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Abstract: Rapid and accurate point-of-care (POC) tuberculosis (TB) diagnostics are crucial to bridge
the TB diagnostic gap. Leveraging recent advancements in COVID-19 diagnostics, we explored
adapting commercially available POC SARS-CoV-2 tests for TB diagnosis in line with the World
Health Organization (WHO) target product profiles (TPPs). A scoping review was conducted
following PRISMA-ScR guidelines to systematically map POC antigen and molecular SARS-CoV-2
diagnostic tests potentially meeting the TPPs for TB diagnostic tests for peripheral settings. Data were
gathered from PubMed/MEDLINE, bioRxiv, medRxiv, publicly accessible in vitro diagnostic test
databases, and developer websites up to 23 November 2022. Data on developer attributes, operational
characteristics, pricing, clinical performance, and regulatory status were charted using standardized
data extraction forms and evaluated with a standardized scorecard. A narrative synthesis of the
data is presented. Our search yielded 2003 reports, with 408 meeting eligibility criteria. Among
these, we identified 66 commercialized devices: 22 near-POC antigen tests, 1 POC molecular test,
31 near-POC molecular tests, and 12 low-complexity molecular tests potentially adaptable for TB.
The highest-scoring SARS-CoV-2 diagnostic tests were the near-POC antigen platform LumiraDx
(Roche, Basel, Switzerland), the POC molecular test Lucira Check-It (Pfizer, New York, NY, USA),
the near-POC molecular test Visby (Visby, San Jose, CA, USA), and the low-complexity molecular
platform Idylla (Biocartis, Lausanne, Switzerland). We highlight a diverse landscape of commercially
available diagnostic tests suitable for potential adaptation to peripheral TB testing. This work aims to
bolster global TB initiatives by fostering stakeholder collaboration, leveraging SARS-CoV-2 diagnostic
technologies for TB, and uncovering new commercial avenues to tackle longstanding challenges in
TB diagnosis.

Keywords: tuberculosis; COVID-19; rapid diagnostic tests; point-of-care testing; missed diagnosis

1. Introduction

As healthcare systems gradually recover from the COVID-19 pandemic, tuberculosis
(TB) remains the world’s leading infectious killer, with 1.6 million new cases and 1.3 million
deaths in 2022 alone [1]. Despite a modest 8.7% reduction in TB incidence between 2015 and
2022, achieving the World Health Organization (WHO) End TB Strategy’s 50% reduction
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target by 2025 is still distant [1]. To reach this milestone and curb community transmission,
closing the TB diagnostic gap is essential [2]. Sputum smear microscopy, commonly
used in low-resource settings due to its rapid results and cost-effectiveness, suffers from
low sensitivity, leading to missed TB cases [3]. WHO-recommended rapid diagnostic
tests (WRDs) offer higher accuracy and the capability to detect drug resistance, even in
decentralized settings. However, widespread adoption of WRDs is impeded by high costs
and maintenance requirements [3]. As a result, only 47% of TB cases reported in 2022 were
diagnosed using WRDs [4–6]. Bridging the TB diagnostic gap requires improved access to
and utilization of rapid, accurate, and affordable point-of-care (POC) diagnostic tests and
better linkage to treatment [7].

To guide developers toward fit-for-purpose TB diagnostics, the WHO defined high-
priority target product profiles (TPP) in 2014, with a revision published in August 2024 [8,9].
Current WRDs fail to meet TPP requirements for peripheral settings due to their reliance
on sputum, inadequate performance, high cost, and operational limitations [8,10,11]. Fit-
for-purpose peripheral TB diagnostic tests meeting TPP criteria are needed to achieve the
WHO’s goal of 100% global WRD coverage [6].

