging and
fat-suppressed contrast-enhanced T1-WI can be helpful to better depict the tumor margins.

MRI is also the best imaging modality to evaluate the extraskeletal soft-tissue compo-
nent of osteosarcomas (Figure 6).
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Figure 6. Soft tissue spreading in conventional high-grade osteosarcoma affecting the left femoral
bone diaphysis in a 20-year-old male. (A) Coronal T1-weighted imaging (WI) showing the irregular
intra-medullary involvement with a low signal intensity (white arrow) and a soft-tissue extension
(black asterisk). (B) Axial T2-WI with fat suppression showing ill-defined soft-tissue spreading
with high, heterogeneous signal intensities on T2-WI. Of note, the extra-osseous was automatically
segmented (green line) for a further volumetric follow-up during neoadjuvant treatments.

A typical MRI characteristic observed in telangiectatic osteosarcomas is the presence
of fluid–fluid levels (Figure 7). MRI can also detect thick and irregular septa predominantly
arranged in the edge and a solid enhancing component [24,25]. These septa represent the
vital component of the lesion, so they may have a contextual bone matrix and will show
vivid enhancement after contrast administration (Figure 7).

Regarding extraskeletal osteosarcoma, both CT and MRI highlight well the complete
discontinuity with neighboring bone segments. Contrast-enhanced T1-WI can demonstrate
inhomogeneous enhancement due to the presence of areas of necrosis and mineraliza-
tion together with a peripheral ‘rim’ enhancement (Figure 8) [9]. A classical differential
diagnosis of extraskeletal osteosarcoma is myositis ossificans. To distinguish them, it
can be useful to assess the presence of mature bone matrix with a predominantly periph-
eral arrangement, which is more frequently encountered in ossificans myositis and not
osteosarcoma—though the specificity and sensitivity of this sign have not been evaluated.
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Other potential differential diagnoses include post-traumatic sequelae of bone avulsions at
the tendon enthesis.
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Figure 7. Conventional radiography of the left knee ((A) anteroposterior view) of a 13-year-old male
with telangiectatic osteosarcoma of the distal femur metaphysis. A central expansile lytic lesion with
limited multilayered periosteal reaction and sharply ill-defined margins can be observed (arrow).
MRI ((B) axial T2-WI) shows multiple fluid–fluid levels with septa (star) and a concomitant solid area
within the anterior aspect of the lesion (dotted arrow).
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Figure 8. MRI of a high-grade extraskeletal osteosarcoma of the right thigh diagnosed in an 83-year-
old male. (A) Coronal T1-weighted imaging (WI), (B) fat-suppressed coronal T2-WI, and (C) coronal
T1-WI with gadolinium chelate injection. The tumor was seated deep in the anterior compartment
of the thigh (arrows) and demonstrated a peritumoral edema (dashed arrows above and below the
tumor) and inhomogeneous enhancement with internal necrosis (star).

A summary of the wide spectrum of imaging features of different osteosarcoma
subtypes at diagnosis is provided in Table 2.
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Table 2. A summary of the main radiologic features of initial presentations of the different osteosar-
coma subtypes.

Osteosarcoma Subtype Radiologic Pattern Periosteal Reaction Other Imaging Features

Conventional osteosarcoma Mixed (lytic and sclerotic) or
completely eburneous

Sunburst, Codman triangle,
other irregular/aggressive

types

Soft-tissue components
frequently displayed

Telangiectatic Purely osteolytic None or thin regular
Multicystic pattern with

fluid–fluid levels and solid
components on MRI

Secondary Lytic heterogeneous Aggressive types Different depending on
pre-existing lesions

High-grade of bone surface

Mixed mineralized and
non-mineralized soft-tissue

components without cleavage
with bone cortex

Uncommon
Cortex erosion (50%),

intramedullary involvement
(50%)

Small cell Usually similar to classic
osteosarcoma

Usually similar to classic
osteosarcoma

Usually similar to classic
osteosarcoma

ESOS

Soft-tissue mass with
inhomogeneous contrast

enhancement, various degrees
of internal necrosis

None Internal mineralization
frequently displayed (60%)

Parosteal

Lobulated osseous mass fused
with cortical bone, usually

with large dimensions, broad
implant base

None, non-aggressive ones, or
only cortical thickening

Cauliflower-like mass, thin
linear cleavage between

portions of tumor and cortical
bone, frequent intramedullary

involvement

Central low grade Lytic, eburneous, or mixed,
usually with large dimensions

If present,
regular/non-aggressive Soft-tissue mass (50%)

