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Abstract: The determination of the cancer prognosis is paramount for patients and medical personnel
so that they can devise treatment strategies. Transcriptional-based signatures and subtypes derived
from cancer biopsy material have been used in clinical practice for several cancer types to aid in
setting the patient prognosis and forming treatment strategies. Other genomic features in cancer
biopsies, such as copy number alterations (CNAs), have been underused in clinical practice, and yet
they represent a complementary source of molecular information that can add detail to the prognosis,
which is supported by recent work in breast, ovarian, and lung cancers. Here, through a systematic
strategy, we explored the prognostic power of CNAs in 37 cancer types. In this analysis, we defined
two modes of informative features, deep and soft, depending on the number of alleles gained or
lost. These informative modes were grouped by amplifications or deletions to form four single-data
prognostic models. Finally, the single-data models were summed or combined to generate four
additional multidata prognostic models. First, we show that the modes of features are cancer-type
dependent, where deep alterations generate better models. Nevertheless, some cancers require soft
alterations to generate a feasible model due to the lack of significant deep alterations. Then, we
show that the models generated by summing coefficients from amplifications and deletions appear to
be more practical for many but not all cancer types. We show that the CNA-derived risk group is
independent of other clinical factors. Furthermore, overall, we show that CNA-derived models can
define clinically relevant risk groups in 33 of the 37 (90%) cancer types analyzed. Our study highlights
the use of CNAs as biomarkers that are potentially clinically relevant to survival in cancer patients.

Keywords: survival models; TCGA; cancer prognosis; biomarkers

1. Introduction

Cancer is the second-leading cause of death worldwide [1]. In clinical practice, prog-
nostic risk assessment is important for optimizing treatment and informing patients and
families regarding the severity of the disease [2]. The use of genomic-derived molecular
biomarkers from cancer biopsies has been supported by several studies using The Can-
cer Genome Atlas (TCGA) [3] and the International Network of Cancer Genome Projects
(ICGC) [4] cohorts. Moreover, transcriptional signatures, such as those of MammaPrint and
Oncotype DX, are routinely used in clinical practice [5]. Meanwhile, other omics data types,
such as copy number alterations (CNAs, also named somatic copy numbers), show stable
signatures, functional effects, and a similar prognostic potential [6–9]. However, CNAs
have not been adopted in clinical practice. Copy number data obtained from DNA arrays
are attractive due to their affordability and genome-wide coverage, and their implemen-
tation and processing protocols are well-established and, in some instances, simpler than
those of other types of omics.
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Recent work on developing CNA prognostic models has been performed for some
cancers, such as breast [10] and ovarian [11] cancer. However, the methods used to generate
a prognostic signature are specific to each study. For example, one of them uses gene
expression in addition to CNA [10], while the other uses bootstrapping to further select
CNA regions and a representative gene from the regions [11]. These methodological
differences complicate comparisons between signatures and across cancer types. Moreover,
to our knowledge, there is no systematic analysis applying a homogenous pipeline to
evaluate the prognostic value of copy number data in many cancer types.

Cancer heterogeneity is one of the greatest limitations of CNAs [12]. Due to chromo-
somal heterogeneity in cancer nuclei and among patients, CNA features tend to be very
rare. This sparsity of CNAs complicates the appropriate modeling of clinically relevant
time-to-event information. Nevertheless, we have recently shown that mutations, and
presumably any other molecular alteration observed in a small number of individuals, can
be properly associated with time-to-event data with methods such as VALORATE [13,14].
Another difficulty is the type of data used in copy number analyses, where the level of
the alteration can be defined as −2 or −1 depending on the number of alleles lost, also
called deletions, or +1 or +2 depending on the allele gain, also called amplifications. These
discrete levels in a particular genomic region rarely fit a continuous model where increasing
CNA levels generate an increasing risk (or decreasing risk) [15], limiting the modeling
potential of CNA features.

