
Citation: Wang, F.; Feng, Z.; Yang, X.;

Zhou, G.; Peng, Y. Physiological

Parameters and Transcriptomic Levels

Reveal the Response Mechanism of

Maize to Deep Sowing and the

Mechanism of Exogenous MeJA to

Alleviate Deep Sowing Stress. Int. J.

Mol. Sci. 2024, 25, 10718. https://

doi.org/10.3390/ijms251910718

Academic Editor: Gábor Kocsy

Received: 8 September 2024

Revised: 30 September 2024

Accepted: 3 October 2024

Published: 5 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Physiological Parameters and Transcriptomic Levels Reveal the
Response Mechanism of Maize to Deep Sowing and the
Mechanism of Exogenous MeJA to Alleviate Deep Sowing Stress
Fang Wang 1,2,† , Zhijin Feng 1,†, Xinyi Yang 1, Guangkuo Zhou 1 and Yunling Peng 1,2,*

1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; wangfang@gsau.edu.cn (F.W.);
f15763075067@163.com (Z.F.); yxy11102024@163.com (X.Y.); m17899314410@163.com (G.Z.)

2 Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070,
China

* Correspondence: pengyl@gsau.edu.cn; Tel.: +86-138-9323-8528
† These authors contributed equally to this work.

Abstract: Deep sowing, as a method to mitigate drought and preserve soil moisture and seedlings,
can effectively mitigate the adverse effects of drought stress on seedling growth. The elongation of
the hypocotyl plays an important role in the emergence of maize seeds from deep-sowing stress. This
study was designed to explore the function of exogenous methyl jasmonate (MeJA) in the growth of
the maize mesocotyl and to examine its regulatory network. The results showed that the addition of
a 1.5 µ mol L−1 MeJA treatment significantly increased the mesocotyl length (MES), mesocotyl and
coleoptile length (MESCOL), and seedling length (SDL) of maize seedlings. Transcriptome analysis
showed that exogenous MeJA can alleviate maize deep-sowing stress, and the differentially expressed
genes (DEGs) mainly include ornithine decarboxylase, terpene synthase 7, ethylene responsive
transcription factor 11, and so on. In addition, candidate genes that may regulate the length of
maize hypocotyls were screened by Weighted Gene Co-expression Network Analysis (WGCNA).
These genes may be involved in the growth of maize hypocotyls through transcriptional regulation,
histones, ubiquitin protease, protein binding, and chlorophyll biosynthesis and play an important
role in maize deep-sowing tolerance. Our research findings may provide a theoretical basis for
determining the tolerance of maize to deep-sowing stress and the mechanism of exogenous hormone
regulation of deep-sowing stress.
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1. Introduction

Maize (Zea mays L.) is an important crop for both food and feed. It is very important
to ensure high and stable yields of maize for food production safety. Drought and water
shortage are some of the most important abiotic stresses that cause global maize yield
reductions. Most of the maize planting areas in China are located in arid and semi-arid
areas. According to statistics, the annual yield reduction caused by drought and water
shortage is about 20–50% [1,2]. In recent years, in order to solve the problem of grain
yield reduction caused by drought, many scholars have proposed different solutions,
mainly including cultivating new drought-tolerant varieties [3] and deep-sowing seeds [4].
However, because the breeding of new drought-tolerant varieties is related to the genetic
mechanism and drought tolerance is controlled by a variety of micro-effect genes, its
regulation mechanism is still unclear and it is difficult to apply such methods on a large
scale. Therefore, it is relatively simple and feasible to reduce drought stress by deep sowing
of maize seeds. At the same time, deep sowing is also an efficient measure for drought
resistance and seedling protection in maize and a new way of cultivating drought-resistant
maize [5].
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At present, the research on the deep-sowing tolerance of maize mainly focuses on
the selection of deep-sowing quality and characteristics, while the research on the role of
exogenous hormones in alleviating deep-sowing stress in the regulation of the hypocotyl is
less advanced, and the research results are not the same, so a systematic evaluation system
cannot be formed. Studies have shown that with increasing sowing depth, the main reason
for maize tolerance to deep sowing is the significant elongation of the mesocotyl, and the
change in mesocotyl length is closely related to hormone regulation [6]. Suge et al. [7]
found that gibberellin, auxin, abscisic acid, and ethylene all promote the elongation of
rice hypocotyls. ABA mainly increases the number of mesodermal axis cells through cell
analysis; Kiyoshi’s [8] study showed that simultaneous application of exogenous ETH and
GA can significantly elongate the length of the hypocotyl in indica rice. Watanabe et al. [9]
found that GA, ABA, IAA, and ethylene can all promote the elongation of rice hypocotyls.
ABA promotes cell division, while GA, IAA, and ethylene mainly promote cell elongation.
Although there have been a lot of transcriptome studies on maize tolerance to deep sowing,
there are few reports on the mechanism of exogenous hormones regulating mesocotyl
growth in response to deep-sowing stress.

Methyl jasmonate (MeJA), a hormone that responds to plant damage, is widely used
for plant resistance to damage stress [10]. Studies have shown that MeJA, as an internal
signal transduction molecule, has the characteristics of easy transport, non-ionization, and
easy membrane penetration [11]. However, the current research on alleviating deep-sowing
stress by exogenous MeJA has not been reported, and the mechanism of alleviating deep-
sowing stress is still unclear. Therefore, we assume that exogenous application of MeJA
can effectively alleviate the deep-sowing stress of maize, promote the growth of the maize
seedling hypocotyl, and improve its drought resistance. In this study, the deep-sowing-
tolerant maize inbred line Qi319 and the deep-sowing-sensitive maize inbred line Zi330
were used as materials. The differences in the mesocotyls of the different inbred lines
under deep sowing and exogenous MeJA treatment were studied in aspects of phenotype,
cell structure, physiology, and biochemistry, and the metabolic regulatory networks and
regulatory genes related to deep sowing were studied via transcriptomics. The aim of the
study was to reveal the molecular mechanisms of deep-sowing-tolerance-related traits in
maize and lay a foundation for the exploration of deep-sowing-tolerance genes.

2. Results
2.1. Physiological Characteristics of Exogenous MeJA in Alleviating Deep-Sowing Stress in Maize
Inbred Lines
2.1.1. Morphological Analysis of Exogenous MeJA Alleviating Deep-Sowing Stress in
Maize Inbred Lines

At a sowing depth of 15 cm, the growth of the two maize inbred lines was significantly
affected. After the addition of the MeJA treatment, the material accumulation of the
seedlings of both inbred lines increased in the DM treatment. The seedling length (SDL),
root length (RL), seedling fresh weight (SDW), and root fresh weight (RW) of the deep-
sowing inbred line Qi319 were significantly increased by 34.26%, 13.97%, 7.48%, and 17.54%,
respectively. The seedling length (SDL), seedling fresh weight (SDW), and root fresh weight
(RW) of the deep-sowing-sensitive inbred lines of Zi330 increased by 8.96%, 7.69%, and
33.33%, respectively. The results showed that MeJA was the main factor in the enhancement
of seed stress resistance under deep sowing (Table 1).