Increased funding and collaborative efforts, such as the Access to COVID-19 Tools
Accelerator and RADx, have driven significant growth in diagnostic R&D, resulting in
diverse diagnostic products for remote and at-home testing [12,13]. As the COVID-19
diagnostics market declines, developers are exploring new applications for their tech-
nologies [12]. TB is a promising choice due to its substantial disease burden, supportive
government initiatives, and in-kind funding for validation through established research
networks. Given the similarities in transmission through airborne infectious aerosols and
droplets, primary pulmonary involvement, and replication sites, there is potential for ap-
plying current COVID-19 diagnostic tests to TB. Shared potential sample types, such as oral
swabs further support the feasibility of using similar diagnostic approaches [3,14]. These
shared characteristics suggest that diagnostic technologies developed for COVID-19 might
be adapted for TB detection, potentially enhancing diagnostic efficiency and accessibility.

This scoping review systematically maps commercially available POC antigen and
molecular SARS-CoV-2 diagnostics that could meet the TPP for TB diagnostics [8]. It aims to
identify promising innovations to facilitate interactions among device and assay developers
and other key stakeholders, leveraging COVID-19-driven diagnostics to address the TB
diagnostic gap.

2. Methods

This scoping review examined the scientific literature, SARS-CoV-2 test databases, and
information from developers, following PRISMA Extension for Scoping Reviews (PRISMA-
ScR) guidelines (see Table S1) and Levac et al.’s methodological framework [15,16]. We
previously published the protocol for this review [17]. Because of the vast literature, we split
the review into two parts: this publication focuses on commercialized diagnostics, while a
forthcoming publication will focus on tests in development or pre-commercialization.

2.1. Definitions and Eligibility Criteria

Definitions and eligibility criteria are defined in the protocol [17]. Due to infrequent
reporting on ‘minimal biosafety requirements’, this parameter was omitted from data
collection. We introduced the following sub-categories for peripheral in vitro diagnostic
(IVD) tests [18]:

POC tests: Tests performed at or near the site of patient care and designed to be
instrument-free, disposable, and independent of specific infrastructure (e.g., mains elec-
tricity, laboratory equipment, or a cold chain). They require no special skills to administer.
Example: DetermineTM TB LAM Ag Test (Abbott, Abbott Park, IL, USA).

Near-POC tests: Tests that may be instrument-free or instrument-based but require
minimal infrastructure, such as mains electricity for recharging batteries or operating.
They can be used in healthcare settings without laboratories and require basic technical
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skills, such as simple pipetting and sample transfer that do not require precise timing or
volumes, to administer. Ideally, they come with pre-set volume transfer pipettes. Example:
GeneXpert Edge (Cepheid, Sunnyvale, CA, USA).

Low-complexity tests: Instrument-based tests intended for use in healthcare settings
with basic laboratory infrastructure and mains electricity. They require basic technical
skills and laboratory equipment, including pipettes, vortex mixers, heating devices, freez-
ers, and/or separate test tubes. Examples: Truenat (Molbio Diagnostics, Nagve, India),
GeneXpert 6-/10-color platforms (Cepheid, Sunnyvale, CA, USA).

2.2. Information Sources

We initially searched PubMed/MEDLINE for the peer-reviewed literature and bioRxiv
and medRxiv for pre-prints [17]. Additional information on tests identified through these
databases was obtained from the IVD databases and developer websites listed in the
protocol [17]. The China National Medical Products Administration and Indian Central
Drugs Standard Control Organization databases were not searched because of limited
search function and language barriers [19,20]. The European Database on Medical Devices
was inaccessible for data search at the time of data collection [21].

2.3. Search

Table 1 in the protocol shows the PubMed/MEDLINE search term [17]. It was adapted
for bioRxiv and medRxiv using the medrxivr package in R (version 4.0.5; R Foundation
for Statistical Computing) (see Supplementary Methods, Section S1). No restrictions were
imposed on the publication date or language.

2.4. Selection of Sources of Evidence

Retrieved articles were collated using Covidence software (Veritas Health Innovation,
Melbourne, Australia, available online: https://www.covidence.org/, accessed on 29
September 2024), which automatically removes duplicates [22]. Two reviewers (S.Y., L.H.)
independently screened titles and abstracts against eligibility criteria, followed by full-text
screening using the same software. Discrepancies were resolved through consensus.