Our underlying hypothesis was that CNA data carry prognostic information in all
cancer types. Thus, to systematically evaluate the prognostic potential of CNAs for survival
in cancer patients, we developed a uniform methodology that we applied to 37 cancer
types from TCGA data. For this, we first performed survival analysis stratified by the level
of alteration estimated per gene region, soft (−1, or +1) or deep (−2, +2), and the type
of alteration, amplification, or deletion. Then, three methods were explored to generate
risk groups based on the significantly associated gene regions. Therefore, our pipeline
generates eight possible signatures per cancer type. We show that most cancer types can be
divided into groups with significantly different risks. Moreover, the results of our detailed
analysis of many cancer types show that CNAs add molecular information relevant to the
prognosis that is independent of known clinical risk factors. Together, our results highlight
the potential for use of CNAs as clinically relevant features associated with survival in
cancer patients.

2. Results
2.1. Data and Model Building

We downloaded and curated a total of 11,158 unique samples across 33 cancer types
and four additional sets from TCGA, which are summarized in Supplementary Table S1. As
shown in Figure 1, for each cancer type, we obtained GISTIC files with a CNA estimation
per gene of −1 and −2 for deletions, +1 and +2 for amplifications, and 0 for no alteration, as
described in the Methods section. From these, four data modes were built: “Soft Deletions”,
“Soft Amplification”, “Deep Deletions”, and “Deep Amplifications”. After removing CNAs
present in fewer than four patients, each data mode was tested for its association with time
to survival using the VALORATE test. The VALORATE test implements a more precise
log-rank test that can identify associations with survival even in highly sparse features, a
characteristic of CNAs in cancer.

We then used potential gene region associations to define low- and high-risk groups
as described in the Methods section. In brief, we generated eight prognostic models
using (1) soft deletions, (2) soft amplifications, (3) deep deletions, (4) deep amplifications,
(5) MaxSums of soft deletions and amplifications, (6) MaxSums of deep deletions and
amplifications, (7) Combinations of risk groups from soft deletions and soft amplifications,
and (8) Combinations of risk groups from deep deletions and deep amplifications.



Int. J. Mol. Sci. 2024, 25, 10455 3 of 15

Int. J. Mol. Sci. 2024, 25, 10455 3 of 15 
 

 

amplifications, (7) Combinations of risk groups from soft deletions and soft amplifica-

tions, and (8) Combinations of risk groups from deep deletions and deep amplifications. 

 

Figure 1. Systematic strategy. GISTIC files were processed and analyzed in 4 data modes. Survival 

screening was performed for each gene region. Significant high-risk gene regions were used to de-

fine a high-risk score per individual. The same approach was taken for low-risk gene regions. Indi-

vidual risk was assigned to the higher score (H or L, if any), referred to as the single-data signature. 

Then, deletions and amplifications were used together, via MaxSum or Combinations. Ultimately, 

eight signatures were built for each cancer type. 

2.2. Survival Associations 

For screening, we first associated each CNA univariately with survival using 

VALORATE. The general results for the associated regions are shown in Figure 2. All can-

cer types showed associations between CNAs and survival, but to different degrees. Over-

all, soft CNA deletions showed 25% greater associations (n = 119,286) than amplifications 

(n = 90,117). In contrast, for deep CNA, deletions showed 59% fewer associations (n = 7527) 

than amplifications (n = 18,210). Moreover, soft and deep associations did not seem to be 

correlated (Supplementary Figure S1), suggesting that they carry different biological in-

formation; therefore, they could be independent and, potentially, they could be comple-

mentary. For example, amplifications in chromosome 1 for esophageal cancer (ESCA) 

showed 88 genes with deep CNA associations, while no gene associations were estimated 

from soft CNAs. This observation supports independent modeling at the soft and deep 

levels. 

Figure 1. Systematic strategy. GISTIC files were processed and analyzed in 4 data modes. Survival
screening was performed for each gene region. Significant high-risk gene regions were used to define
a high-risk score per individual. The same approach was taken for low-risk gene regions. Individual
risk was assigned to the higher score (H or L, if any), referred to as the single-data signature. Then,
deletions and amplifications were used together, via MaxSum or Combinations. Ultimately, eight
signatures were built for each cancer type.