Compared with DS, the length of the hypocotyls of the deep-sowing-sensitive inbred
line Zi330 increased by 26.51%, while that of the deep-sowing-tolerant inbred line Qi319
increased by 7.5%. It can be seen that MeJA has different effects in terms of the improvement
of deep-sowing tolerance in different varieties, indicating that the deep sowing of seeds is
regulated by both the genetic characteristics of varieties and the exogenous hormone MeJA.
The application of the exogenous hormone can adjust the deep-sowing tolerance of maize
seeds (Table 2).
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Table 1. The effect of exogenous MeJA treatment on seedling growth of maize inbred lines.

Material Treatment SDL (cm) RL (cm) SDW (g) RW (g)

Zi330

CK 26.60 ± 0.81 c 33.10 ± 0.64 a 1.57 ± 0.06 a 1.38 ± 0.12 a
CM 33.73 ± 1.18 a 29.00 ± 0.21 b 1.29 ± 0.02 b 1.20 ± 0.07 ab
DS 29.23 ± 0.86 bc 20.27 ± 0.48 c 1.17 ± 0.04 b 0.96 ± 0.03 b
DM 31.85 ± 1.55 ab 18.80 ± 0.30 c 1.26 ± 0.05 b 1.28 ± 0.01 a

Qi319

CK 34.10 ± 2.17 a 34.93 ± 0.64 a 1.21 ± 0.09 a 1.32 ± 0.03 a
CM 27.47 ± 1.26 ab 34.67 ± 0.79 a 0.86 ± 0.04 b 1.33 ± 0.06 a
DS 25.25 ± 5.05 b 23.40 ± 1.20 c 1.07 ± 0.10 ab 1.14 ± 0.07 b
DM 33.90 ± 0.70 a 26.67 ± 0.64 b 1.15 ± 0.10 ab 1.34 ± 0.03 a

Different lowercase letters represent the same inbred line with significant differences under different treatments
(p < 0.05). CK: distilled water treatment at 3 cm sowing depth; CM: 3 cm sowing depth with 1.5 µmol·L−1

exogenous MeJA treatment; DS: distilled water treatment at 15 cm sowing depth; DM: 15 cm sowing depth with
1.5 µmol·L−1 exogenous MeJA treatment. RL: root length; RW: root fresh weight; SDL: seedling length; SDW:
seedling fresh weight.

Table 2. Growth characteristics of mesocotyls of maize inbred lines treated with exogenous MeJA.

Material Treatment MES (cm) COL (cm) MES + COL
(cm)

MESW +
COLW (g)

Zi330

CK 2.67 ± 0.17 c 2.57 ± 0.20 b 5.23 ± 0.35 c 0.33 ± 0.04 c
CM 2.67 ± 0.33 c 2.23 ± 0.09 b 4.90 ± 0.25 c 0.25 ± 0.01 c
DS 5.53 ± 0.29 b 6.30 ± 0.71 a 11.83 ± 0.43 a 0.75 ± 0.02 a
DM 7.00 ± 0.60 a 2.80 ± 0.30 b 9.80 ± 0.30 b 0.62 ± 0.05 b

Qi319

CK 2.40 ± 0.21 d 3.20 ± 0.21 b 5.60 ± 0.21 c 0.24 ± 0.02 c
CM 3.13 ± 0.09 c 2.50 ± 0.40 b 5.63 ± 0.32 c 0.23 ± 0.03 c
DS 8.00 ± 0.20 b 3.53 ± 1.90 b 13.30 ± 1.00 b 0.37 ± 0.06 b
DM 8.60 ± 0.12 a 7.10 ± 0.35 a 15.70 ± 0.26 a 0.52 ± 0.03 a

Different lowercase letters represent the same inbred line with significant differences under different treatments
(p < 0.05). The treatments and abbreviations are the same as those given in Table 1. MES: mesocotyl length; COL:
coleoptile length; MES + COL: mesocotyl length and coleoptile length; MESW + COLW: mesocotyl weight and
coleoptile weight.

2.1.2. Endogenous Hormone Analysis of Exogenous MeJA Alleviating Deep-Sowing Stress
in Maize Inbred Lines

It can be seen from Figure 1 that after the addition of exogenous MeJA, the endogenous
hormones of Zi330 and Q319 changed significantly, and the endogenous hormone changes
were particularly significant under deep-sowing conditions. Compared to the DS treat-
ment, the levels of growth hormone (IAA) and gibberellin (GA3) in the mesocotyls of the
deep-sowing-sensitive Zi330 inbred lines increased significantly under the DM treatment,
suggesting that MeJA may have a synergistic effect with IAA and GA3, while abscisic acid
(ABA) and brasinolide (EBR) contents decreased significantly in response to deep-sowing
stress. It is suggested that MeJA may have an antagonistic relation to ABA and EBR. At
the sowing depths of 3 cm and 15 cm, the endogenous MeJA content in the mesocotyls of
the two maize inbred lines decreased to different degrees after MeJA was applied, which
may have been due to the low content of the optimal hormone for MeJA response to deep
sowing of maize. It is speculated that when exogenous MeJA is applied, the content of
endogenous MeJA in the mesocotyls of the two maize inbred lines decreases to different
degrees. Endogenous MeJA produced by plant mesocotyls can alleviate the damage caused
by deep-sowing stress. The results indicated that endogenous hormones could stabilize
the internal environment balance and promote the growth and development of plants by
regulating their own levels under deep-sowing conditions.

