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Abstract: The influence of obstacles in the form of polymer chains on the diffusion of a low-molecular-
weight solvent was the subject of this research. Studies were performed by computer simulations.
A Monte Carlo model—the Dynamic Lattice Liquid algorithm—based on the idea of cooperative
movements was used. The tested materials were polymer networks with an ideal structure (with a
uniform mesh size) and real, irregular networks (with a non-uniform mesh size) obtained numerically
by copolymerization. The diffusion of the solvent was analyzed in systems with a polymer concen-
tration that did not exceed 16%. The influence of the polymer concentration and macromolecular
architecture structure on the mobility and character of the motion of the solvent was discussed. The
influence of irregular network morphology on solvent dynamics appeared to be significantly stronger
than that of regular networks and star-like polymers.

Keywords: copolymerization; dynamic lattice liquid; Monte Carlo method; polymer solutions;
solvent dynamics

1. Introduction

The motion of small particles including solvent molecules in polymer solutions, melts,
and networks has been extensively studied by means of gravimetry, membrane permeation,
fluorescence, dynamic light scattering, inverse gas chromatography, nuclear magnetic reso-
nance spectroscopy, fluctuation correlation spectroscopy, and depolarized dynamic light
scattering showing the influence of polymer concentration and chain length on the mobility
of moving objects [1–14]. Experiments have shown a plethora of dynamic behaviors in
complex macromolecular systems [15–21]. In many cases, subdiffusive behavior has been
found, which means that the Einstein–Smoluchowski equation is not fulfilled and that the
mean square displacement of moving objects scaled with time as tα with α varies between
0.2 and 0.9 [16,22]. The non-Fickian diffusive behavior of diffusants in macromolecular
systems has also been predicted by theories [23–25]. These theories are based on obstruc-
tion effects, where the positions of polymer chains are fixed. This approach gives correct
results for small diffusants in dilute and semi-dilute solutions [26–30], for considering
hydrodynamic interactions [31–34], or for an assumption that free volume is a key factor
controlling the mobility of diffusants [35–40].

Simulations of coarse-grained dynamics models in some dense polymer systems have
recently been carried out [41–48]. In this research, the model system was represented by
random walks without excluded volume (Gaussian chains), and the conformations of these
macromolecules remained unchanged; i.e., the time scales of polymers and diffusants were
split. The simulations carried out within the frame of the Dynamic Lattice Liquid (DLL)
model revealed a subdiffusive motion. The mobility of non-bounded small diffusants was
found to be weakly dependent on chain mass and polymer concentration [42,43]. Simula-
tions of motion in dense macromolecular systems have been carried out using the Molecular
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Dynamics technique, using coarse-grained and atomistic models, and the macromolecular
environment was treated as a cluster of obstacles formed of chains, although most studies
have focused on the influence of the diffusant size on its motion [48–62]. It was also shown
by means of Discontinuous Molecular Dynamics simulations that the structure of the matrix
formed by obstacles has an influence on diffusion, although the differences in mobility
were found to not be large, and a common scaling behavior was confirmed for systems
consisting of small objects and chains [54].

The picture of object mobility in polymer systems is now well established, but the
study of highly cross-linked networks is still computationally poorly accessible. Thus, in
this paper, a study of the motion of solvent molecules comparable in size to the monomer
unit size is presented. This study covered several polymer systems—regular polymer stars
(which can be considered a model of a single crosslink point in a network) and regular and
irregular networks. The main purpose of this presented study was to show the difference
in the dynamic behavior of a solvent for regular polymer networks, as usually presented
in polymer textbooks, versus real polymer networks obtained by the copolymerization
reaction for polymer materials. There was an important difference between the studied
treatment and other lattice models generally based on the ‘ant in the labyrinth’ concept [22].
In the latter kind of model, a single object travels on a lattice, jumping from one vacancy
onto another (the vacancies are usually regarded as fluctuating free volume, and their
size is comparable with that of the mobile elements). In these kinds of models, neither
correlations nor hydrodynamic effects are assumed. In the model presented, correlations
in motion between movable elements were taken into consideration, both based on using
the cooperative motion of elements and hydrodynamics, which are apparently crucial for
diffusion in a macromolecular crowded environment [5,63–65]. This model was simulated
using the DLL technique, which was previously applied in studies of dynamics in complex
dense macromolecular systems [66–68].