2.2. Survival Associations

For screening, we first associated each CNA univariately with survival using VAL-
ORATE. The general results for the associated regions are shown in Figure 2. All cancer
types showed associations between CNAs and survival, but to different degrees. Overall,
soft CNA deletions showed 25% greater associations (n = 119,286) than amplifications
(n = 90,117). In contrast, for deep CNA, deletions showed 59% fewer associations (n = 7527)
than amplifications (n = 18,210). Moreover, soft and deep associations did not seem to
be correlated (Supplementary Figure S1), suggesting that they carry different biological
information; therefore, they could be independent and, potentially, they could be com-
plementary. For example, amplifications in chromosome 1 for esophageal cancer (ESCA)
showed 88 genes with deep CNA associations, while no gene associations were esti-
mated from soft CNAs. This observation supports independent modeling at the soft and
deep levels.

2.3. Signatures by Cancer Type

Eight survival models were built for each cancer type (Figure 3). Four of these models
use a single data type (amplification or deletion) and mode (soft or deep). Two more
models correspond to deep and soft models from the risk sum given by amplifications and
deletions. The last two models also correspond to deep and soft models built by combining
the amplification risk groups with those from deletions, as summarized in Figure 3, across
cancer types. When compared with the corresponding soft models, deep deletions and
amplifications were more significant in virtually all cancer types. Nevertheless, some cancer
types, such as cholangiocarcinoma (CHOL), kidney renal clear cell carcinoma (KICH),
thyroid carcinoma (THCA), and lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
did not show enough deep amplifications or deletions. Thus, better models were defined
from soft data for these cancer types. The two algorithms that used amplifications and
deletions together showed greater significance than the corresponding models that used
only amplifications or deletions. The MaxSum and Combinations models using deep data
were usually more significant than those using soft data.
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Figure 2. Gene region survival associations per data mode and cancer type. Each panel shows
the number of gene regions associated with survival in the screening. Chromosomes are shown
vertically, while cancer types are displayed horizontally. The bars and numbers at the top of each
panel represent the sum of associations per cancer type. For instance, uveal melanoma (UVM, marked
with an arrow) shows 1214 soft amplifications, which are distributed in chromosomes 4, 8, and 23.

2.4. Clinical Relevance of CNA Signatures

To assess whether our approach could generate clinically relevant signatures, we
ranked and evaluated all eight proposed models per cancer to define the most potentially
useful models in a clinical setting (Figure 3B). We first ranked the models based on signifi-
cance; those most significant tended to be those composed of the MaxSum and Combinations
algorithms that use amplifications and deletions in the same model. Another factor we
considered was whether the risk group could be distinguished. For this criterion, the
MaxSum algorithm, which generates only three risk groups, was favored in contrast to
the Combinations algorithm, which can generate up to nine risk groups that, in some cases,
produce indistinguishable risk groups of a small number of samples (see Supplementary
File S1). The results are shown in Figure 4. The Combinations algorithm was selected for
six cancer types (adrenocortical carcinoma, kidney chromophobe, kidney renal papillary
cell carcinoma, pheochromocytoma and paraganglioma, thyroid carcinoma, and uveal
melanoma, marked as ACC, KICH, KIRP, PCPG, THCA, and UVM, respectively). For these
types of cancer, only four risk groups or fewer were needed instead of the nine possible
combinations. On the other hand, the MaxSum algorithm was chosen for 26 cancer types,
suggesting that it is the most efficient and simple algorithm. The use of a single-data model
was selected for only five cases (cholangiocarcinoma, ovarian serous cystadenocarcinoma,
rectum adenocarcinoma, testicular germ cell tumors, and uterine carcinosarcoma, marked
as CHOL, OV, READ, TGCT, and UCS, respectively), mainly because those cancer types
show a scarce number of associated alterations. However, the survival curves are different
for most of these cancer types. In the case of ovarian cancer (OV), using only deep deletions
was almost as significant as using Combinations but simplified by three risk groups only. In
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the high (amp)–high (del) combination was needed.
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Figure 3. Overall model significance per cancer type. (A) Example of the generation of the four
models from the deep data model. Briefly, gene regions associated with survival are used to assign
risk groups in single-data models. Then, amplifications and deletions are mixed by MaxSum or
Combinations. Four additional models are explored for the soft data mode. (B) The p-value of the
log-rank test of each model (in rows) built for cancer types (in columns). p-values are shown in the
logarithm base 10 scale. The number in each cell is rounded for simplicity. The colors are cut to a
maximum of 30 for clarity.