2.1.3. Cytological Observation of Exogenous MeJA Alleviating Deep-Sowing Stress in
Maize Inbred Lines

As shown in Figure 2, the mesocotyls of the two maize inbred line seedlings at
the 15 cm sowing depth increased significantly compared with the 3 cm sowing depth,
indicating that the response of maize seedlings to deep-sowing stress was closely related
to mesocotyl length. The length of mesocotyl cells in the two inbred lines increased after
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the addition of the 1.5 µmol·L−1 exogenous MeJA treatment at the sowing depths of 3 cm
and 15 cm, and the length of mesocotyl cells increased most significantly under the DM
treatment. Compared with the CK treatment, the mesocotyl cell lengths of Zi330 and
Qi319 increased by 25.98% and 19.69% under the CM treatment. Compared with DS,
the mesocotyl cell length of Zi330 and Qi319 increased by 46.44% and 31.99% under the
DM treatment.
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Figure 1. Effects of exogenous MeJA on endogenous hormones of maize inbred line seedlings under
deep-sowing stress. CK: distilled water treatment at 3 cm sowing depth; CM: 3 cm sowing depth
with 1.5 µmol·L−1 exogenous MeJA treatment; DS: distilled water treatment at 15 cm sowing depth;
DM: 15 cm sowing depth with 1.5 µmol·L−1 exogenous MeJA treatment. Different lowercase letters
represent the same inbred line with significant differences under different treatments (p < 0.05).
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Figure 2. Longitudinal structure and cell length of mesocotyl cells of maize inbred lines treated with
exogenous MeJA under deep-sowing stress. A: 3 cm sowing depth + distilled water treatment (Qi319);
B: 3 cm sowing depth + MeJA treatment (Qi319); C: 15 cm sowing depth + distilled water treatment
(Qi319); D: 15 cm sowing depth + MeJA treatment (Qi319); E: 3 cm sowing depth + distilled water
treatment (Zi330); F: 3 cm seeding depth + MeJA treatment (Zi330); G: 15 cm sowing depth + distilled
water treatment (Zi330); H: 15 cm seeding depth + MeJA treatment (Zi330); I: cell lengths of meso-
cotyls. CK: distilled water treatment at 3 cm sowing depth; CM: 3 cm sowing depth with 1.5 µmol·L−1

exogenous MeJA treatment; DS: distilled water treatment at 15 cm sowing depth; DM: 15 cm sowing
depth with 1.5 µmol·L−1 exogenous MeJA treatment. Different lowercase letters represent the same
inbred line with significant differences under different treatments (p < 0.05).

2.2. Transcriptome Analysis of Exogenous MeJA Alleviating Deep-Sowing Stress
2.2.1. Analysis of Sequencing Results

The constructed library was sequenced with the DNBSEQ platform for transcriptomes;
24 samples were sequenced, and a total of 31,384 genes were detected. Each sample yielded
an average of 45.64 M original reads. After filtering and quality control of the original reads,
each sample yielded an average of approximately 44.18 M valid data, with a Q20% value
range of 96.41–96.65%. The amount of sample sequencing data is shown in Table S1.
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2.2.2. Identification and Functional Analysis of Differentially Expressed Genes

In order to comprehensively study the deep-sowing tolerance of maize and the mitiga-
tion effect of exogenous MeJA on deep-sowing stress in maize, we used FPKM to calculate
gene expression, and genes with a differencing multiple of gene expression |log2FC| ≥ 1
and p ≤ 0.05 were defined as DEGs. As can be seen in Figure 3a, compared with the normal
sowing depth, 1248 and 1288 DEGs were identified under deep-sowing stress, accounting
for 48.79% and 40.06% of the total differential genes, respectively, while 1310 and 1927 genes
were down-regulated, respectively. They accounted for 51.21% and 59.94% of the total
differential genes, respectively. Compared with the addition of exogenous MeJA under the
normal sowing depth, 538 DEGs were up-regulated and 94 DEGs were down-regulated af-
ter exogenous MeJA was applied to Qi319 under deep-sowing stress. However, 2284 DEGs
were up-regulated and 3601 DEGs were down-regulated after the addition of exogenous
MeJA under deep-sowing stress, indicating that the deep-sowing tolerance of Zi330 was
enhanced by more down-regulated DEGs under exogenous MeJA. Similarly, analysis of
the distribution of common and specific differential genes in a Venn diagram also fully
demonstrated the mitigating effect of the exogenous hormone MeJA on maize inbred lines
with different deep-sowing-tolerance characteristics. As shown in Figure 3b, 225 different
genes were co-expressed between the two inbred lines under deep-sowing stress compared
with the normal sowing depth. There were 42 differential genes that were co-expressed
after exogenous MeJA was applied under deep-sowing stress compared with the normal
sowing depth. With distilled water applied at a normal sowing depth as a control, there
were six differential genes co-expressed after exogenous MeJA was applied. In contrast,
with the application of distilled water at a depth of 15 cm, there were three differential
genes that were co-expressed after the application of exogenous MeJA (Figure 3c, Table S2).
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Figure 3. Differential gene expression analysis. (a) Number distribution of down-regulated DEGs
in different comparison groups. (b,c) Venn diagram analysis of the normal sowing depth and deep-
sowing stress and the normal sowing depth and deep-sowing stress with exogenous MeJA applied.
Qi_CK3: Qi319 under 3 cm sowing depth and distilled water treatment; Qi_CK15: Qi319 distilled
water treatment at 15 cm sowing depth; Qi_T3: Qi319 under 3 cm sowing depth and MeJA treatment;
Qi_T15: Qi319 under 15 cm sowing depth and MeJA treatment; Zi_CK3: distilled water treatment
of Zi330 at 3 cm sowing depth; Zi_CK15: distilled water treatment of Zi330 at 15 cm sowing depth;
Zi_T3: MeJA treatment of Zi330 at 3 cm sowing depth; Zi_T15: MeJA treatment of Zi330 at 15 cm
sowing depth.
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2.2.3. GO Analysis of Differentially Expressed Genes

GO functional annotations can be divided into three main categories: biological
processes (BPs), cellular components (CCs), and molecular functions (MFs). GO functional
analysis of DEGs in the two maize inbred lines subjected to deep-sowing stress was
conducted. Under deep-sowing stress, the main BPs of DEG enrichment in the deep-sown
inbred line Qi319 were cellular processes, followed by metabolic processes and biological
regulation. The main enriched CC was the cell, followed by cell parts, organelles and
membranes. The main enriched MFs were catalytic activity, binding, and transporter
activity. The terms with significant enrichment of DEGs in BPs and CCs of the deep-sowing-
sensitive inbred lines of Zi330 were basically the same as those of Qi319. The main enriched
MFs were binding, catalytic activity, and structural molecule activity, which was different
from Qi319. It can be seen that the DEGs identified in this study mainly relate to metabolic
regulation, cell metabolism, active molecule binding, and transport (Figure 4a,b).
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Figure 4. GO analysis of two inbred lines in different comparison groups. (a) GO analysis of Qi319
maize inbred line at normal sowing depth under deep-sowing stress. (b) GO analysis of Zi330 maize
inbred line at normal sowing depth under deep-sowing stress. (c) GO analysis of Qi319 maize inbred
line after adding exogenous MeJA under deep-sowing stress. (d) GO analysis of Zi330 maize inbred
line after adding exogenous MeJA under deep-sowing stress. The treatments and abbreviations are
the same as those given in Figure 1.