Periosteal Periosteal dense mass with
well-defined borders

None or sometimes Codman
triangle

Cortex may be intact or focally
eroded, but bone canal is not

involved

3. Metastatic Patterns of Osteosarcoma

Osteosarcomas have a high tendency to metastasize. The hematogenous route is the
most common spreading, and the lung is the most frequently affected organ. Indeed, about
10–20% of subjects affected by osteosarcoma present with synchronous metastases at the
initial stage [26]. The most frequent metastatic site is the lung (80%), followed by the
bones (30–35%) and lymph nodes (2%). If a metastatic disease is present at diagnosis, the
prognosis of patients dramatically decreases from 60–70% to 10–30% in 5 years [26]. In
addition, metachronous lung metastases occur in 40–55% of patients.

Thus, it is recommended to perform a thorax, abdomen, and pelvic contrast-enhanced
CT-scan for distant staging and, after treatments, to detect distant recurrence. The place
of 18F-FDG PET/CT is still controversial, but it appears more efficient to diagnose bone
metastases compared to CT-scan alone [27]. Hence, the pooled sensitivity of PET/CT
for detecting bone metastases in a meta-analysis of six studies was 93% with a pooled
specificity of 97% [28].

Whole-body MRI (WB-MRI) could be an interesting alternative to detect metastatic
spreading [29]. In a retrospective study of 36 patients with osteosarcoma, WB-MRI showed
a sensitivity of 100%, a specificity of 96.3%, an accuracy of 97.3%, a negative predicted
value (NPV) of 100%, and a positive predicted value (PPV) of 90.9% [30]. Moreover, in a
prospective cohort of 54 patients with both Ewing sarcoma and osteosarcoma, Aryal et al.
showed no significant difference in terms of diagnostic performances for detecting bone
metastases between WB-MRI, 18F-FDG PET/CT, and 99mTc-MDP skeletal scintigraphy [31].
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The optimization of the WB-MRI protocol with 3D Turbo Spin Echo DIXON sequences,
high-quality DWI, and deep learning could enhance those diagnostic performances [32].

Regarding skip metastases (Figure 9), Saifuddin et al. demonstrated that their preva-
lence was about 16%. Skip metastases were significantly associated with the presence of
lung metastases (OR = 4.81, p < 0.001), other skeletal metastases (OR = 8.09, p < 0.001), and
lower survivals (5-year OS = 45% with skip metastases versus 67% without; p < 0.001), but
not with the response to chemotherapy in a large cohort of 241 patients with appendicular
osteosarcomas [33]. It is still debated whether these skip lesions are primary synchronous
localizations of disease due to spread either by contiguity or due to systemic spread. Over-
all, their reported prevalences range from 1% to 25%, which is likely due to variations in
the methods used for detection (imaging versus histopathologic analysis) [34].
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Figure 9. Skip metastasis. Coronal T1-weighted imaging (WI) (A) and view of 18F-FDG PET/CT (B)
of 9-year-old female showing principal osteosarcoma mass of right distal femur (asterisks) together
with proximal ‘skip metastasis’ (arrows).

Multifocal osteosarcomas, or multicentric osteosarcomas, refer to osteosarcomas diag-
nosed with many bone metastases without lung metastasis. This can be considered as the
occurrence of multiple synchronous bone metastases. In such cases, the radiologic pattern
is almost constantly completely eburneous [35].

Lung involvement occurs by the hematogenous spread of tumor cells, which may
manifest first as micronodules and then form coarse solid masses. According to Marcove
et al., pulmonary metastases are almost always the first site of repetitive locations [36]. Dif-
ferentiating between benign and malignant lung nodules in individuals with osteosarcoma
can be difficult in cases of small nodule sizes [37–39].

Pulmonary metastases from osteosarcoma do not have pathognomonic features to
distinguish them from other non-neoplastic diseases such as intrapulmonary lymph nodes,
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calcified sequela nodules, or chronic inflammation. Therefore, the most important parame-
ter to consider is the size of the nodule; if it is >5 mm, it should be considered suspicious
for malignancy, as demonstrated by the studies by Brader et al. [37] and Ghosh et al. [38].
In about 60% of cases, osteosarcoma lung metastases are partially or completely calcified,
which can also be helpful (Figure 10) [38].
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Figure 10. Mineralized bone metastases from extraskeletal osteosarcoma. Axial CT scan (lung kernel)
in 54-year-old woman with calcified pulmonary (arrows) and mediastinal (asterisk) metastases.