For 20 of the 26 cancer types for which the chosen model was MaxSum, the survival
curves of the three risk groups (low, high, and no assignment) were significantly differ-
ent (bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon and rectum ade-
nocarcinoma (COREAD), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA),
glioblastoma multiforme and brain lower grade glioma (GBMLGG), head and neck squa-
mous cell carcinoma (HNSC), kidney pan cancers (KIPAN), kidney renal clear cell carci-
noma (KIRC), brain lower-grade glioma (LGG), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma
(MESO), sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma
(STAD), stomach adenocarcinoma and esophageal carcinoma (STES), and uterine corpus
endometrial carcinoma (UCEC)). There were some cases where the MaxSum algorithm
could generate only two risk groups (NA and low risk or NA and high risk). This may
have occurred when there were no associations found in the screening for one risk group.
Correspondingly, only two risk groups were generated for DLBC (low and NA), acute
myeloid leukemia (LAML) (high and NA groups), and thymoma (THYM) (high and NA
groups). For prostate adenocarcinoma (PRAD), the algorithm was able to assign both risk
groups, but the low-risk and the NA groups had no death events and therefore showed
equivalent survival curves. Similarly, for GBM, the survival curve of the high-risk group
was comparable to that of the NA group.
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Figure 4. Selected signature per cancer type. Each panel shows the Kaplan–Meier curves of the risk
groups generated by the selected algorithm and data used per cancer type. The percentages and
colors represent the relative number of patients in each risk group. The vertical dotted line represents
1000 days (~3 years) for comparison.
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All models were significant except for testicular germ cell tumors (TGCTs), in which
the number of reported death events was low. For the majority of cancers, more than 20%
of patients could benefit from an accurate CNA-based stratification of risk groups.

2.5. CNA Signatures Are Independent of Other Clinical Factors

The above analysis showed that the models generated by screening CNAs were
capable of successfully identifying low- and high-risk groups. To explore whether the risk
group assigned by the models could be useful in a clinical setting where common clinical
cofactors were also available and used in risk assessment, we further analyzed whether the
risk assessment signal from the CNAs was independent of the other available cofactors in
the selected models shown in Figure 4.

As an example, Figure 5 shows the detailed analysis of the MaxSum model, which uses
deep amplifications and deep deletions in lung adenocarcinoma (LUAD). The first analysis
consisted of cofactor stratifications of the original model. The survival curves demonstrated
that the low- and high-risk groups were clearly distinguished when stratified by nodule
(N0, N1), tumor size (T1, T2, T3/T4), stage (i, ii, marginally iii/iv), age (<60, ≥60), or sex
(Figure 5). These results suggested that the CNA-based low- and high-risk groups were
independent of these clinical risk factors when analyzed individually. Next, we jointly
modeled the CNAs with all available clinical risk factors using a multivariate Cox model.
This multivariate model confirmed that the low- and high-risk groups were independent of
the other clinical risk factors (Figure 5G). Moreover, the statistical significance of the low-
and high-risk groups was greatest, which suggested that the estimated low- and high-risk
groups for LUAD were more relevant than the other known clinical risk factors. Figure 6A
shows a simplified representation of the CNA model.

Similarly, for breast cancer (BRCA), the model showed consistently significant risk
groups in most stratifications (Figure 7). Figure 6B shows a simplified representation of
the CNA model. We then performed cofactor stratification analysis for the other 12 cancer
types from the selected models, as shown in Figure 4. A summary of this analysis is shown
in Figure 8. Interestingly, the models stratified by clinical cofactors, in most cases, revealed
at least one significant risk group for cancer of the bladder, breast, lung, colon, brain, head
and neck, liver, skin, stomach, or uterine corpus.