2.5. Data Charting

We used two Google forms for data charting, developed by one reviewer (S.Y.) and
revised in an iterative process by both reviewers (S.Y., L.H.). One reviewer (L.H.) charted in-
formation from peer-reviewed articles and pre-prints (see Table S2). For studies mentioning
multiple tests, one record per test was charted. Additional information on tests identified
in the included articles was collected using the second form from developer websites and
IVD databases (see Table S3) [17]. Results tables were cross-checked by a second reviewer
(S.J. and R.D.). Data charted from various sources were collated on separate Excel sheets
for each diagnostic test.

2.6. Variables

We abstracted data on test description, operational characteristics, pricing, perfor-
mance, and commercialization status, as listed and defined in Table 2 in the study protocol [17].

2.7. Synthesis of Results

A narrative synthesis detailing major aspects of included tests like developer informa-
tion, test characteristics, and clinical performance stratified by technology type (antigen
and molecular) and test categories (low-complexity, near-POC, and POC) is provided in
the text and tables.

We modified Lehe et al.’s standardized scorecard for evaluating operational character-
istics of POC diagnostic devices to match the requirements of the 2014 TPPs, also taking
the draft version of the revised TPPs available at the time of data analysis into account [23].
Each test received an overall score ranging from 0 to 110 points based on 22 scoring criteria

https://www.covidence.org/
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across seven categories. Each scoring criterion was assigned 1 to 5 points, with missing
information scored as one point. A simplified version of the adapted scorecard is shown
in Table 1 (See Table S4 for the detailed scoring methodology). Two reviewers (L.H., S.J.)
independently scored each device, with conflicts resolved through consensus and discus-
sion with a third reviewer (S.Y.). We present the highest-scoring tests’ characteristics and
performance in tables, figures, and text.

Table 1. Simplified version of the scorecard (adapted from Lehe et al.) [23].

Scoring Category Scoring Criteria Scoring Variables
1 Instrument size

2 Instrument weight
3 Power requirements

4 Instrument-free
Technical specifications

5 Connectivity (data export options)
6 Integrated data analysis

Data analysis
7 Integrated electronics and software

Category 1:
POC features of equipment

8 Time-to-result
9 Hands-on-timeTesting capacity

10 Throughput capacity
11 Operating Temperature

Operating conditions
12 Operating HumidityCategory 2:

POC features of test consumables
Storage conditions 13 Shelf life

14 Potential end-user
Category 3:
Ease of use

End user requirements 15 Number of Manual Sample Processing
Steps

16 Limit of detection (LoD)
17 Clinical sensitivityCategory 4:

Performance *
Analytical and clinical performance

(COVID-19)
18 Clinical specificity

19 Capital cost of equipmentCategory 5:
Cost

Upfront and user costs
20 Consumable cost

Category 6:
Platform versatility Multi-use ability 21 Applicability of platform to pathogens

other than SARS-CoV-2
Category 7:
Parameters Test parameters 22 Number of test parameters available

for scoring
Abbreviations: PoC = Point-of-Care. Legend: * We only considered independently reported study estimates for
scoring purposes. Developer-reported estimates were not used.

3. Results
3.1. Selection of Sources of Evidence

The literature search yielded 1954 results, which were imported into Covidence for
screening. After removing 200 duplicates, 1754 articles underwent title/abstract screening.
Of these, 874 were eligible for full-text screening. Common reasons for exclusion included
assays and instruments not designed for peripheral settings (n = 234), no mention of specific
tests (n = 127), and reporting on conventional LFAs without reading devices or enhanced
detection technologies (n = 56) (Figure 1). Ultimately, 408 articles were included, identifying
66 commercialized diagnostic tests.
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Figure 1. PRISMA Flow Chart showing the results of study search and screening procedures.
Abbreviations: POC = point-of-care; LFT = Lateral Flow Test. Legend: * For studies that mentioned
more than one test, multiple records were charted (one record per test).

3.2. Characteristics of Sources of Evidence

The main sources of evidence were clinical research papers, systematic reviews, and
narrative reviews. Clinical performance data were charted from clinical research papers
and systematic reviews. Narrative reviews provided details on platform and assay char-
acteristics, occasionally including cost. Developer websites supplemented technical data
with information on the test workflow and end-user requirements. The FIND COVID-19
Test Directory provided information on regulatory status, validated assay targets, sample
types, and links to country-specific IVD databases for authorization documents such as
Instructions for Use. Table S5 offers detailed information on the variables charted from all
sources of evidence.