As shown by Bacci et al. [40], the number of lung metastases seems to correlate with
the rapidity of onset. Indeed, early lung metastases tend to be found in greater numbers
than late lung metastases, which are generally found in lower numbers.

The main metastatic patterns of osteosarcomas are summarized in Table 3.

Table 3. Metastatic patterns of osteosarcoma.

Metastases at Diagnosis Lung Involvement Bone Involvement

15–20%

80% 10–30%

60% calcified or ossified 10–25% skip metastases, while
locations in other bones are rarer40% non-calcified

4. Associations between Imaging Features and Patient Outcomes

As previously explained, therapeutic management in high-grade osteosarcomas re-
lies on neoadjuvant chemotherapy followed by curative surgery. Several studies have
demonstrated that a good response to neoadjuvant chemotherapy, i.e., >90% necrosis on
a surgical specimen according to Huvos et al., is a strong independent predictor of EFS
and OS as well as the quality of the surgical resection [6]. Consequently, it is crucial for
imaging to distinguish good and poor responders as early as possible in order to adapt the
systemic treatments. Three types of predictive features or imaging biomarkers extracted
from medical images will be detailed in order of simplicity and development: (i) semantic
radiological features, (ii) numerical features from quantitative and functional imaging, and
(iii) radiomics features and models (Table 4).
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Table 4. A summary of the main qualitative features derived from imaging studies associated with a
poor prognosis in patients with osteosarcoma.

Imaging Feature Clinical Significance

- Large tumor size and volume
(longest diameter > 7–10 cm, volume > 150 mL,

volume >1/3 of involved bone)
- Increased tumor volume and diameter during

NACT

- Lower response rate to NACT
- Decreased OS and EFS

- Intra-articular tumor spreading
- Difficult to perform limb-sparing surgery

- Increased risk of local recurrence
- Decreased OS

- Proximity to major blood vessels
- Difficult to perform limb-sparing surgery

- Increased risk of local recurrence
- Decreased OS

- Location in difficult sites for surgery
(axial skeleton, girdles, skull base, proximal

humerus, or femur)

- Impossibility of surgery or difficulty in
removing whole tumor
- Decreased OS and EFS

- Occurrence of pathological fracture

- Tumor spread outside of bone and/or
hematic spread

- Decreased OS and increased risk of local
recurrence (debated)

- Presence of distant metastases - Decreased OS

- MRI signal of internal hemorrhagic areas * - Decreased OS

- MRI signal intensity inhomogeneity (T2-WI) * - Decreased OS

- Necrotic area > 50% of tumor volume - Lower response rate

- Peritumoral soft tissue edema
- No decrease in peritumoral edema during

NACT
- Lower response rate to NACT

* Extraskeletal osteosarcomas. Abbreviations: EFS: event-free survival, NACT: neoadjuvant chemotherapy, OS:
overall survival, WI: weighted imaging.

4.1. Associations with the Response to Neoadjuvant Chemotherapy

Clinical studies have identified patient characteristics linked to the response to chemother-
apy. Recently, in a retrospective cohort of 1702 patients, Bielack et al. showed that lower
response rates were observed in male patients, axial tumors, and in patients with a long
history of symptoms [6]. However, MRI is the best imaging modality to assess the initial
tumor and monitor its changes during treatments [8].

4.1.1. Semantic Radiological Findings

Semantic radiological findings refer to characteristics that are captured and explainable
by radiologists.

In a retrospective cohort of 57 patients, Holscher et al. showed that an increase in the
tumor volume or no decrease in the amount of peritumoral edema between the baseline
MRI and post-chemotherapy MRI could help identify poor responders. However, no odds
ratio or multivariable analyses were performed in this study from 1992 (Figure 11) [41].

Recently, Kanthawang et al. evaluated another retrospective cohort of 95 patients with
newly diagnosed high-grade osteosarcoma who underwent pre-treatment conventional
MRI and had a post-chemotherapy histologic response. They found that a high tumor
volume > 150 mL, a longest diameter > 7 cm, a necrotic area > 50% of the tumor volume,
intra-articular spreading, and peritumoral soft-tissue edema were associated with a poor
response in a univariable analysis (Figure 12) [42]. Additionally, the initial longest diameter
and tumor volume were confirmed as independent predictors of the histologic response in
multivariable analysis [42].