Taken together, these results across cancer types suggest that the biological signal
related to the survival of CNAs in cancer is independent of other known clinical risk factors
for survival, and that the implementation of CNAs in the clinical setting could improve the
risk assessment of patients with most cancer types.
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Figure 5. The MaxSum model for deep amplifications and deletions in lung adenocarcinoma (LUAD).
(A) The LUAD model for deep CNA considers deep amplification and deletions for all patients
(n = 478). Stratification of the model by nodules (B), age (C), sex (D), tumor size (E), and tumor
stage (F). Most models show significant risk groups. (G) Multivariate statistical analysis of the
model in (A) including common clinical cofactors. (H) Summary of the stratifications as a forest
plot. The numbers on the left represent the sample size (n). Dots represent the β-coefficient estima-
tion, closed for significant and open for not significant. Lines represent a 95% confidence interval.
“<” refers to the lack of estimation in low-risk groups. A tick mark highlights significant risk estima-
tion. “*” marks marginally significant risk groups. The frame colors group panels for clarity only.
The vertical axis of survival curves ranges from 0 in bottom to 1 in top and horizontally from 0 in the
left to 6000 days in the right except N2 & N3, T3 & T4, Stage iii & iv which are 2500 days.
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noma (LUAD) and (B) for breast carcinoma (BRCA). Survival time is displayed in the top panel. 
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Figure 6. Simplified representation of the MaxSum models for deep CNA: (A) for lung adenocarci-
noma (LUAD) and (B) for breast carcinoma (BRCA). Survival time is displayed in the top panel. Note
that patients with shorter survival times and deceased tend to be shown at the left, in the high-risk
groups. Del refers to the risk group assigned by the single-data model from deep deletions. Similarly,
Amp refers to amplifications. MaxSum risk refers to the risk group assigned by the MaxSum model
using data from both Del and Amp. The bottom panel show the CNA data, either amplification (+2
in green) or deletions (−2 in purple). Samples are shown on the horizontal axis. Genes are shown on
the vertical axis. Only 30 representative genes were selected from different cytobands.
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Figure 8. Cofactor stratifications of selected risk models. Each panel shows a “forest” plot summariz-
ing the cofactor stratification of each model. The numbers on the left represent the sample sizes (n).
Dots represent the β-coefficient estimation, closed for significant and open for not significant. Lines
represent a 95% confidence interval. “<” refers to a lack of estimation in low-risk groups (commonly
when there are no events). Most stratifications showed at least one significant risk group.
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3. Discussion

The search for cancer biomarkers has been an intense and long-lasting scientific labor
in which most kinds of cellular molecules have been explored [16,17]. Nevertheless, the
use of CNAs for prognostic models has not been fully exploited, though the corresponding
methods are well-established and characterized. CNA stems from genomic instability, a
hallmark of cancer, which can aid in the development of clinically relevant biomarkers for
survival in cancer and potentially for other diseases.

We first discretized the data into soft and deep modes depending on the level of the
CNA. Then, we used amplification and deletion modes independently or jointly. From these
data, we propose three methods to generate prognostic models from CNA gene regions
associated with survival. The three algorithms are (i) single data, which designate patients
in risk groups showing the highest coefficient sum of risk-associated genes; (ii) MaxSum, an
additive-like model assigning patients to the risk group whose sum of risk-associated genes
is the largest; and (iii) Combinations, which combines risk designations from single-data
risks of amplifications and deletions. We showed that MaxSum and Combinations worked
well (for most cancer types). The Combinations method performed best for some cancer
types. Nevertheless, the single-data method was useful in a few cancer types. Overall,
the methods proposed in this study can stratify patient biopsies into high- and low-risk
groups for most cancer types. Moreover, our study suggests that CNA data are suitable for
generating prognostic models for most cancer types.

Most of our generated prognostic models define three or four risk groups, as we
observed in 26 of the 33 cancer types analyzed; such types of models facilitate clinical
interpretation. Nevertheless, some cases showed particularities. For lymphoid neoplasm
diffuse large B-cell lymphoma (DLBC, n = 45) and uterine carcinosarcoma (UCS, n = 55),
only two risk groups were generated, low and no risk, where the no-risk group became the
high-risk group in practice. This presumably occurred due to the low number of samples,
the low number of survival-associated markers, and the fact that all associations were
linked to lower risk. A similar pattern was observed for pancreatic adenocarcinoma (PAAD,
n = 180) and thymoma (THYM, n = 121), where only high- and no-risk factors were detected.
Thus, no risk became lower risk in these patients. Among prostate adenocarcinomas
(PRADs, n = 492), three risk groups were present, but the low-risk and no-risk groups
seemed equivalent, presumably due to the low number of death events that occurred in the
high-risk group. The three risk groups of glioblastomas (GBMs) were defined given the data
and the model, but survival curves from high-risk and no-risk patients did not show clear
differences. For paraganglioma and pheochromocytoma (PCPG), the combined model was
used to generate four groups, but in practice, only two groups were distinguishable—one
associated with a higher risk and the other with a lower risk. In contrast, for adrenocortical
carcinoma (ACC), kidney chromophobe (KICH), kidney renal papillary cell carcinoma
(KIRP), and thyroid carcinoma (THCA), the combined model generated three or four
distinguishable risk groups. Overall, we were able to generate simple and clinically usable
CNA signatures in most cancer types.