GO functional annotation analysis was carried out on the DEGs identified in the
two inbred lines under the treatment of exogenous MeJA to alleviate deep-sowing stress
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(Figure 4c,d). Biological processes, cellular components, and molecular functions were
the main enrichment processes of differentially expressed genes in the two inbred lines
treated with exogenous MeJA. The BP enrichment of DEGs identified in the deep-sown
inbred line Qi319 was mainly concentrated in cellular processes, followed by metabolic
processes and biological regulation. CCs were mainly enriched in cells, followed by cell
parts, organelles, and membranes. The main MFs enriched were catalytic activity, binding
activity, and transport activity. The BPs enriched in DEGs from Zi330 were metabolic
processes, cellular processes, and stress responses. In addition, the CC and MF terms with
significant enrichment of DEGs in Zi330 sensitive inbred lines were basically the same
as those of Qi319. However, Zi330 having more DEGs for the same enrichment terms
indicated that exogenous MeJA mainly enhances the deep-sowing tolerance of maize by
up-regulating or down-regulating more DEGs.

2.2.4. Pathway Enrichment Analysis of Differentially Expressed Genes

In order to further understand the biological functions of differentially expressed
genes, pathway enrichment analysis of differentially expressed genes of the two maize
inbred lines under deep-sowing stress was conducted. The enrichment mainly involved
cellular processes, environmental information processing, genetic information processing,
metabolism, and organismal systems. Compared with the 3 cm control group, the signifi-
cant enrichment pathways of the Qi319 inbred line under 15 cm deep-sowing stress mainly
included transport and catabolism, global and overview maps, signal transduction, amino
acid metabolism, energy metabolism, and environmental adaptation. The enrichment of
the carbohydrate metabolism pathway was the most significant (Figure 5a). The signifi-
cantly enriched pathways noted for the deep-sowing-sensitive inbred lines of Zi330 under
deep-sowing stress included transport and catabolism, global and overview maps, amino
acid metabolism, energy metabolism, carbohydrate metabolism, environmental adaptation,
and other pathways; the enrichment of the translation pathway was the most significant
(Figure 5b). In both inbred lines, multiple enrichment pathways were screened, includ-
ing transport and catabolism, amino acid metabolism, energy metabolism, carbohydrate
metabolism, signal transduction, transcription, and global and overview maps.

The pathway enrichment analysis of the differentially expressed genes treated with
exogenous MeJA at the sowing depth of 15 cm mainly involved five branches: cellular pro-
cesses, environmental information processing, genetic information processing, metabolism,
and biological systems. Compared with the deep-sowing treatment, the significant enrich-
ment pathways noted in the deep-sowing-tolerant Qi319 inbred line under exogenous MeJA
treatment mainly included transport and catabolism, global and overview maps, signal
transduction, amino acid metabolism, and carbohydrate metabolism. Among them, the en-
richment degree of the translation pathway was the most significant (Figure 5c). The signif-
icant enrichment pathways noted in the deep-sowing-sensitive inbred line Zi330 included
carbohydrate metabolism, amino acid metabolism, energy metabolism, metabolism of cofac-
tors and vitamins, metabolism of terpenoids and polyketides, and nucleotide metabolism
(Figure 5d). The pathways of carbohydrate metabolism, amino acid metabolism, global and
overview maps, lipid metabolism, and signal transduction were simultaneously screened
in the two inbred lines.

Compared with the normal sowing depth, the differential genes whose expression
levels were up-regulated and down-regulated in different comparison groups reflected the
molecular mechanism of mesocotyl response to deep-sowing stress in the two maize inbred
lines, while the differential genes whose expression levels were opposite might reflect the
reason for the deep-sowing tolerance of the maize inbred line Qi319. Taking deep-sowing
stress as the control, it was speculated that the differential genes whose expression levels
were up-regulated and down-regulated in different comparison groups under exogenous
MeJA treatment might reflect the molecular mechanism of the mesocotyl response of the
two maize inbred lines to exogenous hormones to alleviate deep-sowing stress. Compared
with the control, 704 different genes were co-expressed in the two maize inbred lines
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with different tolerances to deep-sowing stress. Using |log2FC| ≥ 2 and p ≤ 0.05 as the
criteria, 76 differentially expressed genes were identified. These significantly different
genes are mainly involved in biological processes, such as plant–pathogen interaction,
unsaturated fatty acid biosynthesis, fatty acid metabolism, regulation of photomorpho-
genesis, and regulation of intima systems (Figure 6a,b). Compared with the deep-sowing
treatment, we used |log2FC| ≥ 2 and p ≤ 0.05 as the criteria to screen the differentially
expressed genes in the two inbred lines under exogenous MeJA remission treatment and ob-
tained 12 differentially expressed genes with significant co-expression. It can be seen from
Figure 6 that these significantly different genes are mainly involved in arginine and proline
metabolism, glutathione metabolism, terpene biosynthesis, mitochondrial calcium home-
ostasis, sesquiterpene biosynthesis, terpene compound biosynthesis, and other biological
processes (Figure 6c,d).
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Figure 5. Pathway enrichment analysis of the two inbred lines in different comparison groups.
(a) Pathway enrichment analysis of maize inbred line Qi319 at a normal sowing depth under deep-
sowing stress. (b) Pathway enrichment analysis of maize inbred line Zi330 at a normal sowing depth
under deep-sowing stress. (c) Pathway enrichment analysis of maize inbred line Qi319 after adding
exogenous MeJA under deep-sowing stress. (d) Pathway enrichment analysis of maize inbred line
Zi330 adding exogenous MeJA under deep-sowing stress. The treatments and abbreviations are the
same as those given in Figure 1.

Compared with the control, the differentially expressed genes that were up-regulated
in the deep-sowing-tolerant inbred line Qi319 but down-regulated in the deep-sowing-
sensitive inbred line Zi330 under deep-sowing stress were screened using |log2FC| ≥ 2
and p ≤ 0.05 as the criteria, and six significantly differentially expressed genes were
obtained. From Table 3, it can be seen that these significantly different genes are mainly
involved in biological processes such as plant hormone signal transduction, amino acid
metabolism, alkaloid synthesis, transcriptional regulation, and amine metabolism.
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Figure 6. GO and KEGG analysis of expressed genes in different treatment groups. (a) GO analysis
of two varieties under normal sowing and deep-sowing stress. (b) Pathway enrichment analysis of
two cultivars under normal sowing and deep-sowing stress. (c) GO analysis of two varieties under
deep-sowing stress after adding exogenous MeJA. (d) Pathway enrichment analysis of two cultivars
under deep-sowing stress after adding exogenous MeJA.

