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Abstract: Intraventricular hemorrhage (IVH) in preterm neonates presents a high risk for developing
posthemorrhagic ventricular dilatation (PHVD), a severe complication that can impact survival
and long-term outcomes. Early detection of PHVD before clinical onset is crucial for optimizing
therapeutic interventions and providing accurate parental counseling. This study explores the po-
tential of explainable machine learning models based on targeted liquid biopsy proteomics data
to predict outcomes in preterm neonates with IVH. In recent years, research has focused on lever-
aging advanced proteomic technologies and machine learning to improve prediction of neonatal
complications, particularly in relation to neurological outcomes. Machine learning (ML) approaches,
combined with proteomics, offer a powerful tool to identify biomarkers and predict patient-specific
risks. However, challenges remain in integrating large-scale, multiomic datasets and translating
these findings into actionable clinical tools. Identifying reliable, disease-specific biomarkers and
developing explainable ML models that clinicians can trust and understand are key barriers to
widespread clinical adoption. In this prospective longitudinal cohort study, we analyzed 1109 liq-
uid biopsy samples from 99 preterm neonates with IVH, collected at up to six timepoints over
13 years. Various explainable ML techniques—including statistical, regularization, deep learning,
decision trees, and Bayesian methods—were employed to predict PHVD development and survival
and to discover disease-specific protein biomarkers. Targeted proteomic analyses were conducted
using serum and urine samples through a proximity extension assay capable of detecting low-
concentration proteins in complex biofluids. The study identified 41 significant independent protein
markers in the 1600 calculated ML models that surpassed our rigorous threshold (AUC-ROC of ≥0.7,
sensitivity ≥ 0.6, and selectivity ≥ 0.6), alongside gestational age at birth, as predictive of PHVD
development and survival. Both known biomarkers, such as neurofilament light chain (NEFL), and
novel biomarkers were revealed. These findings underscore the potential of targeted proteomics
combined with ML to enhance clinical decision-making and parental counseling, though further
validation is required before clinical implementation.
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1. Introduction

Premature neonates diagnosed with intraventricular hemorrhage (IVH) are at signifi-
cant risk of developing posthemorrhagic ventricular dilatation (PHVD), with an estimated
incidence rate of about 25% [1]. In this study, we employ cutting-edge targeted proteomic
techniques to analyze various liquid biopsy matrices, specifically serum and urine, from a
large cohort of 99 neonatal patients prospectively recruited over a 13-year period.

The etiology of IVH is complex, with gestational age (GA) being an independent
predictor of IVH risk [1]. In the past decade, much research has focused on the neurode-
velopmental outcome of IVH patients, both with and without the development of PHVD.
Despite this extensive research [2–4], PHVD treatment remains challenging due to missing
molecular markers for early detection and the need to strike a delicate balance between
the harmful effects of PHVD on the immature brain and the potential risks associated
with interventions [1]. Interventions leading to cerebrospinal fluid drainage carry risks of
infection and other complications, all of which necessitate careful consideration [5]. Our
unit frequently uses extraventricular drainage (EVD) and Ommaya reservoir placement,
followed by ventriculoperitoneal shunt.

Notably, PHVD exhibits a strong correlation with neurodevelopmental impairment [6].
Identifying molecular biomarkers that can predict the development of PHVD before clinical
symptoms appear could pave the way for potential early interventions.

Biomarkers provide objective measurements in tissue or body fluids and thereby help
to predict diseases and disease outcomes, facilitating prevention and treatment in public
health and clinical settings [7–10]. Protein levels measured and detected in minimally
invasive liquid biopsies such as serum and urine can be and are used as biomarkers. Mass
spectrometry methods struggle with complex biomatrices and the detection of abundant
proteins [11–13]. Therefore, we opted for a targeted protein detection method, the Proxim-
ity Extension Assay (PEA), which combines the specificity of dual antibody recognition
with the sensitivity of qPCR (quantitative polymerase chain reaction) readout [14,15]. As
previously demonstrated, this technology permits the detection of low-abundance proteins
in complex biomatrices [16–19].

Machine learning (ML) has been used for years in biomedical research to elucidate
pathophysiological processes in diseases and identify novel, measurable biomarkers [20].
In the rapidly evolving field of ML, a plethora of modeling methods and functions have
emerged from diverse domains, including statistics [21], regularization ML [22], deep
learning [23], decision trees [24], and Bayesian [25] approaches. The sheer abundance of
techniques poses a challenge in identifying the single best method for a specific task. A
solution is to combine the strengths of various approaches into ensembles, leveraging the
advantages of multiple methodologies [20]. Recent studies have already demonstrated
the efficacy of ensemble methods, particularly in the context of feature selection [26–28].
These ensembles have shown remarkable performance in terms of both stability and
prediction accuracy [29]. The use of different ML methods for feature selection offers several
advantages. Firstly, it allows for the exploitation of complementary information provided
by different feature selection methods, capturing diverse aspects of the underlying data
distribution. Secondly, they can mitigate the risk of overfitting and enhance generalization,
as they provide a collective decision-making process that weighs the consensus of multiple
models. Thirdly, the inclusion of multiple methods contributes to increased robustness
against noise and uncertainties present in real-world datasets. We chose to synthesize
the feature selection methods from various ML models for our final biomarker selection,
thereby leveraging the benefits of ensemble feature selection.