In this study, we aimed to provide a conceptual framework highlighting the potential
of CNA-derived models as clinically relevant biomarkers for survival in cancer patients.
Nevertheless, many approaches could be used to construct a prognostic signature from
copy number data. In ovarian cancer, Graf et al. [11] followed a pipeline using a Cox model
for screening in “soft” data and then chose the most significant gene as representative of
the region to build a multivariate Cox model and split the linear prognostic score into
terciles to generate risk groups. Although the pipeline is similar, our approach has many
methodological differences. First, Graf et al. used only one modality of data, equivalent
to the soft data we used here. Extending their work, we showed that deep data provide
different information but are also more predictive. As a result, using deep data was best
in 23 of the 37 cancer datasets. Thus, the implementation of deep types of CNAs is a
substantial improvement. Second, we used four different models (amplifications, deletions,
the MaxSum of amplifications and deletions, and Combinations of amplifications and
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deletions), providing another level of exploration. Overall, the best models used the
MaxSum algorithm for 26 cancer types, but there were also 6 cancer types for which
Combinations was used and 5 cancer types for which single data were used. Thus, the
strategy of exploring different algorithms to combine information and provide better risk
prediction is important. Third, the risk group in each model was generated by the total
number of regions associated with each risk group, whereas Graf et al. used terciles of the
linear prognostic score. One of the problems with Cox estimations in multivariate models is
that colinear variables cannot be assessed and must be removed from the analysis. Indeed,
Graf et al. chose a “reporter gene” showing the most significant univariate Cox value as
representative to perform this operation and avoid the collinearity issue. Thus, their final
model used the sum of the coefficients of 14 chosen “reporter genes”. In that model, it
is not clear how the estimation is performed if a patient does not show an alteration in
a reporter gene. In our implementation, the risk is assessed by the number of regions
that are associated with risk groups, which avoids the collinearity problem and a possible
dependency on the reporter gene. As we have shown here, our strategy works well in most
cancers using copy number data.

We used VALORATE instead of the log-rank test or Cox model for gene region screen-
ing. Although in our internal records we noted differences with the log-rank test, we
did not observe large differences in VALORATE or Cox estimations for these data types,
suggesting that a Cox model could also be used instead of VALORATE, simplifying possible
implementations.

One of the limitations of our study is that we used TCGA datasets, which are difficult
to validate one-to-one because other, similar efforts, such as the International Cancer
Genome Consortium (ICGC) data, represent different types of cancer and different survival
times. Although the strategy worked in most cancer data used, it needs to be validated in
specific cohorts.

We performed a stratification analysis of many cancer types (those showing many
samples) by splitting the population based on the most reported cofactors. We showed that,
in most cases, at least one CNA-derived risk group was significantly associated with risk,
independent of other known clinical risk factors. Some risk groups for specific cofactors
had a low number of samples, decreasing our statistical power. Nevertheless, in many of
these cases, the tendencies were concordant with the original risk assigned by the model.
Overall, the generated risk models are largely independent of common clinical risk factors,
suggesting that CNA models provide novel biological signals implicated in cancer survival
and can contribute essential risk information to clinical practice.