J. Clin. Med. 2024, 13, 5894 6 of 16

3.3. Synthesis of Results

Among the 66 commercialized POC diagnostic tests for SARS-CoV-2, we identified
22 near-POC antigen tests, 1 POC molecular test, 31 near-POC molecular tests, and 12 low-
complexity molecular tests. By definition, no POC antigen tests were included, as conven-
tional instrument-free LFTs were excluded. The 63 manufacturers of included diagnostic
tests are displayed in Figure 2. Developer and product characteristics, regulatory status,
and clinical performance of included diagnostic tests are shown in Tables S6–S9. Table 2
presents the characteristics of the highest-scoring diagnostic test in each test category.
Figure 3 displays scores across the seven categories for the three highest-scoring tests in
each test category.
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Figure 3. Scorecard performance of the three highest-scoring diagnostic devices across the seven scoring categories, expressed as percentages. (A) Four near-POC
antigen tests are displayed because BD Veritor, Clip Analyzer, and Sofia FIA received the same score. (B) Only one POC molecular test is shown since we
only identified one test in this category. (C,D) The three highest-scoring near-POC and low-complexity molecular tests are shown, respectively. Abbreviations:
PoC = Point-of-Care. Legend: * costs (including capital costs and consumable costs) were not reported for most diagnostic tests, resulting in a score of 1/5 (displayed
as 20%).
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Table 2. Characteristics of highest-scoring diagnostic devices stratified by test category.

Technology Classification Antigen Tests Molecular Tests
Test Classification Near-POC POC Near-POC Low-Complexity

Developer, Product Name LumiraDx,
LumiraDx

Pfizer,
Lucira Health

Visby,
COVID-19 Test

Biocartis,
IdyllaTM

Overall Score *,† 73/110 (66%) 83/110 (75%) 78/110 (71%) 66/110 (60%)
Dimensions (cm) 21 × 9.7 × 7.3 19.1 × 8.0 × 5.2 13.8 × 6.7 × 4.4 30.5 × 19 × 50.5

Weight (g) 1100 150 NR 18,600

Power-supply Integrated battery
(20 tests) AA batteries Mains electricity

(power adapter) Standard electricity

Connectivity

LumiraDx Connect
cloud-based services;
2× USB ports; RFID

reader;
Bluetooth connectivity

None None

USB port; Direct RJ45
Ethernet cable; Idylla

Visualizer (PDF viewer);
Idylla Explore (cloud)

Max. operating
temperature

(◦C)/humidity (%)
30/90 45/95 30/80 30/80

Multi-use ‡ Yes Yes Yes Yes
Throughput capacity 1 1 1 8

Platform:
Specifica-

tions

Costs (USD) NR Not applicable
(instrument-free)

Not applicable
(instrument-free) NR

Sample type NS, NPS NS NS, NPS NPS
Hands-on time (min) 1 1 <2 <2
Running time (min) 12 30 30 90
Shelf-life (months) NR 18 NR NR

Costs per test (USD) NR >10/test NR NR
LOD (copies/mL) NR 900 100–1112 500

Test
summary

COVID-19
Assay:

Specifica-
tions

Sensitivity
(%)/Specificity (%) 82.7/96.9 93.1/100.0 100.0/98.7 100.0/100.0

Score 39/50 (78%) 36/50 (72%) 36/50 (72%) 32/50 (64%)

Pros

• Compact
instrument size
and weight

• Short test
preparation and
running time

• Battery-powered
• Fully integrated

platform with
cloud and EHR
connectivity

• Fully integrated
data analysis

• Compact
instrument size
and weight

• Short test
preparation and
running time

• Battery-
powered

• Instrument-free,
fully integrated
platform

• Fully integrated
data analysis

• Compact
instrument
size and
weight

• Short test
preparation
and running
time

• Instrument-
free, fully
integrated
platform

• Fully
integrated
data analysis

• High throughput
capacity (n = 8)