J. Clin. Med. 2024, 13, 5710 13 of 24

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 13 of 24 
 

 

- Peritumoral soft tissue edema 
- No decrease in peritumoral edema during NACT 

- Lower response rate to NACT 

* Extraskeletal osteosarcomas. Abbreviations: EFS: event-free survival, NACT: neoadjuvant chemo-
therapy, OS: overall survival, WI: weighted imaging. 

4.1. Associations with the Response to Neoadjuvant Chemotherapy 
Clinical studies have identified patient characteristics linked to the response to chem-

otherapy. Recently, in a retrospective cohort of 1702 patients, Bielack et al. showed that 
lower response rates were observed in male patients, axial tumors, and in patients with a 
long history of symptoms [6]. However, MRI is the best imaging modality to assess the 
initial tumor and monitor its changes during treatments [8]. 

4.1.1. Semantic Radiological Findings 
Semantic radiological findings refer to characteristics that are captured and explain-

able by radiologists. 
In a retrospective cohort of 57 patients, Holscher et al. showed that an increase in the 

tumor volume or no decrease in the amount of peritumoral edema between the baseline 
MRI and post-chemotherapy MRI could help identify poor responders. However, no odds 
ratio or multivariable analyses were performed in this study from 1992 (Figure 11) [41]. 

 
Figure 11. Examples of radiological features associated with a good histologic response. A 13 year-
old boy diagnosed with a high-grade osteoblastic osteosarcoma of the distal right femoral bone was 
treated with perioperative chemotherapy. (A) Initial coronal STIR T2-weighted imaging showed the 
tumor with intramedullary edema (white asterisk) and extensive peritumoral edema in the sur-
rounding tissues (with arrows). (B) At the end of chemotherapy, the tumor contours were better 
defined with a marked decrease in the intramedullary and soft-tissue edema. (C) Initial 18F-FDG 
PET/CT showing a moderately hypermetabolic tumor (baseline SUVmax = 5.65). The pathological 
analysis of the curative surgical resection revealed a good response (necrosis rate = 94.5%) and R0 
margins. The patient is still alive without relapse 8 years later. 

Figure 11. Examples of radiological features associated with a good histologic response. A 13 year-old
boy diagnosed with a high-grade osteoblastic osteosarcoma of the distal right femoral bone was
treated with perioperative chemotherapy. (A) Initial coronal STIR T2-weighted imaging showed
the tumor with intramedullary edema (white asterisk) and extensive peritumoral edema in the
surrounding tissues (white arrows). (B) At the end of chemotherapy, the tumor contours were better
defined with a marked decrease in the intramedullary and soft-tissue edema. (C) Initial 18F-FDG
PET/CT showing a moderately hypermetabolic tumor (baseline SUVmax = 5.65). The pathological
analysis of the curative surgical resection revealed a good response (necrosis rate = 94.5%) and R0
margins. The patient is still alive without relapse 8 years later.
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was characterized by a longest diameter of 16 cm, a volume > 150 mL, as well as central necrosis > 50%
of the tumor volume (white arrows) with an intermediate signal intensity on (A) coronal T1-weighted
imaging (WI), a high signal intensity in STIR (B), and no contrast enhancement on (C) fat-suppressed
contrast-enhanced T1-WI. After completing neoadjuvant chemotherapy, a pathological analysis of
the surgical specimen demonstrated a poor response (necrosis rate = 80%) and R0 margins. However,
the patient is still alive without relapse 10 years later.

Interestingly, it seems that skip metastases at diagnosis are not associated with the
response to chemotherapy [33].

4.1.2. Quantitative and Functional Imaging

This type of imaging mostly refers to DCE-MRI, DWI, and PET/CT. The metrics (and
their changes during treatment) extracted from the tumoral and peritumoral areas have
been investigated in several studies as biomarkers of the response to treatment.