The primary objective of our study was to provide novel insights, identify clinically
relevant biomarkers, and explore patient group differences within clinically defined time
frames. We hypothesized that prediction of PHVD and survival is possible based on tar-
geted proteomic data, resulting in ML models from which we can extract novel biomarkers.
The main contributions of our study are a rigorous ML setup for analyzing PEA data for
biomarker discovery and a set of 41 predictive proteins that will fuel future molecular



Int. J. Mol. Sci. 2024, 25, 10304 3 of 17

research in the field of pediatrics and hold potential practical implications in early PHVD
detection and prevention.

2. Results
2.1. Cohort and Sample Description

Our prospectively enrolled cohort consisted of 99 patients with IVH, from whom we
collected a total of 1109 liquid biopsies (591 serum and 518 urine samples; Tables 1, 2, S1
and S2). The overall survival rate of the cohort was 70.7% (Table 2). The highest rate of
neonatal mortality occurred within the first month of life (75.9% of patients died within
one month).

Table 1. Overview of clinically defined timeframe events.

Defined Event Sampling Timeframe Serum Samples Urine Samples Median Day of
Life (IQR)

IVH 0 to 2 days after IVH
(bleeding Event) 72 52 3 (2–4)

IVHp 3 to 9 days after IVH
and <−2 days after NSI 108 101 6 (5–9)

PHVD

−2 to 0 days after NSI
for PHVD positives;
equivalent timeframe:
10 to 18 days after IVH
for PHVD negatives

99 78 14 (11–17)

PHVDp1

1 to 8 days after NSI for
PHVD positives;
equivalent timeframe:
10 to 18 days after IVH
for PHVD negatives

96 109 18 (15–22)

PHVDp2

9 to 39 days after NSI
for PHVD positives;
equivalent timeframe:
19 to 49 days after IVH
for PHVD negatives

108 83 38 (30–46)

PHVDp3

40+ days after NSI for
PHVD positives;
equivalent timeframe:
50+ days after IVH for
PHVD negatives

131 120 79 (67–96)

IVH_IVHp 0 to 9 days after IVH 172 152 5 (3–8)

28 days of life 21 to 35 days of life
(28 days ± 7 days) 82 83 27 (24–30)

32 weeks 31.0 to 33.0 GA
(32 weeks ± 7 days) 59 54 39 (22–50)

term-equivalent age

predicted birth
timepoint/discharge
from clinic, 36.0 to
41.14 GA

93 84 83 (70–96)

Defined time windows: a single sample can be classified into two or more events.

Abbreviations: IQR, inter-quartile range; NSI, neurosurgical intervention; PHVD, posthemorrhagic ventricular
dilatation; IVH, interventricular hemorrhage; GA, gestational age.
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Table 2. Clinical data of the patients included in this study.

PHVDn (n = 46) PHVDp (n = 53) Total (n = 99) p Value

Survival 0.045 a

Deceased n (%) 18 (39.1) 11 (20.8) 29 (29.3)

Survived n (%) 28 (60.9) 42 (79.2) 70 (70.7)

Median day at death (IQR) (days) 17 (10–25)

Median GA at death (IQR) (weeks) 26.57 (25.57–29.14)

GA at birth <0.001 b

Median (IQR) (weeks) 24.43 (23.57–25.96) 26.29 (25.29–28.14) 25.57 (24.14–27.14)

Range 23.00–29.71 23.29–33.29 23.00–33.29

Sex male n (%) 30 (65.2) 35 (66.0) 65 (65.7) 0.932 a

IVHgrade_L

Median (IQR) 3 (2–4) 3 (3–3) 3 (2–4) 0.167 b

0 n (%) 5 (10.9) 1 (1.9) 6 (6.1) 0.002 a

2 n (%) 16 (34.8) 8 (15.1) 24 (24.2)

3 n (%) 11 (23.9) 32 (62.3) 44 (44.4)

4 n (%) 14 (30.4) 11 (20.8) 25 (25.3)

IVHgrade_R

Median (IQR) 3 (2–4) 3 (3–3) 3 (2–4) 0.138 b

0 n (%) 5 (10.9) 1 (1.9) 6 (6.1) 0.042 a

1 n (%) 3 (6.5) 1 (1.9) 4 (4.0)

2 n (%) 12 (26.1) 8 (15.1) 20 (20.2)

3 n (%) 14 (30.4) 32 (60.4) 46 (46.5)

4 n (%) 12 (26.1) 11 (20.8) 23 (23.2)

IVHuni_bi 0.013 a

unilateral n (%) 9 (19.6) 2 (3.8) 11 (11.1)

bilateral n (%) 37 (80.4) 51 (96.2) 88 (88.9)

IVHgrade_MAX

Median (IQR) 3 (2–4) 3 (3–4) 3 (3–4) 0.686 b

2 n (%) 12 (26.1) 2 (3.8) 14 (14.1) 0.002 a

3 n (%) 13 (28.3) 32 (60.4) 45 (45.4)

4 n (%) 21 (45.7) 19 (35.8) 40 (40.4)

IVHgrade_SUM

Median (IQR) 6 (4–6) 6 (6–6) 6 (5–6) 0.040 b

2 n (%) 6 (13.0) 0 (0.0) 6 (6.1) 0.014 a

3 n (%) 3 (6.5) 2 (3.8) 5 (5.1)

4 n (%) 8 (17.4) 3 (5.7) 11 (11.1)

5 n (%) 5 (10.9) 6 (11.3) 11 (11.1)

6 n (%) 13 (28.3) 30 (56.6) 43 (43.4)

7 n (%) 6 (13.0) 9 (17.0) 15 (15.2)

8 n (%) 5 (10.9) 3 (5.7) 8 (8.1)
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Table 2. Cont.