• Fully integrated
platform with
multiple options
for data export
and connectivity

• Fully integrated
data analysis

• Short test
preparation time

POC features
of equipment

Cons

• Low throughout
capacity for an
instrument-based
assay (n = 1)

• No connectivity

• No
connectivity

• Runs on
mains
electricity
only

• Large instrument
size and heavy
weight

• Runs on mains
electricity only

Score 9/15 (60%) 14/15 (93%) 7/15 (47%) 7/15 (47%)

Pros • High operating
humidity

• High operating
temperature and
humidity

• Long shelf-life

None None
POC features

of
consumables

Cons • Unknown
shelf-life None

• Unknown
shelf-life

• Low
operating
temperature

• Unknown
shelf-life

• Low operating
temperature
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Table 2. Cont.

Technology Classification Antigen Tests Molecular Tests
Test Classification Near-POC POC Near-POC Low-Complexity

Developer, Product Name LumiraDx,
LumiraDx

Pfizer,
Lucira Health

Visby,
COVID-19 Test

Biocartis,
IdyllaTM

Overall Score *,† 73/110 (66%) 83/110 (75%) 78/110 (71%) 66/110 (60%)
Score 10/10 (100%) 10/10 (100%) 8/10 (80%) 6/10 (60%)

Pros

• Can be used by
community or lay
worker without
technical skills

• No manual sample
processing steps

• Can be used by
community or
lay worker
without
technical skills,
suitable for
self-testing

• No manual
sample
processing steps

• Can be used
by
community or
lay worker
without
technical
skills, suitable
for
self-testing

• Minimal
sample
processing
steps

• Can be used by
healthcare workers
with a minimum
of training

Ease of use

Cons None None None

• Sample processing
steps require
laboratory
equipment
(pipettes, vortex)

Score 5/15 (33%) 7/15 (47%) 11/15 (73%) 11/15 (73%)

Pros None
• High

study-reported
specificity

• High study-
reported
sensitivity
and
specificity

• High clinical
sensitivity and
specificity

Performance

Cons

• No LoD reported
• Poor

study-reported
sensitivity

• Discrepancy
between
developer-
reported and
study-reported
sensitivity data

• High LoD
• Low

study-reported
sensitivity

• High LoD • High LoD

Score 2/10 (20%) 6/10 (60%) 6/10 (60%) 2/10 (20%)

Pros None • No instrument
costs

• No
instrument
costs

None

Cost

Cons
• Costs not

transparently
reported

• High
consumable
costs

• Consumable
costs not
transparently
reported

• Costs not
transparently
reported

Score 5/5 (100%) 5/5 (100%) 5/5 (100%) 5/5 (100%)

Pros • Multi-use platform • Multi-use
platform

• Multi-use
platform • Multi-use platformPlatform

versatility
Cons None None None None

Abbreviations: POC = point-of-care; NR = Not Reported; NS = Nasal Swab; NPS = Nasopharyngeal Sample;
LoD = Limit-of-Detection. Legend: * color coding: red = overall score/category score <33.3%; orange = overall
score/category score <66.6%; green = overall score/category score ≥ 66.6%; † overall score: calculated by summing
the seven category scores; category scores: calculated by aggregating the scores for each variable within the
respective scoring category. Please refer to Table S4 for the detailed scoring methodology; ‡ multi-use is defined as
the ability to analyze multiple biomarkers from one sample on a single diagnostic device (e.g., respiratory panels).

3.4. Near-POC Antigen Tests

We identified 22 near-POC antigen tests, including 9 reader-based LFTs, 11 automated
immunoassays, and 2 biosensors. The LFT COVID-19 Home Test (Ellume Health, East
Brisbane, Australia) was included in this category because result interpretation requires
a mobile phone. The highest-scoring test, LumiraDx (LumiraDx, Stirling, UK, recently
acquired by Roche Diagnostics, Basel, Switzerland) [24], is a multi-use, microfluidic im-
munofluorescence assay for detecting antigens in nasal swab (NS) and nasopharyngeal
samples (NPS).