Regarding DCE-MRI, the shape of the time–intensity curve, the area under the time–
intensity curve, the wash-in rate, the influx volume transfer constant (Ktrans), the efflux rate
constant (Kep), the relative extravascular extracellular space (Ve), and the relative vascular
plasma space (Vp) are employed as estimators of the tumor neoangiogenesis and have been
the most studied estimators [43]. Overall, in a cohort of 69 patients with newly diagnosed,
non-metastatic, high-grade osteosarcoma, Guo et al. showed in a univariable analysis
that the Ktrans and Vp values and the change in Kep between the inner and outer parts
of the tumor (i.e., an estimator of intra-tumoral fibrotic–necrotic changes) at intermediate
evaluations were significantly associated with the histologic response [44]. More recently,
in a retrospective cohort of 34 patients, Hao et al. also observed that (i) the Ktrans value
measured inside the tumor after completing neoadjuvant chemotherapy was significantly
lower in good responders, and (ii) the change in Ktrans from baseline to pre-surgical MRI was
significantly more important in good responders [45]. Furthermore, in a two-center cohort
of 85 patients, Kalisvaart et al. demonstrated that the optimal technique to estimate the DCE-
MRI parameters in terms of diagnostic performances and inter-observer reproducibility
was a whole slab segmentation of the tumor (instead of a focal area). Secondly, they
showed that the relative wash-in rate (rWIR, measured by dividing the maximum slope of
contrast enhancement on the time–intensity curve from baseline imaging by the wash-in
rate post-chemotherapy) could help discriminate good from poor histologic responders
using a cut-off of 2.3. Hence, they defined good radiological responders as those with
an rWIR ≥2.3. The accuracy and area under the ROC curve (AUROC) of this imaging
biomarker were 0.85 and 0.93, respectively, in the training cohort (n = 55) and 0.80 and 0.80,
respectively, in the validation cohort (n = 30) [45].

Regarding DWI, the apparent diffusion coefficient (ADC) is hypothesized to reflect
the tumor cellularity (with low ADC values in highly cellular tumors) and necrosis (with
higher ADC values). The ADC has been measured in focal areas, cross-sectional areas,
or 3D volumes at baseline and at regular time points during chemotherapy until surgery.
In a meta-analysis of 13 studies including a total of 303 patients in which DWI was eval-
uated to predict the histologic response, Yuan et al. showed that, although there was
high heterogeneity in the ADC values, the mean ADC difference before and after neoadju-
vant chemotherapy and the ADC ratio were both significantly higher in good responders
compared to poor responders [13]. The ADC has also been evaluated in the peritumoral
tissue by Hao et al. [45]. These authors found that the ADC value measured in the peritu-
moral area after chemotherapy and its changes from baseline to post-chemotherapy were
significantly higher in good responders.

Regarding 18F-FDG PET/CT, this imaging modality combines metabolic and anatom-
ical imaging by using a radioactive glucose analog, which accumulates in high-glucose-
uptake cells like cancer cells and helps assess the metabolic activity of tumors. Several
studies have evaluated 18F-FDG PET/CT at baseline and its changes during chemotherapy
to assess the histologic response in osteosarcomas through various numeric metrics, such as
the maximal standardized uptake value (SUVmax), the average SUV (SUVmean), the SUVpeak
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(measured in the 1 cm3 surrounding the SUVmax voxel), the tumor-to-background ratio
(TBR), the total lesion glycolysis (TLG), and the metabolic tumor volume (MTV), as well as
the PET evaluation response criteria in solid tumor (PERCIST) [46,47]. The predictive value
of the baseline 18F-FDG PET/CT metrics remains debated [48]; however, it can be noted
that Palmerini et al. found significantly higher response rates in patients with a low SUVmax
(<6) at baseline compared to patients with a high SUVmax (64% versus 20%, p = 0.05) [48].
Oh et al. recently published an exhaustive review of the various cut-offs for PET/CT
metrics during treatments [27]. It emerged that a post-chemotherapy SUVmax < 2–3, a TBR
> 0.46–0.60, and a decrease in the SUVmax between the baseline and post-chemotherapy
18F-FDG PET/CT ≥ 52–60% were associated with a good histologic response, which was
defined as >90% necrosis on surgical specimens [47–49]. Moreover, Xu et al. showed that
the PERCIST criteria were more sensitive for detecting a response than the classical RECIST
v1.1 criteria based only on one-dimensional changes [50].

4.1.3. Predictive Radiomics Models

Radiomics is a recent field of research that has been extensively utilized in oncologic
imaging this past decade [51,52]. It involves extracting numerous numerical features
(named radiomics features) in order to quantify the shapes, textures, and patterns of intra-
tumoral heterogeneity from 3D segmentations of primary tumors, metastases, or their
surrounding tissues. These thousands of radiomic features are generally analyzed using
supervised machine learning algorithms and data science techniques to account for their
collinearity and high dimensionality [53] in order to identify predictive signatures for
diagnosing malignancy, staging and grading cancers, and predicting responses to treatment
and survival [54,55].