Table 3. Functional analysis of differential genes with different expression trends in the two varieties
under deep-sowing treatment.

Gene ID KEGG Pathway Desc GO_p Desc

100272950 Plant hormone signal
transduction

Transcription,
DNA-templated; regulation of
transcription, DNA-templated

100281647 NA systemic acquired resistance
100284161 NA NA
100284641 NA Systemic acquired resistance
103638673 NA NA

103641531

Glycine, serine, and threonine
metabolism; tyrosine

metabolism; phenylalanine
metabolism; beta-alanine
metabolism; isoquinoline

alkaloid biosynthesis; tropane,
piperidine, and pyridine

alkaloid biosynthesis

Amine metabolism

2.2.5. Validation of DEGs by qRT-PCR Analysis

qRT-PCR was used to verify 10 common DEGs of the two inbred lines under deep-
sowing stress. The results are shown in Figure 7. The relative expression of the genes
Zm00001d029630, Zm00001d022517, Zm00001d018229, Zm00001d023859, Zm00001d017696,
Zm00001d033071, Zm00001d039468, Zm00001d021089, Zm00001d008837, and Zm00001d052759
is consistent with the expression trend of RNA-seq sequencing results for the two inbred
lines under deep-sowing stress. Based on the above analysis, the expression trends of the
10 genes were consistent with the results of RNA-seq sequencing, which fully demonstrated
the reliability of our sequencing results.
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Figure 7. Real-time quantitative PCR validation of significantly up-regulated differentially expressed
genes between two varieties under deep-sowing stress treatment. (a) The expression changes in
response to the QCK, QDS, ZCK, and ZDS treatments for each candidate gene as measured by
qRT-PCR. (b) Scatter plot showing the changes in the expression (log fold changes) of selected genes
based on RNA-seq via qRT-PCR. The red line in the figure represents RNA seq, and the blue dots
represent qRT-PCR. QCK: distilled water treatment of Qi319 at 3 cm sowing depth; QDS: distilled
water treatment of Qi319 at 15 cm sowing depth; ZCK: distilled water treatment of Zi330 at 3 cm
sowing depth; ZDS: distilled water treatment of Zi330 at 15 cm sowing depth.

2.2.6. Gene Co-Expression Network Analysis

WGCNA is a method that can analyze gene expression patterns in multiple samples
and identify gene sets (i.e., modules) with similar expression patterns. To identify co ex-
pression patterns among DEGs, we used WGCNA to cluster genes with similar expression
patterns into modules. We constructed a co-expression network using the expression data
of 24 sample genes with FPKM values >1 (Figure 8a). Hierarchical clustering tree analysis
was used to identify co-expression modules via WGCNA. Each leaf on a clustering tree
represents a gene, and a total of 15 co-expression modules were constructed. From the
heat map of the gene co-expression network, it can be seen that the colors between the
same modules are darker, while the colors between different modules are lighter. This
indicated that the correlation between modules was small and that our gene co-expression
module clustering results were reliable and could be further analyzed (Figure 8b). Then,
we analyzed the relationship between modules and specific traits/phenotypes of plants at
normal and deep sowing depths, under deep-sowing stress, and under exogenous hormone
treatment. Previous studies have shown that the tolerance of maize to deep sowing is
mainly related to mesocotyl elongation. Therefore, our interest was focused on analyzing
modules with which mesocotyl elongation was significantly positively correlated using the
royalblue and bisque4 modules (Figure 8c,d).

2.2.7. Analysis of Hub Gene Interaction Networks in the Modules

To determine specific genes most likely to be important in deep-sowing tolerance, we
additionally used the expression data to generate a co-expression network. The network
was used to identify “hub genes” for treatment groups. This term refers to genes with
high connectivity in a gene interaction network. In this study, the five genes with the
highest kME values (feature gene connectivity) in the royalblue and bisque4 modules were
classified as hub genes. The hub gene and its interacting genes were used to draw a gene
co-expression network diagram (Figure 9). In the royalblue module (Figure 9a), the central
gene, 103640916, is a member of the histone H2A family, which regulates gene expression
and cell differentiation by interacting with DNA. The 103628268 is a member of the ubiqui-
tin conjugating enzyme E2T (UBE2T) family, which mediates the ubiquitin–proteasome
system and regulates gene expression. The 100217314, 103638413, and 100274062 are func-
tionally unknown genes. In the bisque4 module (Figure 9b), the central gene, 103643355,
is a recombinant protein of streptococcus pyogenes serotype M6rpsE, and the primary
ribosomal protein S5 is crucial for the 30S ribosome biosynthesis of eukaryotic bacteria. The
103625782, as an effector, can interact with chloroplast proteins and regulate chloroplast
signaling pathways, and it is a GLK target gene encoding enzymes in the chlorophyll
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biosynthesis pathway. GLKs are positive regulatory transcription factors that dominate
chloroplast development in plant nuclei. The 100285290 is a FK506 binding protein (FKBPs)
that plays different roles in many key processes of plant growth, development, and response
to abiotic stress. The 542277 is a Z-type nucleic acid binding protein 1 that activates receptor
interacting protein kinase 3, causing cell death during RNA and DNA viral infections. The
100283885 is a functionally unknown gene. Therefore, we speculate that transcriptional
regulation, histones, ubiquitin protease, protein binding, and chlorophyll biosynthesis play
important roles in maize deep-sowing tolerance and that the exogenous hormone MeJA
plays a role in alleviating deep-sowing stress.
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Figure 8. Gene cluster analysis and correlation analysis of phenotypes and modules. (a) Hierarchical
clustering analysis of co-expression genes. Different colors represent all modules, with gray indicating
genes that cannot be classified into any module by default. (b) Correlated heat maps between
modules. A color block in the picture represents a numerical value. The redder the color, the higher
the expression level, and the bluer the color, the lower the expression level. (c) Correlations between
gene modules and phenotypes. Each tree diagram in the figure represents a module, each branch
represents a gene, and the darker the color of each point (white → yellow → red), the stronger
the connectivity between the two genes corresponding to the row and column. (d) Heat map of
correlations between gene modules and phenotypes. The leftmost color block represents the module,
and the rightmost color bar represents the correlation range. In the heatmap of the middle part,
the darker the color, the higher the correlation, with red indicating positive correlation and blue
indicating negative correlation. The numbers in each cell represent correlation and significance.
MES: mesocotyl length; COL: coleoptile length; MESCOL: mesocotyl length and coleoptile length;
MEWCOW: mesocotyl weight and coleoptile weight; RL: root length; RW: root fresh weight; SDL:
seedling length; SDW: seedling fresh weight.
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2.2.8. Analysis of the Mechanism of Exogenous MeJA Alleviating Deep-Sowing Stress
in Maize