J. Clin. Med. 2024, 13, 5894 10 of 16

3.5. POC Molecular Tests

We identified one POC molecular test: Lucira Check It COVID-19 Test (Pfizer, New
York, NY, USA), which operates on two AA batteries and is disposable, used for detecting
RNA in NS samples.

3.6. Near-POC Molecular Tests

This review includes 31 near-POC molecular tests: 25 based on PCR and 6 on isother-
mal amplification. Most were tabletop platforms, with some handheld platforms like Cue
Reader (Cue, Walnut Creek, CA, USA), DoctorVida Pocket Test (STAB Vida, Coimbra,
Portugal), and Accula Dock (Thermo Fisher Scientific, Waltham, MA, USA). One disposable
molecular test, Visby COVID-19 Test (Visby, San Jose, CA, USA), was included in this
category due to its requirement for mains electricity.

3.7. Low-Complexity Molecular Tests

The twelve identified low-complexity molecular tests were based on PCR (eight tests)
or isothermal amplification technology (four tests). The highest-scoring test in this category
was IdyllaTM (Biocartis, Lausanne, Switzerland), a multi-use tabletop platform for detecting
RNA in NPS, weighing 18 kg and running on mains electricity.

4. Discussion

In this comprehensive scoping review, we identified 66 commercially available antigen
and molecular tests for diagnosing SARS-CoV-2 at POC and assessed their applicability to
TB. Our findings reveal a diverse array of diagnostic tests that hold potential for peripheral
TB diagnostic testing.

4.1. Antigen Tests

The identified antigen detection platforms excel in compact design, portability, and
rapid turnaround times, making them suitable for peripheral settings. The front-runner,
LumiraDx, is notable for its quick turnaround, battery operation, and data export options,
though it operates within limited temperature ranges [25]. Developers must consider high
temperatures and humidity in TB-endemic countries. Harsh environmental conditions
may increase technical failures and result in enhanced utilization of maintenance services,
resulting in delayed or missed diagnosis in remote settings where technical staff may not
be readily available. Additionally, many tests support multi-disease testing, challenging
siloed programs and facilitating differential diagnosis [3].

The tests included in this review may meet TPP sensitivity targets for TB detection
by employing signal-amplifying technologies, such as LFAs with readers and automated
immunoassays utilizing sensitive detection methods like fluorescence and electrochemical
approaches. LumiraDx shows promising performance with a LoD of 2–56 PFU/mL for
SARS-CoV-2 and a clinical sensitivity of 82.2% [26]. Overall, clinical sensitivity of SARS-
CoV-2 assays varies widely, with limited LoD data, complicating the assessment of their
potential to detect low-abundance TB antigens like lipoarabinomannan (LAM) in urine
that likely requires a LoD in the low pg/mL range to detect TB in all patient groups [27].
Moreover, none of the identified platforms reported the use of urine samples. As a result,
successful application to TB will require optimized sample pre-treatment, specific anti-LAM
antibodies, and sensitive readout approaches [28,29].

4.2. Molecular Tests

The identified molecular tests feature novel assay technologies and platform attributes
designed to enhance user-friendliness and testing capacity. These features include easy
handling, self-testing options, rapid turnaround times, and the ability to detect multiple
pathogens. For instance, at-home molecular tests such as the Visby COVID-19 Test, Lucira
Check It, and Cue Reader show considerable promise for use in decentralized due to their
compact size, quick results, and ease of use.



J. Clin. Med. 2024, 13, 5894 11 of 16

Some operational limitations may, however, hinder their widespread adoption in
peripheral settings. For example, the Visby COVID-19 Test and Accula Dock require mains
electricity, which may affect implementation in areas with unstable power supplies [30].
Although Lucira Check It and Cue Reader use AA batteries or smartphone power, any
reliance on smartphones may still pose limitations. Further, most tests, including Lu-
cira Check It and Visby COVID-19 Test, lack adequate data export options, increasing
reliance on Wi-Fi and risking human error and data loss. Therefore, adapting these tests for
areas with limited infrastructure is essential [31]. As highlighted earlier, their performance
in high temperature and humidity conditions typical of TB-endemic regions should also
be considered.