Radiomics approaches to predict histologic responses in patients with osteosarcoma have
been mostly applied in pre-treatment MRI (particularly T2-WI and contrast-enhanced ± fat-
suppressed T1-WI) and CT-scan. Two studies have also employed deep learning algorithms
to automate segmentation before utilizing the usual radiomics workflow [56,57]. Although
their methods were retrospective, heterogeneous, and improvable (with an average ra-
diomics quality score of 20.6% [6.92/36]), making it difficult to compare them [58], they all
obtained strongly encouraging results in independent validation sets. Indeed, the AUROC
for the best models in testing sets ranged between 0.71 and 0.97 [59,60]. Interestingly,
the model performances were systematically improved when clinical data were added to
radiomics data [56–61]. Similarly, post-chemotherapy radiomics data also enhanced the
predictive performances of the baseline radiomics models [62].

Yet, it must be emphasized that all of these potential biomarkers of the histological
response to neoadjuvant chemotherapy remain to be validated prospectively in multiple-
center studies.

4.2. Associations with EFS and OS

First, several clinical, biological, and histological features have been associated with
patient survival. A lower EFS has been reported in the large EURAMOS-1 cohort that
included more than 2000 patients with the following characteristics: an older age (HR = 1.25
and p = 0.013 for adolescents and HR = 1.32 and p = 0.008 for adults—with children as
reference), male patients (HR = 1.20; p = 0.017), a proximal femur or humerus location
(HR = 1.50; p < 0.001) and an axial location (HR = 1.53 and p = 0.011—with another limb
site as reference; Figure 13), pulmonary metastases (HR = 2.34; p < 0.001) as well as other
non-lung metastases (HR = 1.94; p < 0.001), the WHO subtype (with conventional non-
osteoblastic non-chondroblastic, telangiectatic, and surface osteosarcomas demonstrating
a better EFS compared to conventional chondroblastic osteosarcomas—HR = 0.67 and
p = 0.003; HR = 0.52 and p = 0.003; and HR = 0.44 and p = 0.047, respectively), and a large
tumor volume ≥ 1/3 of the involved bone (HR = 1.29; p = 0.002) [63]. It must be noted that
larger tumor size and volume were associated with the OS and EFS in other studies using
different categorizations [64,65].
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depicted with yellow lines. Both lesions were declared inoperable by multidisciplinary tumor board
from sarcoma reference center.

More precisely, the presence of metastases at the diagnosis decreases the 5-year sur-
vival rate from about 70% to 20% [26]. Patients with a tumor ≥10 cm have a survival rate of
40% compared to 65% for other patients. There is a twofold increase in the risk of mortality
during the first 5 years following diagnosis for individuals with larger tumors.

Logically, these features were subsequently associated with the OS in this cohort
according to multivariable Cox regression, except for surface osteosarcoma (probably due
to small effectives), adult patients compared to children, and a large tumor volume ≥1/3
of the involved bone—though similar trends were observed [66,67].

In addition, a poor histologic response and incomplete surgical resections have also
been associated with poorer OS and EFS and have even been reported as key prognostic
factors in a multivariable analysis of 1702 patients by Bielack et al. [6].

While the presence of a pathological fracture at diagnosis was not associated with the
OS and EFS in multivariable modeling in the EURAMOS-1 cohort [7], opposite findings
were observed in the adult subgroup of patients in another study of 2847 patients registered
in the Consecutive Cooperative Osteosarcoma Study Group database [68]. Indeed, Kelley
et al. observed a significantly lower OS in case of pathological fracture (HR = 1.89; p = 0.013).
However, no significant results were seen for the EFS in adults and for the OS and EFS in
children [68].

Lastly, initial lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) have been
inconstantly linked to patient outcomes, with lower LDH and lower ALP possibly being
associated with better EFS [69,70].

4.2.1. Semantic Radiological Findings

Though categorized as clinical characteristics in these surgical and medical studies, the
tumor size and volume, the location, pathological fractures (Figure 14), and the presence
and patterns of metastases are obtained through conventional imaging. Moreover, as
seen above, several qualitative and quantitative imaging features are associated with the
histological response, which is associated with the OS and EFS.

Other semantic features may help identify patients at risk of poorer OS and EFS.
Neurovascular involvements have been associated with an increased risk of local

recurrence, which, in turn, results in a drop in the overall survival at 5 years to about
15% [17]. However, neurovascular involvements can be difficult to confirm in imaging
when there is not a complete circumferential encasement or an intra-lumen tumor bud.
Hence, the diagnostic performances of MRI to diagnose vascular involvement were a
sensitivity of 100%, a specificity of 61.1%, a positive predictive value 53.3%, and a negative
predictive value 100% [71].
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Figure 14. Pathological fracture on conventional radiography (AP view) of a 22-year-old male diag-
nosed with conventional (fibroblastic) osteosarcoma taken during neoadjuvant chemotherapy (arrow).