4. Methods
4.1. Copy Number Data

We downloaded TCGA data from Firebrowse (http://firebrowse.org, accessed on 1
December 2020), which is part of the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov, accessed on 1 December 2023). In particular, we used Clinical and Somatic
Copy Number GISTIC 2 Level 4, from now on referred as CNA. Systematically, we used
the data from http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/[CODE]-
TP/20160128/gdac.broadinstitute.org_[CODE]-TP.CopyNumber_Gistic2.Level_4.20160128
00.0.0.tar.gz, where [CODE] was replaced with the cancer type code. The CNA data were
originally obtained by TCGA using microarray technology and preprocessed by GISTIC [18].
We used the data from “all_thresholded_by_genes.txt”. We used single and composited
cancer types, bringing together 37 cancer datasets. These datasets are based on 33 cancer
types. Nevertheless, some of them merge previously confusing types, such as GBMLGG
composed of glioblastoma and low-grade glioma (GBM and LGG), COADREAD composed
of colon and rectal adenocarcinomas (COAD and READ), STES composed of stomach and
esophagus carcinomas (STAD and ESCA), and KIPAN composed of kidney cancers. Here,
we also used these composited datasets for generality. Overall, we analyzed information
from approximately 11,000 patients and more than 24,000 CNAs in gene regions.

http://firebrowse.org
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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4.2. Data Preprocessing

The data were already segmented by gene regions, containing the estimated somatic
copy number per annotated gene, as determined by GISTIC [18], which corresponded to
−2 for homozygous deletion, −1 for heterozygous loss, 0 for diploid, 1 for one copy gain,
and 2 for higher-level amplification or multiple-copy gain. Here, the raw values were
C = −2, −1, 0, +1, and +2, which corresponded to C = 0 as “normal”, C = −1 as “soft
deletion”, C = −2 as “deep deletion”, C = 1 as “soft amplification”, and C = 2 as “deep
amplification”. These values were preferred because they represent losses or gains more
intuitively. Some studies have used a definition of CNA equivalent to soft [11]. Neverthe-
less, we also tested an extreme definition, deep, because it may represent genes that need
to lose both alleles to become associated or genes that need more copies, impacting gene
expression more drastically. We removed gene regions showing low recurrence, C <> 0, for
fewer than four patients.

4.3. Alteration Modes for Association Screening

We used four modes of CNA alterations. We first distinguished amplifications from
deletions. Then, we divide them by depth; we used “soft” when the test involved soft
or deep alterations, and “deep” when only deep alterations were used. Thus, the mode
“Soft Deletions” involved any deletion (C values of −1 or −2), and “Soft Amplifications”
included any amplification (C values from +1 or +2), while “Deep Deletions” embraced only
deep deletions (C values of −2) and “Deep Amplifications” comprised deep amplifications
(C values of +2).

4.4. Screening for Associations with Survival

Only patients who showed valid survival information were considered. Only gene
regions showing alterations in 4 or more patients were used. To test the association with
survival, we generated two risk groups: patients showing a CNA alteration and those not
showing a CNA alteration. The above risk groups were subjected to the classical log-rank
test. However, we and others have demonstrated that using the log-rank test in heavily
unbalanced groups is inappropriate because the assumptions are violated [13,19]. Therefore,
we used VALORATE (v1.0.1), an R package published by our research group, to estimate
the exact null distribution independent of the number of patients per risk group [14].

4.5. Building Prognostic Signatures

We used only the gene regions whose p-value from VALORATE was p ≤ 0.05. To
generate prognostic signatures, we used three methods. The first method was performed for
the four alteration modes individually (Soft Deletions, Soft Amplifications, Deep Deletions,
and Deep Amplifications), separating those associated with higher risk and those associated
with lower risk generating in at most three groups; the high-risk group, in which the patient
shows a coefficient sum (∑β) of gene regions associated with greater risk than the ∑β of
gene regions associated with lower risk; the low-risk group, in which the patient shows
a ∑β of gene regions associated with lower risk than the ∑β associated with higher risk;
and the no-risk group (NA), in which the patient does not show CNA associations or
when there is a tie in which the patient does not show a preference for a low- or high-risk
group. The second method used amplifications and deletions, summing the ∑β per risk
group and designating the patient to the risk group showing a greater sum or otherwise
designating the no-risk group as having ties or not having CNA associations. This method
was run using soft amplification plus soft deletions or deep amplification plus deep deletions.
The third method combined the risk group designations performed in the first method
for amplifications with those designations for deletions, generating combinations from
individual alteration modes. Depending on the combinations, this could generate up to 9
risk groups (H, L, and NA for amplifications combined with H, L, and NA for deletions).
This method also involved the use of soft amplification combined with soft deletion or deep
amplification combined with deep deletion. Thus, 8 models were built per cancer type.
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