Most near-POC platforms have low daily sample throughput and limited multi-use
capacity, which can hinder parallel sample analysis and potentially delay treatment delay.
Among these, FranklinTM (Biomeme, Philadelphia, PA, USA) stands out with its ability
to detect up to 27 targets in 9 samples per PCR run. Multi-disease panels are crucial
for integrated public health interventions and should be prioritized in developing novel
diagnostics [32]. The WHO’s essential diagnostic list strongly advocates for co-testing of
common comorbidities such as TB, HIV, and respiratory pathogens [33]. By incorporating
priority diseases into multi-pathogen platforms, testing processes can be streamlined, thus
reducing the costs associated with expanding disease coverage [34,35]. These platforms
have the potential to significantly enhance disease surveillance and management, especially
in resource-limited settings. By offering comprehensive diagnostic coverage, they can
enable early detection and treatment of co-infections, ultimately improving overall health
outcomes [34]. Alternatively, multiplex capacities could be leveraged to enhance drug
susceptibility testing.

The low-complexity GENIE® II (Optigene, Horsham, UK) holds the potential to bridge
gaps left by current WRDs [36]. It is battery-powered, operates at high temperatures,
delivers results in 30 min for 16 samples, and supports USB data export. However, the need
for extra equipment for sample pre-treatment limits its peripheral deployment, though
simplifying this process could improve its usability. Conversely, other highly ranked
low-complexity platforms, ePlex System (Roche Diagnostics, Switzerland) and IdyllaTM,
do not require sample pre-treatment but need continuous power and only operate at
temperatures up to 30 ◦C, with longer turnaround times (90 to 120 min) for 3 to 8 samples.
Their multiplexing capacity and high throughput are better suited for urban centers with
substantial test volumes and laboratory infrastructure, similar to GeneXpert Dx [28].

Adapting these molecular platforms for TB poses technical challenges due to Mycobac-
terium tuberculosis (Mtb)’s complex cell wall and low bacterial loads in clinical samples [10].
Moreover, the need for sputum processing may not be compatible with these platforms and
could affect MTB DNA detection accuracy. However, recent research offers a promising
alternative: tongue swabs, when paired with mechanical lysis and sensitive detection meth-
ods, can achieve nearly the same sensitivity as sputum in symptomatic patients with low
to high sputum bacillary loads [37]. Most identified near-POC molecular tests support oral
swabs, suggesting easier adaptability for TB. Other alternative sample types, such as breath
aerosols (XBA) and stool samples in children, show potential but still fall short in sensitivity
compared to sputum testing [38,39]. While these sample types may be less sensitive than
sputum, their ease of collection could improve diagnostic yield, enhance test accessibility
and patient acceptability, and reduce overprescribing of empiric antibiotics [40–43].

However, additional manual processing steps—such as dissolving filters from face
masks or heating samples to inactive pathogens—followed by mechanical lysis techniques,
like bead beating or sonication to break down Mtb, even when non-sputum samples are
used for TB detection [37,43]. These steps could create challenges for integration into
the molecular platforms highlighted in this review, which primarily rely on enzymatic or
chemical lysis to release SARS-CoV-2 nucleic acid [39,43,44]. One potential solution is to
envision a separate POC device for mechanical lysis of non-sputum samples, provided
the overall sample-to-result workflow remains user-friendly [45,46]. With efficient cell
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lysis, nucleic acid extraction could be skipped for tongue swabs, thereby simplifying the
workflow [37,44].

Given the complexities associated with TB sample processing and the potential need
for additional devices for lysis, adapting SARS-CoV-2 platforms for TB self-testing may be
difficult, despite the authorization of several molecular SARS-CoV-2 tests for home-based
testing [47,48].

High-yield sample lysis must pair with sensitive molecular detection methods. For in-
stance, the frontrunner candidate, Lucira Check It, uses RT-LAMP, while the Visby COVID-
19 Test employs RT-PCR. Currently, available isothermal amplification-based TB assays
show high sensitivity but are limited in peripheral settings due to manual processes and
outsourced DNA lysis and extraction [49,50]. Integrating these assays with sensitive POC
platforms, as identified here, could streamline testing.