Based on the experimental results, we established the following molecular models to
explain the response mechanism to deep-sowing stress of two different inbred lines and the
mechanism by which exogenous MeJA alleviates deep-sowing stress in maize (Figure 10).
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3. Discussion
3.1. Phenotypic Analysis of Exogenous MeJA to Alleviate Deep-Sowing Stress

Drought is one of the major abiotic stresses. Increasing the sowing depth of maize
can make maize use deep soil water efficiently so as to avoid the problem of maize yield
reduction caused by drought due to the loss of soil surface water [12]. Studies have
shown that within a certain range, with increasing sowing depth, the emergence time will
be extended; the emergence rate will be reduced; MES, COL, and RL will be increased;
and the overall degree of seedlings will be significantly deteriorated [6]. In this study,
compared with the normal sowing depth, MES and MES + COL in the maize inbred
lines Zi330 and Qi319 were significantly increased (p < 0.05), while SDL was significantly
shortened under deep-sowing stress. In addition, compared with deep-sowing stress,
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MES, MES + COL, and SDL in the maize inbred lines Qi319 and Zi330 were significantly
increased after the addition of exogenous MeJA with 1.5 µmol·L−1 under deep-sowing
stress. This indicates that exogenous MeJA treatment of maize materials with different deep-
sowing characteristics under deep-sowing stress can effectively alleviate the persecution of
maize under deep-sowing stress.

3.2. Analysis of Relative Hormone Contents in Maize Mesocotyls under Exogenous
MeJA Treatment

Studies have shown that under deep-sowing stress, the elongation of maize mesocotyls
is largely regulated by various plant endogenous hormones, such as IAA, GA, CTK, ABA,
and ETH [13,14]. The contents of GA3 and IAA in the mesocotyl of maize increased when
GA3 and UCZ (the gibberellin synthesis inhibitor, tenobuzole) were applied at the same
time under deep sowing, indicating that when exogenous GA3 was applied to alleviate
deep-sowing stress, the mesocotyl of maize promoted the elongation of the mesocotyl
by increasing the IAA content. IAA can acidify the mesocotyl epidermal cell wall and
relax it, thereby regulating mesocotyl cell elongation [15]. GA3 promotes the elongation
of mesocotyl and coleoptile [8], but its effect on mesocotyl elongation was not as great
as that of ABA [16]. GA3 also increases the enhancement effect of ethylene and ABA on
mesocotyl elongation [7]. CTK mainly promotes mesocotyl elongation by dividing rice
mesocotyl cells [17]. In this study, after exogenous MeJA was added, IAA increased, while
ABA and EBR decreased, which may have been due to the synergistic effect of EBR and
IAA. The increase in the IAA content inhibited the synthesis of EBR and led to the decrease
in its content. There was no significant difference in EBR content after exogenous MeJA
was applied under deep-sowing stress, indicating that exogenous MeJA promoted the
elongation of mesocotyls, mainly promoting the elongation or enlargement of cells under
deep-sowing stress. Different from this study, Wu et al. [18] believed that the elongation of
rice mesocotyls was mainly due to the promotion of cell division by ABA, and ABA and
GA had a positive superposition effect on mesocotyl elongation. Therefore, whether the
regulation mechanism of ABA with respect to mesocotyl elongation in different crops is the
same needs to be further studied and demonstrated.

3.3. Cytological Analysis of Maize Mesocotyls under Exogenous MeJA Treatment

Mesocotyl elongation is cytologically divided into an increase in the number of cells
and an increase in the volume of cells. Zhao et al. [19] showed that the mesocotyl of
maize alleviated deep-sowing stress mainly by promoting an increase in mesocotyl cell
length rather than the elongation of mesocotyls caused by the change in cell number, which
was consistent with the results of this study. The results of this study showed that the
cytological reason for promoting maize mesocotyls under deep-sowing conditions was
mainly the increase in cell volume rather than the increase in cell number, and exogenous
MeJA could promote cell elongation to increase mesocotyl length and enhance seedling
exhumation ability. It was speculated that exogenous MeJA induced changes in different
hormone contents in the mesocotyls of maize seedlings, thereby regulating cell growth.
Moreover, there were differences in the relief effects of exogenous hormones between
deep-sowing-tolerant inbred lines and deep-sowing-sensitive inbred lines. Therefore, in
actual production, the particularity of materials should be fully considered in considering
whether exogenous hormones should be added to alleviate deep-sowing stress.

3.4. Analysis of Key Differentially Expressed Genes under Deep-Sowing Stress and Exogenous
MeJA Mitigation Treatment

The statistical analysis of differential genes showed that 704 differential genes were
co-expressed in the mesocotyls of the two inbred lines under deep-sowing stress, and 276
differential genes were up-expressed in the deep-sowing-tolerant inbred line Qi319 but
down-expressed in the deep-sowing-sensitive inbred line Qi330. Using |log2FC| ≥ 2 and
p ≤ 0.05 as criteria, 76 differentially expressed genes with co-up-regulation were screened,
and 6 differentially expressed genes with co-up-regulation were up-regulated in the deep-
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sowing-tolerant inbred line Qi319 but down-expressed in the deep-sowing-sensitive inbred
line Zi330. These significant genes are mainly involved in unsaturated fat acid biosynthesis,
fatty acid metabolism, endometrial system regulation, plant hormone signal transduction,
amino acid metabolism, and other processes.

Lignin is a kind of aromaticity polymer, which is mainly involved in the secondary
walls of plant cells. When the lignin content in plant tissue is too high, the cell elongation
and growth of the tissue will be inhibited, mainly because of the low cell wall relaxation
caused by the high lignin content [20]. Some studies also believe that peroxidase (POD) is
induced by hydrogen peroxide (H2O2) and synthesizes too much lignin, which leads to the
hardening of the cell wall and a reduction in relaxation, resulting in the inhibition of cell
elongation and growth [21,22]. In this process, reducing nicotinamide adenine dinucleotide
phosphate oxidase (NADPH), POD, and polyamine oxidase (PAO) are the three main
sources of H2O2 [23]. Genes involved in the redox process, such as GRMZM2G359298, were
up-regulated in both inbred lines after treatment with exogenous MeJA. It is suggested that
peroxidase may be induced by exogenous MeJA, thereby eliminating the accumulation of
H2O2 to reduce the oxidation and polymerization of monosaccharide alcohols in the cell
wall into lignin and reducing the degree of cell elongation inhibition. These genes may
be responsible for cell wall synthesis and cell elongation, suggesting that they may play
an important role in mesocotyl elongation of maize under deep-sowing stress induced
by MeJA.