Regarding transphyseal spreading in children, its prognostic impact seems unclear,
but it precludes the preservation of the joint during curative surgery [71].

Regarding intra-articular spreading, similarly, there is a lack of objective findings about
its impact on patient survival. However, it will modify the surgical approach. In a recent
study by Bodden et al., the following MRI features were significantly associated with joint
invasion: direct visualization of the intra-synovial tumor tissue (OR = 186–229; p < 0.001)
and the destruction of the intra-articular bone (OR = 69–324; p < 0.001). Furthermore,
replacement of the epiphyseal bone marrow and contrast enhancement of the synovial
were the most sensitive indirect signs (96%) but with limited specificities (29–54%) [72]
(Figure 15).
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(A) Coronal view of the initial CT scan showing an extensive tumor (>15 cm long) involving the
epiphysis, metaphysis, and diaphysis of the humerus (white arrows). (B,C) Axial contrast-enhanced
T1-weighted imaging showing marked contrast enhancement surrounding the scapula (white arrow-
head) with periosteal enhancement, fulfilling of the articular recessus (black arrow) and erosions of
the anterior side of the glenoid (black arrowhead).

In patients with extraskeletal osteosarcoma, the presence of large internal necrosis/and
or internal hemorrhagic areas and signal intensity inhomogeneity on T2-WI sequences
seem to correlate with poorer prognosis [9].

4.2.2. Quantitative and Functional Imaging

Regarding DCE-MRI, some initial parameters and their changes during neoadjuvant
chemotherapy seem to correlate with survival rates, though in small retrospective studies.
Guo et al. also found that the difference between the outer and inner values of Ve at baseline
was associated with the EFS (p = 0.002 with an optimal cut-off of 0.026). However, these
findings were not confirmed in another center or prospectively [45]. Moreover, Kalisvaart
et al. confirmed the ability of the rWIR with a cut-off of 2.3 to predict the EFS in a two-
center cohort of 82 patients [13]. Indeed, rWIR < 2.3 (i.e., a poor radiological response) was
associated with a lower EFS (HR = 2.4, 95%CI = 1.1–5.0 in the entire population; HR = 2.3,
95%CI = 1.0–5.2 in patients without metastasis at diagnosis) [73]. Lastly, Hao et al. observed
that a lower baseline peritumoral Ve (with a cut-off of 0.2485) and lower post-chemotherapy
intra-tumoral Ktrans (with a cut-off of 0.2275) were associated with a longer EFS (p = 0.016
and p < 0.001, respectively) [13]. Moreover, the peritumoral Ve and intratumoral Ktrans,
both at baseline and after chemotherapy, could help identify patients with a longer OS
(p-value range: <0.001–0.023)—with lower values indicating longer survivals [13].

Regarding DWI and survival rates, Hao et al. also investigated this sequence in
the same study of 34 patients and demonstrated an association between a higher post-
chemotherapy ADC in the peritumoral tissue and a longer OS (p = 0.035) [45]. Yet, these
results should be confirmed in a larger prospective and independent cohort in a multivari-
able setting.

Regarding 18F-FDG PET/CT and EFS or progression-free survival (PFS), high baseline
SUVmax (cut-off: 15), baseline MTV (cut-off: 238), baseline TLG (cut-off 35.8), and post-
chemotherapy SUVmax (cut-off: 2.5–5) and low TLG change (cut-off: 10%) were linked to
worse outcomes in three retrospective studies comprising a total of 105 patients [27,74,75].
In terms of OS, higher baseline TLG (cut-off: 1022), baseline MTV (cut-off: 238), and
post-chemotherapy SUVmax (cut-off: 3.3) seemed to correlate with lower OS [27,74,75]. In
addition to 18F-FDG, other radiotracers have been explored in patients with osteosarcoma.
Notably, 18F-NaF (sodium fluoride) PET/CT targets the skeleton by being directly absorbed
onto the surface of the bone matrix, which can be used to detect bone metastases (with
better performances than technetium-99m-labeled methylene diphosphonate bone scan)
and extra-osseous mineralized metastases in various cancers, especially osteosarcomas [27].
However, the potential added value of 18F-NaF PET/CT to predict treatment responses,
including the EFS, PFS, and OS, has not yet been elucidated (Table 5).
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Table 5. A summary of the main quantitative features derived from imaging studies associated with
a poor prognosis in patients with osteosarcoma.