4.3. General Findings

Overall, we observed a lack of transparency in reporting instrument and test costs,
with many exceeding WHO recommendations, when reported. Equitable access to WRDs
remains elusive in LMICs despite large-scale investments and price negotiations [3,36,51].
Addressing global affordability and accessibility requires diversified manufacturing and
minimized maintenance requirements [52]. However, most COVID-19 test manufacturers
are based in high-income countries, hindering global access [52]. Translating these tests to
TB will require a commitment from companies to global health and global access terms.
SD Biosensor’s (Suwon, Republic of Korea) recent license agreement with the COVID-19
Technology Access Pool could serve as a model for TB diagnostics [53].

Many identified tests either lack independently reported clinical performance esti-
mates or exhibit discrepancies between developer-reported and independently reported
estimates, echoing recent findings on the overestimation of developer-reported sensitivity
of SARS-CoV-2 antigen tests [54]. Moreover, standardized LoD reporting is necessary for
meaningful comparisons between SARS-CoV-2 assays [55]. However, it is important to
exercise caution when extrapolating LoD data from one pathogen to another.

4.4. Strengths

This scoping review has several strengths. Our systematic searches across various
sources, including published studies, pre-prints, IVD databases, and manufacturers’ web-
sites, ensure broad coverage of technologies from diverse developers, from start-ups to
large IVD corporations. Data accuracy was ensured through rigorous screening by two
independent reviewers and cross-verification with developer-reported information. Our
TPP-aligned scorecard mitigates subjective reporting and can be readily applied to eval-
uate the potential adaptation of novel diagnostic tests emerging in future pandemics for
TB. Additionally, focusing on commercially available, market-approved diagnostics may
streamline the time-to-market for TB tests on these platforms.

4.5. Limitations

Several limitations should be noted. First, due to the extensive dataset and time
constraint, charted data was not cross-verified by a second reviewer, and early-stage non-
commercialized platforms were excluded from analysis, potentially overlooking promising
POC technologies. Second, our search of IVD databases was confined to publicly accessible
ones with English search functionality, which may introduce bias. Third, our scorecard
needs further refinement, including weighing scores based on their relevance to end-users
and incorporating additional TPP parameters, such as the current state of test deployment.
Arguably, established platforms might score lower but could be more readily adopted by
end-users than new platforms. Also, missing information was down-scored, which may
have unfairly disadvantaged new platforms for which independently reported performance
data was unavailable. Fourth, the scoring criteria were not specifically tailored to different
technology classes. The scorecard, adapted to the 2014 TPPs for POC TB diagnostics,
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may be less applicable to low-complexity tests compared to (near)-POC tests. Fifth, data
limitations, such as opaque cost reporting and a lack of clinical and analytical performance
data, could bias device scoring and weaken the potential of identified tests to be effectively
repurposed for TB. Moreover, the recent shutdown of some identified companies might
result in the loss of promising platforms from the pipeline [56].

Lastly, the revised TPP was published only after our data analysis was completed.
While we considered the draft version alongside the 2014 version during our analysis, we
did not account for the specific requirements of different technology classes in our scoring.
In addition, there are some minor differences in the revised TPPs, such as the reduction of
the ‘maximum time-to-result’ from 120 to 60 min, and the ‘capital cost of equipment’ being
capped at USD 2000. However, these changes do not affect the ranking of platforms within
each technology class.

5. Conclusions

This scoping review highlights the potential for adapting SARS-CoV-2 POC diagnostic
technologies for TB, identifying 66 commercially available antigen and molecular tests
that may meet TPP criteria for peripheral settings. Platforms such as LumiraDx, Lucira
Check-It, Visby, and Idylla, or those with similar features, should be prioritized for TB
adaptation. The versatility of these technologies promises context-adapted tests that can
integrate into local TB diagnostic algorithms. This study serves as a stepping stone toward
leveraging COVID-19 diagnostics to bridge the TB diagnostic gap and urging stakeholders
to collaborate on developing impactful TB diagnostic solutions.
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