Most terpenoids in plants belong to secondary metabolic compounds, which play
a positive role in the growth and development of plants, physiological functions, and
interactions between plants and environmental factors. Plant hormones such as gibberellin,
abscisic acid, brassinolactone, and strigolactones (SLs) are also terpenoid derivatives [24].
At present, terpenoids are mainly studied in maize salt stress and resistance to disease,
while few are studied under deep-sowing stress. In this study, transcriptome sequencing
was performed on maize inbred lines with different deep-sowing-tolerance characteristics,
and it was found that some genes were enriched in terpenoid biosynthesis under deep-
sowing conditions when MeJA was applied. The synthesis of terpenoids may play an
important role in alleviating the adaptability of maize under deep-sowing stress.

At present, the interaction between hormones related to the elongation of maize
hypocotyl cells is still unclear. Zhao and Wang [25] believe that IAA mainly regulates the
elongation of maize hypocotyls by increasing the synthesis and transportation of IAA and
found that increasing IAA concentrations under deep-sowing conditions can effectively
promote the elongation of maize mesocotyls. In addition, under the condition of deep
sowing, auxin binding proteins actively participate in promoting the elongation of maize
mesocotyls. Kutschera et al. [26] applied exogenous IAA treatment to maize mesocotyls
and coleoptiles cultured in vitro and found that both tissues were significantly elongated
after treatment. They also found that BR and IAA promoted cell elongation and growth
by acidification and relaxation of the epidermal cell wall. Pan et al. [27] showed that
exogenous GA3 also promoted the elongation of mesocotyls under deep-sowing conditions.
In addition, the “auxin elongation hypothesis” has been confirmed and expanded. It
is reported that auxin binding protein 1 and IAA receptor are involved in the maize
auxin/light signal network [28]. Compared with the deep-sowing treatment, differential
genes that were up-regulated in the hypocotyls of two maize inbred lines under exogenous
MeJA treatment were screened using |log2FC| ≥ 2 and p ≤ 0.05 as the standards. Twelve
differential genes were identified, and ten key genes, including the ornithine decarboxylase
gene, the terpene synthase 7 gene, the ethylene response transcription factor 11 gene,
the calcium one-way transporter 4 mitochondrial gene, the protein exordium gene, the
peroxidase 64 gene, the adenine nucleotide α hydrolase-like superfamily protein gene, the
glutamine decarboxylase 1 gene, the resistance protein rps2 gene, and the extensin-like
protein gene, were preliminarily screened out, which laid the foundation for the functional
identification and cloning of related genes in a later stage. Among them, the expression
of the LOC103632960 gene, which encodes ethylene response transcription factor 11, was
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up-regulated. Ethylene response factor (ERF) is an important transcription factor which
is involved in the response of plants to ethylene and the regulation of plant growth and
development. ERF family members widely exist in various tissues of plants and play
an important role in histogenesis, flowering regulation, stress-resistance response, and
other aspects [29]. Studies have shown that the overexpression of the tomato terf2/leerf2
gene in tobacco and tomato regulates the induced expression of cold-resistance-related
genes and enhances the cold resistance of transgenic plants [30]. The overexpression of the
ptaerf194 gene in poplar improves the resistance of plants to drought stress by improving
water-use efficiency and limiting water loss [31]. The expression of the LOC10363309
gene, which encodes mitochondrial calcium one-way transporter 4, was up-regulated. The
mitochondrial calcium one-way transporter MCU is a highly selective calcium channel
located in the inner membrane of mitochondria, and it is the main medium for calcium ions
to enter the mitochondrial matrix. Duan et al. [32] found that the mitochondrial calcium
one-way transporter ghmcu4 negatively regulates cell elongation, inhibits ghmcu4 gene
expression, significantly increases ca2+ content, activates the calcium signaling pathway,
further promotes H2O2 accumulation, and enhances plant physiological and biochemical
metabolism, thereby promoting plant cell growth and fiber elongation. The expression
of the LOC107546763 gene, which encodes an extensin-like protein, was up-regulated.
Extensin is the main structural protein in plant cell walls, and it is a glycoprotein rich
in hydroxyproline. It exists widely in the cell walls of various plants, accounting for
1% to 15% of the primary wall dry weight in dicotyledons. It plays an important role
in plant growth and development. Its activity affects plant morphogenesis and growth
and development, and it plays an important role in cell wall formation, cell elongation,
stress resistance, and other aspects [33]. In this study, the mesocotyl length, mesocotyl and
coleoptile length, seedling length, and cell length of mesocotyl tissue of the two inbred lines
increased after exogenous MeJA treatment, indicating that exogenous MeJA can promote
cell elongation, increase the length of mesocotyls, and improve the ability of seedling
emergence. Therefore, it is speculated that these genes can be induced to express after
treatment with the exogenous hormone MeJA and may also be involved in the regulation
of mesodermal elongation under deep-sowing stress.

4. Materials and Methods
4.1. Experimental Materials

According to the preliminary laboratory test basis, the deep-sowing-tolerant maize
autotrophic line Qi319 and the deep-sowing-sensitive autotrophic line Zi330, which differed
significantly in mesocotyl length under deep-sowing stress, were selected for deep-sowing
stress and exogenous substances to alleviate deep-sowing stress. The exogenous substances
were MeJA (Solarbio, Beijing, China).

4.2. Experimental Method
4.2.1. Seedling Culture and Treatment

Plump, uniform, and undamaged maize seeds were selected, disinfected with 0.5%
NaClO solution for 10 min, rinsed 3–5 times with distilled water, and soaked in distilled
water for 12 h. Afterward, the water was blotted with sterilized filter paper, the seeds were
sown in PVC tubes (17 cm in diameter and 50 cm in height) filled with sterilized vermiculite
and distilled water in a ratio of 5 g: 1 mL, and the bottoms of the tubes were sealed with
nylon meshes. Ten seeds were sown per PVC tube, and there were six replications per
treatment. Seeds were covered with 3 cm of soil for the normal-sowing control and 15 cm
of soil for the deep-sowing stress treatment. The seeds were cultivated in a dark incubator
at a temperature of 25/20 ◦C during the day/night, and each PVC pipe was watered with
50 mL of the corresponding treatment solution every 2 days. Measurements of parameters
related to deep-sowing tolerance were made 12 days after germination. Three biological
replicates were set for each treatment [34].
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According to the previous results of our research group, the sowing depth for deep-
sowing stress was 15 cm, and the concentration of MeJA was 1.5 µmol·L−1. Experimental
treatment: Treatment 1 (CK): 3 cm sowing depth + distilled water treatment; Treatment 2
(CM): 3 cm sowing depth +1.5 µmol·L−1 MeJA treatment; Treatment 3 (DS): 15 cm sowing
depth + distilled water treatment; Treatment 4 (DM): 15 cm sowing depth +1.5 µmol·L−1

MeJA treatment.