2. Materials and Methods

A coarse-grained model of linear polymers, represented as beads connected by non-
breakable bonds, was developed. The macromolecular system under consideration was
composed of flexible chains immersed in an explicit solvent. The solvent was assumed to
be monomeric, and the solvent molecules were of the size of a single polymer bead (single
mer). The objects in the DLL model, i.e., solvent molecules and repeating units of polymer,
were embedded in a face-centered cubic lattice structure with all lattice sites in the system
occupied by polymer beads or solvent molecules. The system was athermal, that is, the
excluded volume was the only potential of interaction used. It has been shown that the
properties of the system obtained within the DLL model correctly reflected the dynamic
behavior in various polymer systems [43,46,69–71]. It was also assumed that the system
had some excess volume, and thus each object would only have enough space to vibrate
around its position as defined by the lattice site. However, the system is dense, and objects
cannot move easily over larger distances to other lattice sites because all sites are occupied.
However, in such dense systems, long-range mobility can be realized using the DLL
algorithm, in which object translations are performed collectively over distances exceeding
the vibration range. Each displacement of an object from its mean position is assumed
to be an attempt of movement to a neighboring lattice site. The directions of movement
attempts are allowed along vectors connecting neighboring lattice sites and, therefore,
are randomly distributed among the q directions, where q = 12 is the lattice coordination
number. Attempts are considered successful if they coincide in such a way that the sum of
displacements is close to zero (condition of continuity) along a path including more than
two molecules. All of the objects that do not contribute to correlated sequences (circuits)
satisfying this continuity condition are non-moveable at a given time step.

The model described above has been implemented as a dynamic Monte Carlo simula-
tion algorithm for macromolecular systems in a solvent [66–68]. A field of randomly chosen
unit vectors, which are assigned to objects and point in directions along lattice vectors,
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represents motion attempts. After setting all vectors leading to unsuccessful attempts to
zero, only vectors contributing to closed circuits (loops) remain, and they are treated as
traces for possible rearrangements. All possible rearrangements are performed by shifting
beads along these closed loop traces, while each bead shifts to a neighboring lattice site. In
this algorithm, the following steps can be distinguished: (i) generation of the vector field
representing attempts of movement, (ii) elimination of non-successful attempts (including
motion resulting in breaking a bond), and (iii) replacement of beads within all closed loops.
A single Monte Carlo time step consisted of the procedures described above (i–iii).

The motion of solvent in three different polymer systems was studied. The first system
(sample code PM) was a regular three-dimensional polymer network consisting of chains
fixed in space (immobile), and, therefore, the dispersity was Ð = 1 here. The mesh size
(number of monomer units between crosslinks) was exactly 3, 7, or 11 (PM-03, PM-07,
and PM-11, respectively). In this case, the network was predefined, and the rest of the
system was filled with the mobile solvent. The second system was an irregular network
(sample code sPM) synthetized by copolymerization of a 2-functional monomer and a
4-functional crosslinker (the reaction scheme was shown previously in [72]), using the same
DLL algorithm, with the average mesh size of 3.0297, 7.1551, and 11.3765 (sPM-03, sPM-07,
and sPM-11 respectively). The dispersity concerning the mesh size was 1.441, 1.356, and
1.328 (for sPM-03, sPM-07, and sPM-11, respectively). The initial numbers of the initiator,
cross-linker (junctions of the network), and monomer were tuned to obtain the largest
polymer cluster (just after reaching the gel point) to have the target concentration as close
as possible to PM systems. The initial initiator/crosslinker/monomer molar ratios were
taken as 10/30/100, 1/3/40, 1/3/60 for sPM-03, sPM-07, and sPM-11, respectively. The
probability of the addition reaction was set to 0.0001. When the reaction was stopped, all
molecules, except the largest cluster, were replaced by the solvent, and the main simulation
run was started. In this case, all of the elements of the system were able to move. The third
system consisted of star-shaped macromolecules (sample code T). The star macromolecule
was made up of f = 3, 6, and 12 arms, and the core of the star consisted of 1 bead (T_1_1,
T_1_2 and T_1_3). Higher numbers of arms were achieved using cores consisting of 3 beads
(average f = 22.8, T_1_4) and 5 beads (f = 32.8, T_1_7). The arm was a flexible linear chain
consisting of m = 50 beads on average, and the number of star macromolecules varied
between 47 (T_1_7) and 494 (T_1_1). The dispersity of arm lengths was 1.0223, 1.0255,
1.0327, 1.0535, and 1.0932 (for T_1_1, T_1_2, T_1_3, T_1_4, and T_1_7, respectively). The star
cores were randomly placed in the system, and then core-first polymerization was started
(cores were reaction initiators). The addition reaction probability was set to 0.005. The
reaction was stopped after reaching the target polymer concentration. Then, all unreacted
monomers were replaced by solvent molecules. Additional 107 simulation steps were
performed for equilibration of the system prior to the main simulation run. Again, all
elements of the system were able to move. No crosslinking was present between stars, so, in
this case, the system can be considered an assembly of not-connected network nodes with
loose mesh chains. The size of the system, i.e., the Monte Carlo box, was L × L × L = 1443