PHVDn (n = 46) PHVDp (n = 53) Total (n = 99) p Value

Number of NSI <0.001 b

Median (IQR) NA 3 (2–5) 1 (0–4)

Range NA 0.00–10.00 0.00–10.00

Asphyxia n (%) 10 (21.7) 13 (24.5) 23 (23.2) 0.743 a

NAISor neonatal CSVT n (%) 0 (0.0) 2 (3.8) 2 (2.0) 0.183 a

Encephalitis or ventriculitis n (%) 0 (0.0) 11 (20.8) 11 (11.1) 0.001 a

PDA n (%) c 6 (16.2) 6 (12.0) 12 (13.8) 0.218 a

NEC n (%) c 5 (10.9) 5 (9.4) 10 (10.1) 0.813 a

BPD n (%) d 16 (55.2) 19 (41.3) 35 (46.7) 0.026 a

ROP n (%) d 7 (24.1) 8 (18.2) 15 (20.6) 0.084 a

PVL n (%) d 2 (7.1) 3 (6.8) 5 (6.9) 0.087 a

a p Values were calculated using Pearson’s Chi-squared test. b p Values were calculated with a Kruskal –Wallis
rank sum test. c Only diagnosed in survivors as well as deceased patients in case of survival > 34 weeks GA.
d Only diagnosed in survivors as well as deceased patients in case of survival until term. Abbreviations: BPD,
bronchopulmonary dysplasia; CSVT, cerebral sinovenous thrombosis; GA, gestational age; IVH, interventricular
hemorrhage; IVHgrade_L, degree of IVH in the left brain hemisphere; IVHgrade_MAX, maximum degree of IVH;
IVHgrade_R, degree of IVH in the right brain hemisphere; IVHgrade_SUM, summed degree of IVH; IVHuni_bi,
unilateral or bilateral IVH; IQR, interquartile range; NAIS, neonatal arterial ischemic stroke; NEC, necrotizing ente-
rocolitis; NSI, neurosurgical intervention; PDA, persistent ductus arteriosus; PHVD, posthemorrhagic ventricular
dilatation; PVL, periventricular leukomalacia; ROP, retinopathy of prematurity.

2.2. Exploratory Data Analysis

Out of 111,592 individual Olink measurements, only four led to missing values. We
analyzed a heatmap based on the uncorrected NPX values and visualized the data through
score plots of the first two principal components of a PCA (Figures S1, S2, S5 and S6).
After correcting for the batch effect of the plates, we re-examined the visualized data in a
heatmap (Figures S3 and S7). Following the removal of positive and negative controls, we
performed a PCA on the batch-corrected NPX values (Figures S4 and S8). We did not detect
a distinct pattern or clustering in the score plots based on visual data inspection. When
comparing the PCA in serum samples with the colored events PHVD, PHVDp1, PHVDp2,
and PHVDp3, we detected a tendency in the second component (from top towards bottom)
(Figure S9).

Following batch correction, a comparison between patient groups at each event was
performed. Upon examining the adjusted p values for all possible comparisons between
PHVD positive (PHVDp) and PHVD negative (PHVDn) patients in the urine dataset, we
identified only one significant (threshold adjusted p value < 0.05) adjusted p value of 0.018
for the ADAM15 (Disintegrin and metalloproteinase domain-containing protein 15) protein
at 32 weeks, as detailed in Table S3. Conversely, when comparing the different timepoints,
we observed highly significant changes in protein expression levels (Table S4). The PAEP
(Glycodelin) protein showed significantly different levels, with an adjusted P value, in
38.1% of all timepoint comparisons in the urine data (Table S4). When analyzing the
neurofilament light chain (NEFL) levels at the IVHp timepoint (Table 1) in serum samples,
we observed a significant log2-fold change (p value = 0.0237) of 0.61 between PHVDp and
PHVDn patients (Table S5). Moreover, in the comparison of different timepoints within
the serum data, PSG1 (Pregnancy Specific Beta-1-Glycoprotein 1) emerged as the most
significant protein. It showed an adjusted P value of 0.0002 in the comparison between the
IVH and IVHp events, with a log2-fold change of 2. The differentially regulated proteins in
serum and urine vary over time and between patient groups, indicating distinct biological
processes and highlighting the dynamic nature of protein expression.
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Upon reviewing the adjusted P values for all possible comparisons between surviving
and deceased patients, we identified several proteins in both matrices (Tables S7 and S8).
In serum samples, the cytokine interleukin-15 (IL-15) was the most significantly detected
protein at the IVHp timepoint (adjusted p value = 0.0003, log2-fold change = −0.88). At
the PHVD timepoint, 33 significant proteins were identified. Notably, NEFL exhibited
a highly significant log2-fold change (adjusted p value = 8.82 × 10−8) of −1.89. This
indicates a roughly 13-fold higher concentration in deceased patients compared to those
from surviving patients. At the same timepoint, ADAM15 was found in significantly higher
quantities in surviving patients, with levels 3.96 times higher than in deceased patients
(Table S8).

2.3. Machine Learning Reveals Potential Novel Biomarkers

We evaluated 500 models trained for PHVD prediction and 1100 models trained
to predict survival outcomes. We decided to evaluate only those models that met our
predefined thresholds and then selected features from these models that displayed a
variable importance ≥ 50 on a 0–100 scale. We performed this selection process for all
trained models across all defined events (Table 3). All models were trained to optimize
their hyperparameters to maximize AUC while keeping sensitivity at a minimum of
0.6. By following this method, we ensured that the models maintained a robust balance
between predictive performance and practical utility in a clinical setting. This approach
mitigated the risk of overfitting while ensuring that models maintained an acceptable
level of true positive detection (sensitivity ≥ 0.6), which is crucial in scenarios where false
negatives carry significant consequences. Additionally, optimizing for area under the curve
(AUC) facilitated the evaluation of overall model discriminative ability, accounting for
both sensitivity and specificity across various decision thresholds. This dual focus on
AUC maximization and sensitivity constraint provides a rigorous framework for assessing
model efficacy.