4.2.2. Measurements of Related Parameters of Deep Sowing

The measurement of phenotypic traits followed the method of Peng et al. [35]: meso-
cotyl length (MES), coleoptile length (COL), seedling length (SDL), root length (RL),
seedling fresh weight (SDW), root fresh weight (RW), mesocotyl weight (MESW), and
coleoptile weight (COLW) were measured with a scale and analytical balance after 12 days
of seed germination. Ten plants were taken to calculate the average values. The paraffin
section technique with safranin-fixed green staining was used to observe the histological
structure of the middle parts of maize mesocotyls [36]. The extraction method for endoge-
nous hormones was based on the method of Wang et al. [35]. The technique was repeated
3 times by liquid chromatography–mass spectrometry (HPLC-MS).

4.2.3. Transcriptomic Analysis of Deep-Sowing Stress in Maize

After 12 days of seed germination, the vermiculite attached to the corn seedlings was
washed, the residual water on the surface was sucked up, the mesocotyl was removed and
placed in a 5 mL condensing tube, and the seeds were frozen in liquid nitrogen and stored
at −80 ◦C.

RNA extraction, library construction, and sequencing: Total RNA was isolated and
purified from 24 samples following the TRIzol (Invitrogen, Carlsbad, CA, USA) reagent
procedure. An RNA-seq library was constructed with total RNA of each treated sample
whose purity met the criteria for building the library, which was completed by BGI.

Quality assessment of sequencing results: Clean reads were obtained by filtering the
raw reads obtained by sequencing, and subsequent analysis was based on clean reads.
The filtering software SOAPnuke 1.X independently developed by BTU was used for
filtering. The specific steps were as follows: (1) reads containing adapters (adapter con-
tamination) were removed; (2) reads with N contents greater than 5% were removed;
(3) low-quality reads were removed (reads with a quality score of less than 15 bases were
defined as those with a total number of bases greater than 20%). The filtered clean reads
were saved in FASTQ format. Subsequently, the clean reads for each sample were com-
pared with the fourth version of the B73 maize reference genome using HISAT software
(GCF_000005005.2_B73_RefGen_v4) [37]. RSEM software (1.3.1) was used to detect gene
expression levels.

4.2.4. Analysis of Differentially Expressed Genes

The method of Audic S et al. [38] was adopted to screen DEGs. DEGs were screened
using |log2 fold change (FC)| ≥ 1 and FDR ≤ 0.001 as criteria among different comparison
groups. WEGO software (v2.0) [39] was used to classify the functional notes of selected
DEGs in the GO database. Based on KEGG pathway significant enrichment analysis (per-
formed via the 49-year-old Kyoto Encyclopedia of Genes and Genomes public database:
https://www.genome.jp/kegg/pathway.html, accessed on 5 March 2022), using hyperge-
ometric inspection, the pathways with significant enrichment were identified. Pathways
with Q values ≤ 0.05 were defined as those that were significantly enriched in DEGs. Sig-
nificant enrichment of pathways can identify the most important biochemical metabolic
pathways and signal transduction pathways involved in DEGs.

4.2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

Using the gene expression data obtained by RNA-seq, the FPKM threshold was set
to 1, the module similarity threshold was 0.25, the minimum number of genes in the

https://www.genome.jp/kegg/pathway.html
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module was 30, and the co-expressed gene module was constructed using the WGCNA R
package. The co-expression modules were associated with phenotypic traits, and genes
with kME values > 0.5 were selected as module members (kME is the characteristic gene
connectivity for screening hub genes). Cytoscape_v3.9.1 software was used to visualize the
gene interaction network of the core module. Finally, the hub genes in the core modules
were determined according to the kME values and gene connectivity [40].

4.3. qRT-PCR of Differentially Expressed Genes

In order to ensure the accuracy and reliability of the experimental results, we used
total RNA from each treatment material for library construction. The cDNA was reverse
transcribed with an RNA simple total RNA Kit (Tiangen, Shanghai, China). Ten DEGs
were randomly selected from two inbred lines under deep-sowing stress, and their specific
primers were designed by Primer-BLAST on NCBI. qPCR amplification was performed via
the quantum Studio 5 real-time PCR system (Thermo Fisher Scientific, Waltham, MA, USA)
using super real premix plus (SYBR Green) (Tiangen, Shanghai, China). Each treatment
had three technique replicates. In addition, each real-time PCR was performed at 20 µL.
The reaction volume included 10 µL SuperReal PreMix Plus, 6 µL ddH2O, 0.8 µL forward
primer (10 µmol/L), 0.8 µL reverse primer, 0.4 µL Rox reference dye, and 2 µL template
cDNA. The amplification procedure was described with reference to Li et al. [41]. Using
the actin gene as the internal reference gene, the gene expression level was analyzed using
the 2−∆∆CT calculation method [42].

4.4. Statistics Analysis of Data

Statistical analysis and plotting of the data were conducted using Microsoft Excel 2019,
one-way ANOVA was performed using IBM SPSS Statistics 21.0 software (p < 0.05), and
slice cell-length measurements were performed using Image Pro Plus 6.0. The experimental
results were presented as means ± standard errors (SEs).

5. Conclusions

Based on the above analysis, the mesocotyl lengths, mesocotyl and coleoptile lengths,
and seedling lengths of the two inbred lines were significantly increased after treatment
with exogenous MeJA under deep-sowing stress, indicating that exogenous MeJA can
promote cell elongation, increase the length of the mesodermal axis, and improve the ability
of seedling emergence. Compared with the deep-sowing treatment, exogenous MeJA
alleviated the deep-sowing stress of maize mainly through transportation and catabolism,
signal transduction, amino acid metabolism, lipid metabolism, translation, intimal system
regulation, terpene biosynthesis, and other pathways. After the exogenous MeJA mitigation
treatment, there were 12 significantly differentially expressed genes in the two inbred
lines, and 10 key genes, such as the ornithine decarboxylase, terpene synthase 7, and
ethylene response transcription factor 11 genes, were screened out. By regulating the
elongation of hypocotyls under deep-sowing stress, the deep-sowing tolerance of maize
was enhanced. Our research not only provides a new perspective for solving the problem of
maize planting in arid and water-deficient areas, but also provides a reference for studying
the mechanism of maize tolerance to deep sowing and alleviating maize deep-sowing stress
with exogenous hormones.
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