lattice constants (equal to mer size) in all the cases presented. Polymer concentration, Φp,
can be calculated as the ratio of the number of nodes occupied by the polymer beads to the
number of all nodes in the system. In PM systems, Φp was 0.15625 (PM-03), 0.04297 (PM-07),
and 0.01967 (PM-11). The polymer concentration in the sPM systems was 0.15467 (sPM-03),
0.0411 (aPM-07), and 0.01929 (sPM-11). The polymer concentration in T systems was 0.049
(T_1_1), 0.052 (T_1_2, 0.049 (T_1_3), 0.050 (T_1_4), and 0.051 (T_1_7). These values implied
that the polymer concentration was well below the percolation threshold, and therefore
the movement of small solvent molecules was not limited, although subdiffusive behavior
could be expected [44].

3. Results and Discussion

Before presenting how solvent dynamics depend on the structure of macromolecular
systems, examples of the polymer systems studied are shown. Figure 1a–f present a
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visualization of the studied macromolecular systems. While the structure of a regular PM is
obvious, in the case of irregular sPM networks, one notices large randomness in the shape
of the network and large differences in the local polymer density in the systems, regardless
of the average mesh size.
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Figure 1. System morphology (only the polymer phase is visible for clarity) in the case of (a) PM-03, 

(b) PM-11, (c) sPM-03, (d) sPM-07, (e) sPM-11, and (f) T_1_3. 
Figure 1. System morphology (only the polymer phase is visible for clarity) in the case of (a) PM-03,
(b) PM-11, (c) sPM-03, (d) sPM-07, (e) sPM-11, and (f) T_1_3.

The first parameter studied is the mean square displacement ∆r2 (MSD). Figure 2a,b
show the dependence of MSD on time, t, in a double logarithmic scale for PM, sPM and T
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systems. The MSD values here were averaged over all solvent molecules in the system. It
can be seen that, except for short times, the dependence of MSD values on time is linear.
As one might expect, the smaller the mesh size, the smaller the MSD value. The MSD for
irregular networks (sPM) is, in all cases, larger than for regular networks (PM), which is
visible in Figure 2a. The reason is the existence of large regions of pure solvent where
the solvent moves in bulk; this can be clearly seen in Figure 1. For PM samples, solvent
movement is more or less restricted in the entire volume. It can also be seen that systems
containing star-branched polymers (Figure 2b) show no significant differences in MSD
values. Thus, the influence of the local polymer concentration is not found, which, after
all, depends significantly on the number of arms in the stars [73] and is determined by the
total polymer concentration, which was similar in all systems, T. Furthermore, the MSD
for star polymers is almost an order of magnitude higher than for both networks when we
compare systems with similar concentrations, namely PM-11 and sPM-11 and T_1_1.
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Figure 2. MSD versus time for (a) polymer networks and (b) star systems. The inset shows the zoom
in the dashed region. The polymer concentration values are also given (PM and sPM are similar).
The time axis is expressed in Monte Carlo steps.

Since most of the solvent at the polymer concentrations studied (between 2% and 15%)
does not ‘feel’ the influence of macromolecules, it appears that more information can be
obtained from analyzing the movement of the solvent near the polymer elements (beads).
Figure 3a–c shows the MSD as a function of time, t, for solvent molecules that had one or
two contacts (nearest neighbor as polymer unit, called the ‘close to chain’ configuration)
and more than two contacts (close to chain or node, called the ‘close to node’ configuration)
with the polymer at the initial time (t = 0) for all PM, sPM, and T systems studied. The
MSD for the remaining solvent in the system (‘bulk’, with no polymer contacts) is given
as a reference value in these figures. It can be seen that the dependence of the MSD on
time is a power function for all the systems studied. It should be noted that for short times,
differences in solvent mobility depending on the mesh size or number of arms are visible.
For long time scales in PM and sPM systems, the differences, although smaller, still exist
over the entire range studied. In the case of stars, the differences disappear for longer
time scales.
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Figure 3. MSD versus time for different fractions of solvent in the cases of (a) PM, (b) sPM, and (c) T
systems. The insets show the zoom in the dashed region.