GA at birth appeared to have a significant contribution in all instances across all
models (Table 3, Figures S10 and S11). Conversely, the degree of interventricular bleeding
only appeared as a significant variable in the “blood PHVD” model (Table 3), where it did
not have the highest variable importance among the selected features. Figure S10 displays
the AUC-ROC (A), the prediction distribution (B), and the variable importance (C) for
the best-performing algorithm for PHVD prediction. In the analysis of variables selected
by the models trained with urine samples from events before PHVD onset (Figure 1), in
addition to the reoccurring variable GA at birth, RBKS (Ribokinase) and PPP3R1 (Protein
Phosphatase 3 Regulatory Subunit B, Alpha/Calcineurin Subunit B Type 1) were identified
as important variables. The models trained with samples collected at the PHVD and
IVH_IVHp_PHVD events deliberately included samples from instances where PHVD had
already occurred. Again, GA at birth emerged as a prominent variable, alongside other
molecular variables like ISLR2 (Immunoglobulin Superfamily Containing Leucine Rich
Repeat 2; Table 3). We continued with evaluating the models trained on the serum data
to predict the risk of PHVD (Table 3 and Figure S10). The recurring variables selected by
the models for the IVH, IVHp, and IVH_IVHp events included GA at birth, PPP3R1, and
FUT8 (Alpha-(1,6)-fucosyltransferase). Additionally, RBKS was also selected by models
trained with samples from the IVHp event. The serum models, trained with the samples
from the PHVD event, identified ISLR2, as highly important for the prediction of PHVD.
Models trained on data from timepoints closer to the PHVD event demonstrated superior
performance, as expected.
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Table 3. Features selected based on ML models trained on targeted proteomics.

Model Features Selected

Urine Models predicting PHVD

Urine IVH DEFB4A; GA at birth

Urine IVHp GA at birth; TDGF1

Urine PHVD – a

Urine IVH_IVHp RBKS; GA at birth; PPP3R1

Urine IVH_IVHp_PHVD RBKS; GA at birth; CD33; SNCG; PP3R1

Serum Models predicting PHVD

Blood IVH PPP3R1; GA at birth

Blood IVHp FUT8; GA at birth; RBKS

Blood PHVD KLB; GA at birth; PAEP; PTS; AOC1; ISLR2; NXPH1; IVHgrade_MAX; VSTMT

Blood IVH_IVHp GA at birth; PPP3R1; FUT8

Blood IVH_IVHp_PHVD DPEP2; GA at birth

Urine Models predicting survival

Urine IVH GA at birth; HSP90B1; KIRREL2

Urine IVHp – a

Urine PHVD FGFR2; GA at birth

Urine IVH_IVHp GA at birth

Urine IVH_IVHp_PHVD – a

Urine PHVDp1 – a

Urine PHVDp2 – a

Urine PHVDp3 – a

Urine 28 days of life – a

Urine 32 weeks – a

Urine term-equivalent age Not able to perform ML

Serum Models predicting survival

Blood IVH PRTFDC2; GA at birth; AKT1S1; FKBP5; SNCG; DPEP2

Blood IVHp FGFR2; GA at birth; IL15; FKBP5; DPEP2; CLSTN1; IFNL1; RBKS

Blood PHVD GPNMB; DSG3; FGFR2; NEFL; IL15; CDH15; ADAM15; GA at birth; KIR2DL3;
PLA2G10

Blood IVH_IVHp DPEP2; GA at birth; IL15; GSTP1; COL4A3BP; PRTFDC1; SNCG

Blood IVH_IVHp_PHVD GA at birth; DSG3

Blood PHVDp1 FGFR2; ADAM15; NEFL; PLA2G10; IL15; CDH15; BST2; FCAR; GA at birth

Blood PHVDp2 GA at birth; TNFRSE13C; PAEP

Blood PHVDp3 IFNL1; SNCG; GA at birth; TDGF1; ADGRB3; IL32

Blood 28 days of life – a

Blood 32 weeks – a

Blood term-equivalent age – a

Applied thresholds for the models: AUC-ROC ≥ 0.7; Sensitivity ≥ 0.6 and Selectivity ≥ 0.6.Features selected from models passing
thresholds had to display a relative variable importance measure ≥ 50.

a Indicates, that no model passed the threshold for evaluation. Abbreviations: GA, gestational age; IVH, inter-
ventricular hemorrhage; PHVD, posthemorrhagic ventricular dilatation; IVHgrade_MAX, maximum degree of
IVH.



Int. J. Mol. Sci. 2024, 25, 10304 8 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 17 
 

 

Models trained on data from timepoints closer to the PHVD event demonstrated superior 
performance, as expected. 