Modality, Sequence Quantitative Imaging Data Clinical Significance

DCE-MRI

Lower Ktrans and Vp, change in Kep

between inner and outer tumor areas at
intermediate evaluation

Good histologic response

Lower Ktrans measured inside tumor
after NACT Good histologic response

Decrease in Ktrans from baseline to
pre-surgical MRI Good histologic response

Relative wash-in rate ratio (rWIR) < 2.3
(poor radiological response) Poor histologic response

Difference between outer and inner
values of Ve at baseline Lower EFS

Lower baseline peritumoral Ve (cut-off
= 0.2485) and lower post-chemotherapy
intra-tumoral Ktrans (cut-off = 0.2275)

Longer EFS and OS

Lower intra-tumoral Ktrans at baseline
and after chemotherapy Longer OS

DWI

- Mean ADC difference before and after
NACT

- ADC ratio significantly higher in good
responders compared to poor

responders

Higher decrease in good
histologic responders

- Peritumoral ADC measured in
peritumoral area after NACT

- Changes in peritumoral ADC from
baseline to end of NACT

Higher decrease in good
histologic responders

Higher post-chemotherapy peritumoral
ADC Longer OS

18F-FDG PET/CT

Low baseline SUVmax (cut-off = 6) Good histologic response

High baseline SUVmax (cut-off = 15) Lower EFS and PFS

Low post-chemotherapy SUVmax
(cut-off = 2–3) Good histologic response

High post-chemotherapy SUVmax
(cut-off = 2.5–5) Lower EFS and PFS

TBR > 0.46–0.60 Good histologic response

Decrease in SUVmax between baseline
and post-cNACT ≥ 52–60% Good histologic response

PERCIST criteria Good histologic response

High baseline MTV (cut-off = 238), Lower EFS, PFS, and OS

Higher baseline TLG (cut-off = 1022), Lower OS

Low TLG change (cut-off = 10%) Lower EFS and PFS
Abbreviations: ADC: apparent diffusion coefficient, DCE-MRI: dynamic contrast-enhanced MRI, EFS: event-
free survival, MTV: metabolic tumor volume, NACT: neoadjuvant chemotherapy, OS: overall survival,
PFS: progression-free survival, SUV: standardized uptake value, TBR: tumor-to-background ratio, TLG: total
lesion glycolysis.

4.2.3. Predictive Radiomics Models

Few proof-of-concept studies have investigated the ability of radiomics to predict
the OS and EFS in osteosarcoma with a heterogeneous retrospective design (i.e., based
on T2-WI, ADC map, or contrast-enhanced T1-WO) and outcomes (i.e., 1-year survival,
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OS, and DFS) and a lack of prospective external validation. Nonetheless, all studies found
encouraging results with high concordance indices whatever the outcome to predict (c-
index range: 0.741–0.813), and there was an increase in the performances of the clinical
model when radiomics data were added to the modeling [60,76,77].

Tables 4 and 5 summarize the main qualitative and quantitative imaging features,
respectively, associated with prognosis in patients with osteosarcoma.

5. Conclusions

In this comprehensive review, we summarized the main radiological patterns of os-
teosarcomas at the initial diagnosis, their metastatic patterns, and the potential imaging
biomarkers that could aid in predicting the response to neoadjuvant chemotherapy and
in prognostication. This review was based on an exhaustive analysis of the literature
involving conventional radiographs, CT scans, MRI, 18F-FDG PET/CT, and innovative
radiomics approaches. All of these imaging modalities play crucial roles in the staging,
monitoring, and follow-up of these malignant tumors. Imaging holds a pivotal role in the
diagnostic and therapeutic management of osteosarcomas, with significant improvements
anticipated through advancements in quantitative imaging, radiomics, and artificial intelli-
gence. However, the rarity of osteosarcomas and the lack of multiple-center radiological
databases led to a shortage of validated imaging biomarkers for patients with osteosarcoma.
Moreover, studies combining these different imaging modalities with other clinical, bio-
logical, and molecular biomarkers are missing and would be helpful to better understand
the correlations between imaging biomarkers and improve predictive modeling. Future
prospective and collaborative initiatives among radiologists are anticipated to overcome
these challenges and enhance patient outcomes.
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