Next, what the number of polymer–solvent contacts look like if one considers a single
solvent molecule was checked. Figure 4a,b show which fraction of solvent molecules Ns/N0
have on average in a given number of contacts with the polymer for the PM, sPM, and T
systems studied. As mentioned above, most of the solvent molecules in the system are not
in contact with the polymer at any given time. Of course, the smaller the mesh size, the
more solvent molecules interact with polymer chains, and the differences between the PM
and sPM systems are more significant. The fraction of solvent molecules that have more
contacts with the polymer decreases very rapidly. The local increase in the values of this
parameter for two and five are only due to the lattice model used. The dependence of the
fraction Ns/N0 for star-like polymers (Figure 4b) in general looks similar and is caused by
statistical errors. In the range of values where the data are reliable, there is no dependence
on the number of arms.

The self-diffusion coefficient D of a given object in a three-dimensional space can be
determined based on the Einstein–Smoluchowski equation as follows:

< ∆r2 >= 6Dt (1)

The determination of the diffusion coefficient for solvent D is therefore possible if MSD
depends linearly on time. Figure 5a shows the values of the reduced solvent self-diffusion
coefficient for all tested systems as a function of polymer concentration. The reduced self-
diffusion coefficient of the solvent was calculated as Dsolvent/Dsolvent

0, where the subscript 0
indicates a system composed of only the solvent. The values for star-shaped polymers were
averaged over all systems tested, as it turned out that the value of the diffusion coefficient
hardly depended on the number of arms (see the inset of Figure 5a). The Dsolvent/Dsolvent

0

(ϕp) relationship is a power function for both regular and irregular networks, and the
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rate of decreasing the self-diffusion coefficient with polymer concentration is higher for
the regular network. The value of the Dsolvent/Dsolvent

0 ratio for stars lies on the curve
for the sPM system. The inset of Figure 5a shows the dependence of Dsolvent/Dsolvent

0 on
the number of arms of stars (T system). It can be seen that the changes in the reduced
self-diffusion coefficient are not large, although one can point to a small maximum in the
value of Dsolvent/Dsolvent

0 for the number of arms, f = 12. However, it should be noted
that, here, one may be dealing with the influence of the structure near the branching point
(f = 3, 6, and 12 stars have a single-bead core while those with more arms have a core
composed of some beads). Figure 5b shows how the value of the reduced self-diffusion
coefficient changes as a function of the mesh size for the PM and sPM systems. For dense
networks—that is, for a small mesh size—the differences in diffusion coefficient between
PM and sPM systems are greater, but they disappear as the mesh size increases. This is
because the looser the network, the more similar the solvent dynamics will become to that
corresponding to the bulk state.
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Since it is difficult to determine, based on the MSD analysis of the solvent molecules,
if and under what conditions deviations from the Einstein–Smoluchowski equation occur,
a non-Gaussian parameter (NGP) α2(t) was examined. It is defined as follows [24]:

α2(t) =
3
5
< ∆r4 >

< ∆r2 >2 − 1 (2)

where symbol < > represents the ensemble averaging. Figure 6a–c shows the dependence of
this parameter on time in all PM, sPM, and T systems studied. The presented data are not
perfect from a statistical point of view, so conclusions about subtle changes among systems
are not definitive. It can be seen that in all plots the value of this parameter decreases,
and there are no significant jumps in the value of α2(t) (those for longer times relate to
weak statistics); in a long time limit, the value of α2(t) in sPM systems is clearly higher,
and the decrease in value is smoother. From Figure 6a, it can be seen that in the regular
PM network, a weaker decrease in α2(t) is observed for low mesh size values, and a faster
decrease is observed for high values. Figure 6b shows that, in the irregular sPM network,
the trends are clearly stronger. Furthermore, the inflection point can be observed for all
samples in this case near 104 time steps. This corresponds to the maximal change in the α
exponent, as shown in Figure 7b. The decreasing value of α2 with time is also visible in
Figure 6c for T systems, and no correlation with the behavior of this parameter and the
number of star arms can be seen there.
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The confirmation of the occurrence of subdiffusion, that is, the relationship ∆r2 ~ tα

with an exponent α < 1, can be obtained directly by analyzing the changes in the exponent
α of this equation. The best way to determine it is to calculate the logarithmic derivative of
the MSD as follows:

α =
dlog < ∆r2 >

dlog t
(3)