 
Figure 1. Graphical representation of defined events in a timeline. Dotted red lines intersecting the 
timeline mark instances of IVH and the corresponding NSI of EVD/Ommaya reservoir. The IVH 
event encompasses samples collected from the onset of bleeding up to 2 days afterward. The IVHp 
event spans samples obtained from 3 to 9 days post-bleeding. The PHVD event is delineated by NSI, 
covering samples from 2 days before the intervention until the intervention itself. Subsequent 
PHVDp1, PHVDp2, and PHVDp3 events include samples from 1 day after NSI up to 8 days after, 9 
to 39 days after, and 40 days or more after NSI, respectively. Comparable timeframes were estab-
lished for IVH patients without the development of PHVD/without NSI. The equivalent PHVD 
event comprises samples from 10 to 18 days after IVH, while the equivalent PHVDp1, PHVDp2, and 
PHVDp3 events include samples from 10 to 18 days, 19 to 49 days, and 50 days or more after IVH, 
respectively. Further, we included standard time frames, indicated by blue diamond-shaped rectan-
gles, including 28 days of life (±7 days), 32 weeks after conception (±7 days), and term-equivalent 
age (GA at sampling time 36.0-41.14). 

Evaluation of the models trained to predict patient survival (Figure S11) reveals a 
distinct pattern, albeit with some similarities to PHVD prediction feature selection. Note-
worthy, GA at birth was consistently selected as a predictive variable in all survival mod-
els meeting our criteria, based on serum and urine data alike. The urine models identified 
only a limited number of proteins with sufficient variable importance (Table 3). In contrast, 
models based on serum data selected a wider array of features (Table 3), with recurring 
features including FGFR2 (fibroblast growth factor receptor 2) and IFNL1 (Interferon 
Lambda 1), among others. 

Based on all evaluated ML models, 41 significant uncorrelated protein markers dis-
played predictive power. 

2.4. Canonical Correlation Analysis Discloses Unexpected Independence 
To elucidate and validate the attributes identified by the ML models, we conducted 

an rCCA on the clinical and molecular data. rCCA was selected due to the high dimen-
sionality of the dataset, where the number of variables exceeds the number of experi-
mental units, making the computation of the covariance matrix inverse intractable with-
out the application of regularization techniques. We displayed the relevance associations 
network for the rCCA (Figure 2A,B), with the inherent advantage of simultaneously rep-
resenting both positive (red) and negative (blue) correlations. The applied correlation 
threshold for inclusion in the network was set to 0.6. Moreover, we visualized the results 
as a heatmap to give an overall view of the results (Figure 2C,D). As shown, only signifi-
cant correlations associated with temporal parameters are discernible. A significant nega-
tive correlation between NEFL and temporal parameters in serum indicates a decrease 
over time. Inversely, a positive correlation between samples collected within the IVH 
timeframe and PSG1 suggests increased levels at earlier timepoints (Figure 2). 

Figure 1. Graphical representation of defined events in a timeline. Dotted red lines intersecting the
timeline mark instances of IVH and the corresponding NSI of EVD/Ommaya reservoir. The IVH
event encompasses samples collected from the onset of bleeding up to 2 days afterward. The IVHp
event spans samples obtained from 3 to 9 days post-bleeding. The PHVD event is delineated by
NSI, covering samples from 2 days before the intervention until the intervention itself. Subsequent
PHVDp1, PHVDp2, and PHVDp3 events include samples from 1 day after NSI up to 8 days after, 9 to
39 days after, and 40 days or more after NSI, respectively. Comparable timeframes were established for
IVH patients without the development of PHVD/without NSI. The equivalent PHVD event comprises
samples from 10 to 18 days after IVH, while the equivalent PHVDp1, PHVDp2, and PHVDp3 events
include samples from 10 to 18 days, 19 to 49 days, and 50 days or more after IVH, respectively. Further,
we included standard time frames, indicated by blue diamond-shaped rectangles, including 28 days
of life (±7 days), 32 weeks after conception (±7 days), and term-equivalent age (GA at sampling time
36.0–41.14).

Evaluation of the models trained to predict patient survival (Figure S11) reveals
a distinct pattern, albeit with some similarities to PHVD prediction feature selection.
Noteworthy, GA at birth was consistently selected as a predictive variable in all survival
models meeting our criteria, based on serum and urine data alike. The urine models
identified only a limited number of proteins with sufficient variable importance (Table 3).
In contrast, models based on serum data selected a wider array of features (Table 3),
with recurring features including FGFR2 (fibroblast growth factor receptor 2) and IFNL1
(Interferon Lambda 1), among others.

Based on all evaluated ML models, 41 significant uncorrelated protein markers dis-
played predictive power.

2.4. Canonical Correlation Analysis Discloses Unexpected Independence

To elucidate and validate the attributes identified by the ML models, we conducted an
rCCA on the clinical and molecular data. rCCA was selected due to the high dimensionality
of the dataset, where the number of variables exceeds the number of experimental units,
making the computation of the covariance matrix inverse intractable without the application
of regularization techniques. We displayed the relevance associations network for the
rCCA (Figure 2A,B), with the inherent advantage of simultaneously representing both
positive (red) and negative (blue) correlations. The applied correlation threshold for
inclusion in the network was set to 0.6. Moreover, we visualized the results as a heatmap to
give an overall view of the results (Figure 2C,D). As shown, only significant correlations
associated with temporal parameters are discernible. A significant negative correlation
between NEFL and temporal parameters in serum indicates a decrease over time. Inversely,
a positive correlation between samples collected within the IVH timeframe and PSG1
suggests increased levels at earlier timepoints (Figure 2).
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Figure 2. (A)-visualization of the relevance associations network based on the rCCA between distinct
clinical datasets characterizing the samples and the Olink measurements based on the urine data. The
applied correlation threshold for inclusion in both networks was set to 0.6. (B)-visualization of the
relevance associations network based on the rCCA between distinct clinical data sets characterizing
the samples and the Olink measurements based on the serum data. (C)-heatmap of the rCCA between
distinct clinical datasets characterizing the samples and the Olink measurements based on the urine
data. The dendrogram in the heatmap was computed with the complete linkage method to find
similar clusters based on the Euclidean distance. (D)-heatmap of the rCCA between distinct clinical
datasets characterizing the samples and the Olink measurements based on the serum data. The
dendrogram in the heatmap was computed with the complete linkage method to find similar clusters
based on the Euclidean distance. All clinical data beginning with “Event_” indicate the samples
belonging to a specific timeframe; these timeframes are highly correlated to features such as “day of
life”, “day after IVH” or “GA of the sample”.
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Additionally, we examined the correlation between GA at birth and the maximum
degree of IVH, calculating the Pearson (r = −0.24), the Spearman correlation coefficient
(ρ = −0.24), and the point-biserial correlation (rpbis = −0.25, p-value = 0.01). These results
suggest no strong, significant correlation between the categorical and continuous variables,
indicating their independence based on our collected data.

3. Discussion

The role of molecular factors in preventing PHVD in patients with IVH remains
largely unexplored, yet identifying these factors could be pivotal in advancing clinical care.
By recognizing molecular signatures, we may be able to develop predictive biomarkers
that not only improve early diagnosis but also serve as therapeutic targets, potentially
mitigating adverse outcomes in premature neonates. IVH is a major complication in
preterm infants, significantly elevating mortality risk. However, its direct association
with mortality remains uncertain due to the frequent presence of other life-threatening
comorbidities that complicate patient outcomes [30]. This underscores the need for a
multifaceted approach to clinical management that extends beyond simply addressing the
hemorrhage itself. It is important to clarify that the primary focus of our study was not to
predict IVH occurrence. Rather, we sought to identify early biomarkers that could predict
the progression of IVH to PHVD. We also acknowledge that if intracranial pressure (ICP)
is elevated to the point of requiring neurosurgical intervention, predicting PHVD may
become redundant, as surgical treatment would already be indicated. Nonetheless, our
study fills a critical gap by focusing on the identification of potential biomarkers that could
predict PHVD before the onset of raised ICP, ultrasonographic signs, and clinical indications
for intervention. Furthermore, we highlight the distinction between our approach and
traditional methods used in adult hydrocephalus after shunting that rely on intracranial
compliance (ICC) as an index for evaluating hydrocephalus. ICC is commonly assessed
through imaging and ICP measurements after hydrocephalus has already developed, as
discussed in the referenced study [31]. While ICC provides valuable insights into disease
progression after hydrocephalus onset, it does not offer early predictive value for pre-
symptomatic intervention. Our research aims to address this gap by identifying molecular
markers that can predict PHVD development prior to the manifestation of clinical or
ultrasonographic symptoms and raised ICP. In the broader context of clinical practice, the
current reliance on imaging limits early intervention opportunities. By leveraging targeted
proteomics and machine learning, our study contributes a novel approach to biomarker
discovery, potentially transforming the clinical management of IVH. The identification of
early predictive biomarkers could not only enhance early diagnosis and treatment decisions
but also guide therapeutic development aimed at preventing PHVD and improving survival
outcomes in neonates. This positions our research within the evolving landscape of clinical
prediction and underscores its potential significance in advancing neonatal care.

The study strengths include the rigorous evaluation of ML models, access to an ex-
ceptional cohort of 99 neonates, and the amount of unprecedented molecular information,
providing us with invaluable data. Exploratory analysis techniques revealed significant
differences in ADAM15 expression between PHVDp and PHVDn patients in urine samples,
whereas other comparisons yielded no significant adjusted p values. However, comparing
different timepoints in urine, we observed highly significant changes in protein expres-
sion levels across various events, with PAEP and PSG1 being the most notable. PAEP is
mainly expressed in the endometrium and the placenta, while PSG1 is strongly expressed
exclusively in the placenta [32]. The detection of these pregnancy-linked proteins may be
attributed to the transfer from the mother to the fetus, undergoing secretion, metabolism,
and eventual removal from the system of premature infants post-birth. Significant dif-
ferences were observed when comparing surviving and deceased patients at different
timepoints. For example, at the PHVD timepoint, serum NEFL levels in deceased patients
were approximately 13 times higher than in survivors, while ADAM15 levels were signifi-
cantly higher in survivors, suggesting NEFL as a predictor for mortality, while ADAM15
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might play a role in the protection thereof. As previously published, the metalloproteinase
ADAM15 is upregulated by shear stress, promoting endothelial cell survival via KLF2-
induced expression [33]. Knockdown of ADAM15 reduces survival under flow conditions
by 6.7-fold, highlighting its protective role. In contrast, the absence of ADAM15 at low
shear stress or static conditions leads to increased endothelial damage and vascular in-
flammation [33]. Additionally, ADAM15 expression is elevated in lung CD8(+) T cells,
macrophages, and bronchial epithelial cells in COPD patients, where it inversely corre-
lates with airflow obstruction, indicating its broader protective role in both vascular and
pulmonary pathologies [34].

rCCA identified significant correlations between time-related variables and molecular
markers. Notably, NEFL strongly correlated with patient age in serum data, and FKBP5
(FK506-binding protein 5-prolyl isomerase) with postnatal age in urine data. FKBP5 has
previously been found to be associated with physical and psychological stress [35,36],
which might explain the negative correlation to patient age in preterm infants with IVH.
Interestingly, no significant correlation was found between GA at birth and the degree of
IVH, contrary to the expectation that a more immature brain would be more susceptible to
severe bleeding. This underscores the complexity of the multifactorial condition IVH and
the need for further research into its underlying mechanisms.

In all evaluated ML models, GA at birth had high or the highest variable importance,
contributing significantly to predicting PHVD and survival. Clinically, this reinforces the
importance of considering GA at birth alongside other clinical variables in risk stratification
and treatment decision-making for IVH patients. It was highly unexpected to find that
the degree of IVH did not significantly contribute to the models predicting PHVD. As the
variables GA at birth and IVH degree were not strongly correlated, we were able to rule
out a potential influence on the variable selection process. Nevertheless, the selection of
GA at birth as a predictive variable has a clear rational: it reflects the level of development
of immature patients and their capacity to repair damage resulting from IVH [37]. Another
plausible explanation could be the deficit in compensating and regulating cerebrospinal
fluid pressure in more immature preterm patients. These findings suggest that GA at birth
has a stronger impact on patient outcomes than the degree of IVH.

The selection of serum ISLR2 in models post-PHVD development indicates distinct
molecular processes differentiating PHVDp and PHVDn patients [38]. ISLR2, expressed in
the brain and testis [38], is linked to congenital hydrocephalus [38], and predicted to be
involved in the positive regulation of axon extension during neural development. Serum
ISLR2 shows decreased NPX values shortly after the PHVD event in PHVDp patients.
Models trained on the events preceding PHVD identified serum PPP3R1, FUT8, and
RBKS as important variables, suggesting PP3R1′s protective role against PHVD. Also,
increased concentrations in urine, indicating higher excretion, could indicate a potential
imminent PHVD.

To discern the pathophysiological mechanisms explaining the different concentrations
of these predictive markers, more research is needed. We identified predictive biomarkers in
both serum and urine that contribute to both the development of PHVD and their protection
against it. This discovery paves the way for novel targets for pharmaceutical interventions,
enabling more precise monitoring and prediction of patients, particularly those at risk. This
advancement could help in deciding whether invasive procedures are indicated in an early
stage, a decision that, until now, could not be easily made. Our results indicate the ability to
predict PHVD development at an early stage, before detectable ventricular dilatation and
the clinical manifestation thereof. This may be due to noticeable molecular microprocesses
in the developing brains of neonates, indicating pathophysiological changes before clinical
symptoms appear.

Survival prediction models using urine data were limited to 3 due to their failure to
meet our inclusion thresholds. This limitation can be attributed to the median day and
GA at death in deceased patients. The models included showed one prevalent variable
in common, which was GA at birth. Remarkably, looking at the survival models trained
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on serum, we identified several molecular variables pointing towards complex processes.
Additionally, GA at birth, we defined IFNL1 and FGFR2 as protective biomarkers and
indicators of survival. As IFNL1 [39,40] plays an important role in the immune system, we
assume that the protective features are involved in a more resistant immune response to
subclinical infection processes [41]. Given FGFR2′s role in cell mitosis and differentiation,
we can infer that its protective abilities might be linked to repair systems activated post-
bleeding. We successfully identified the known biomarker NEFL, previously confirmed as
a predictor for outcome in IVH patients [42], thereby verifying our approach since NEFL is
used as a proxy for neuronal damage [43–45].

4. Materials and Methods
4.1. Sample Collection

We prospectively enrolled neonatal IVH patients over a 13-year period, from May
2011 to March 2023, and collected liquid biopsies, comprising serum and urine. Sample
collection and processing followed a uniform protocol throughout the study. Samples were
collected in appropriate tubes, immediately cooled, transferred to the central pediatric
laboratory within 24 h for centrifugation, distributed into aliquots, and stored at −80 ◦C for
batchwise analysis. Samples were categorized according to clinically defined timeframes
and standard time windows (Figure 1).

4.2. Targeted Proteomics

Protein expression was measured using PEA technology, specifically employing the
Olink® Target 96 Neuro Exploratory Panel, as described previously [14,15]. Normalized
Protein eXpression (NPX) values, Olink’s arbitrary unit, in log2 scale and inversely related
to the Ct-value, were used for relative quantification only. We measured a total of 92 protein
analytes per sample, with each measurement requiring 1 µL of sample. Due to the very
low level of missing data, we employed principal component analysis (PCA) to impute
missing values.

4.3. Machine Learning and Biostatistical Analysis

We conducted an exploratory analysis to determine the suitability of data from dif-
ferent biological matrices for subsequent analysis. In this more descriptive approach to
the data, we applied univariate statistical methods, linear and logistic regression, dimen-
sionality reduction, and clustering analyses. Foremost, we estimated the variability of
experimental effects, including the sample batch, with a principal variance component
analysis (PVCA). The approach leverages the strengths of a PCA to efficiently reduce data
dimension while maintaining most of the variability in the data and variance components
analysis, which fits a mixed linear model using factors of interest as random effects to
estimate and partition the total variability. Detected batch effects were corrected using the
ComBat function from the sva R package [46,47]. We detected a batch effect between the
plates in both the urine and serum data, with 0.11 and 0.034 weighted average proportion
of variance, respectively. After removing the batch effect and conducting another PVCA,
we found a reduction to 0.046 (58.2%) and 0.007 (79.4%). To investigate the changes occur-
ring between the defined events, we conducted a group comparison using the limma R
package [48] to identify significant changes in the NPX values (see Table 1). We compared
samples from patients with PHVD (PHVD positive, PHVDp) to those without (PHVD
negative, PHVDn) and survivors to deceased patients at each timepoint. Additionally, we
compared all time points against each other to identify any changes. These analyses were
based primarily on statistical analysis with various R packages provided by the biocomput-
ing platform Bioconductor [47,48]. Considering the evidence presented in the manuscript
and the significant signals measured, we concluded that urine samples are suitable for
further biomarker detection.

Next, we addressed the question of whether it is possible to predict patient outcomes
based on the NPX measurements and a thorough evaluation of phenotype data. We used
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our ML models to identify patients with IVH who are at risk of developing PHVD and
to predict patient survival. In this set of ML models, we included GA at birth, as this
has previously been shown to significantly predict the risk of certain outcomes [49] and
the maximum grade of IVH. Notably, they were also trained for each event individu-
ally (Table 1). Five different supervised ML classification models were used to address
the limitations of relying on one single algorithm for biomarker detection. The super-
vised form of a partial least squares discriminate analysis (PLS-DA) was applied to each
training dataset timepoint independently [21,50–52]. The machine-learning algorithm ran-
dom forests (RF) analysis was applied independently of the PLS-DA analysis to the same
dataset [52–55]. The third algorithm used was an Elastic-Net Regularized Generalized
Linear Model (GLMnet), used to fit generalized linear and similar models via penalized
maximum likelihood. This fast algorithm further removes degeneracy and wild behavior
caused by extreme correlations [56]. We further fitted a neural network model (multilayer
feed-forward supervised network) to the datasets [57]. Finally, we applied a Naïve Bayesian
(NB) supervised algorithm. To estimate the variable importance, an inbuilt function of
the caret function was used for the approximation of the relative measure of the variable
importance calculated on the area under the receiver operating curve (AUC-ROC) and
the R2 statistic [58]. These five models were used to determine the importance of the
92 proteins included in the panel to discriminate PHVDp from PHVDn patients and to
predict their survival. As all these different models utilize different metrics to determine
variable importance and therefore cannot be compared directly, we decided to use nor-
malized scaled metrics for each predictor in each fitted model, as included in the caret R
package. In this system, a score of 100 represents the highest importance to the model in
deriving a classification [58]. Variables with variable importance values > 50 were consid-
ered to contribute significantly to the model. In the following analysis, each model type
(PLS-DA, GLMnet, RF, Neural Network, and NB) was performed 10 times on 10 randomly
split test and training sets, which were submitted to a 10-fold cross validation repeated
10 times each [21,32]. The resulting performance metrics were then summarized for each
model algorithm at a given event to ensure a constant result independently from the split
of the data in training and test sets. For the final selection of variables from the models,
we applied the following thresholds: the model had to achieve an AUC-ROC of ≥0.7,
sensitivity ≥ 0.6, and selectivity ≥ 0.6. Moreover, the variables had to score a variable
importance mean of 50 or higher. We only included gestational age at birth and the de-
gree of IVH in the models, focusing solely on the identification of molecular markers and
assessing their reliability without the influence of too many additional variables. The
aim was to identify disease-specific proteins and their strength in discriminating between
different patient groups. These models were separately trained on urine and serum data.
Visualizations and further statistical analyses were performed in the R environment [59,60].

To verify and explain the feature selection in the ML models, we performed a regu-
larized canonical correlation analysis (rCCA) using the mixOmics R package, aimed to
identify potential correlations between two multivariate data matrices: the clinical data
describing the samples and the proteomics data [61–63]. rCCA was chosen due to the large
number of variables compared to the experimental units, and therefore calculating the
inverse for these would be impossible without regularization.

5. Conclusions

Our study provides the first glimpses into molecular processes driving changes in
preterm neonates with IVH, marking a significant contribution to understanding the early
stages of this condition. Thus, enhancing our knowledge of the molecular drivers of
IVH progression, while practically, these findings hold promise for earlier diagnosis of
high-risk individuals. This could lead to preemptive treatments aimed at preventing the
development of PHVD. Clinically, the ability to predict PHVD early has the potential to
transform patient care, especially in medical centers across the US. Early identification
could prompt more frequent ultrasound screenings, allowing for timely interventions, such
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as lumbar punctures, thereby reducing the need for invasive neurosurgical procedures
and improving outcomes. Our findings, particularly the role of GA at birth as the most
powerful predictor in machine learning models, underscore the importance of this metric
in managing IVH patients. Despite these advances, our study is limited by the relatively
small sample size and the need for larger, multicenter studies to validate our predictive
models. Future research should explore the integration of additional biomarkers to refine
risk stratification and investigate longitudinal outcomes following early interventions.
Given the severity of this condition, we are grateful for the participation of all patients and
caregivers in this study.
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AUC-ROC area under the receiver operating curve
BPD bronchopulmonary dysplasia
CSVT cerebral sinovenous thrombosis
EVD extraventricular drainage
GA gestational age
IVH intraventricular hemorrhage
IVHgrade_L degree of IVH in the left-brain hemisphere
IVHgrade_MAX maximum degree of IVH
IVHgrade_R degree of IVH in the right-brain hemisphere
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IVHgrade_SUM summed degree of IVH
IVHuni_bi unilateral or bilateral IVH
ML machine learning
NAIS neonatal arterial ischemic stroke
NEC necrotizing enterocolitis
NEFL neurofilament light chain
NIH National Institutes of Health
NPX Normalized Protein eXpression
NSI neurosurgical intervention
PCA principal component analysis
PDA persistent ductus arteriosus
PEA Proximity Extension Assay
PHVD posthemorrhagic ventricular dilatation
PHVDp posthemorrhagic ventricular dilatation positive
PHVDn posthemorrhagic ventricular dilatation negative
PLS-DA partial least square discriminate analysis
PVCA principal variance component analysis
PVL periventricular leukomalacia
qPCR quantitative polymerase chain reaction
RF random forests
ROP retinopathy of prematurity
rCCA regularized canonical correlation analysis
VIP variable importance projection
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