Figure 7a,b shows the time dependence of the exponent α for solvent motion in the PM
and sPM systems studied. If one considers only the bulk solvent, the strongest subdiffusion
occurs for the lowest values of the mesh size, both for PM and sPM. The behavior of the
exponent α in the PM system (Figure 7a) for solvent ‘close to node’ and ‘close to chain’
surprisingly shows the appearance of superdiffusion-like behavior for times between 101

and 103 steps for all mesh sizes (classical superdiffusion is the case when α > 1). However,
here, this is a purely geometrical effect (not a ballistic diffusion); when the solvent leaves
the polymer-rich region, it starts to move faster—so there is a positive change in the slope
of the MSD, and, consequently, a value of α greater than 1, as a mathematical derivative, is
observed. This behavior is weakest in the case of the smallest mesh size. For sPM systems
(Figure 7b), this phenomenon for ‘close to node’ and ‘close to chain’ occurs over a wider
time window (up to 105). These differences are probably due to the different homogeneity
of PM and sPM networks. The differences in the local density and homogeneity of the
two types of polymer networks are just visible in the example configurations presented in
Figure 1. Regions of low and high local polymer density in sPM networks lead to the timing
of anomalous diffusion phenomena over a wider time range. In the sPM case, it is more
difficult for the solvent to leave regions of higher polymer concentration, and, consequently,
this process takes a longer time.

Another important quantity for analysis is the diffusion relaxation time, which pro-
vides the information of the residence time for a given fraction of the solvent. These can be
determined from the time-dependent position autocorrelation function A(t), defined as a
change in the solvent position at time t relative to its initial position [43]:

A(t) =
1

NS
∑

i
δi (4)

where NS is the number of solvent molecules in the analyzed solvent fraction, δi is equal
to 1 if the same solvent molecule occupies the site i at time t and t0 = 0, otherwise δi = 0.
From this function, the relaxation time τ can be determined using the stretched exponent
dependence formula A(t) ~ exp((−t/τ)β) with β as the fitting parameter (in all cases close
to 0.8). Figure 8a,b shows the relaxation time for the PM, sPM, and T systems studied as a
function of mesh size (networks) or arm number (stars). For both networks, regular and
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irregular, the relaxation times of solvents ‘in bulk’ and ‘close to chain’ practically do not
depend on the mesh size, except that the solvent ‘in bulk’ relaxes faster than the ‘close to
chain’ one. The situation changes in the case of the ‘close to node’ solvent; in the regular
network, relaxation occurs much faster than in the irregular network (and faster than in
the ‘in bulk’ and ‘close to chain’ cases discussed above). Moreover, in the former case,
the relaxation time decreases, and the changes are not monotonic (a minimum appears
around the mesh size equal to 7 units). For systems containing star-like macromolecules,
the relaxation time values are similar, i.e., the ‘close to chain’ solvent relaxes more slowly
than the ‘bulk’ one, and they weakly depend on the arm number and are smaller than those
corresponding to PM systems. As in the PM and sPM systems, the ‘close to node’ solvent
relaxes more slowly, and its relaxation time slowly increases with the arm number.
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Figure 8. Relaxation times obtained from fitting the autocorrelation functions with the KWW relation
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systems (for the same polymer concentrations).

Thus, it can be seen that all the simulation results analyzed above indicate that the
local structure of the polymer material determines the solvent dynamics. This raises the
question of what solvent mobility looks like at a non-local scale and how it is spatially
distribution-dependent. Mobility was calculated as a ratio of successful movements to total
movement trials in a given point of space and time-averaged over the entire simulation run.
Figure 9a–d present the reduced mobility of solvent motion (relative to a system consisting
of the solvent alone) in regular PM and irregular sPM networks, characterized by different
mesh size values. The data presented are for selected in-plane cross sections. It can be seen
that, in the case of regular networks, in principle, the obstructive effect of the network on
the mobility of the solvent results in a strong slowdown of the solvent molecules in the
nearest layers near the branching points of the polymer network, regardless of the mesh
size (Figure 9a,b). Irregular networks (Figure 9c,d) show a large clustering of points with
highly reduced movement (relative mobility below 0.1), consisting of slower polymer units
and solvent molecules apparently arrested nearby. An increase in the mesh size leads to a
significant decrease in the number of sites with a very low probability of motion. It should
also be noted that the spectrum of solvent movement probability values is much wider for
sPM networks than for regular PM networks.
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4. Conclusions

In this work, the effect of structure in complex polymer systems on solvent dynamics
was studied. These types of polymeric materials are characterized by disorder, whereas
typically only regular systems are theoretically studied. Therefore, a coarse-grained model
concerning irregular networks and star-shaped macromolecules with an explicit solvent
was designed. Monte Carlo simulations were carried out using the Dynamic Lattice Liquid
(DLL) algorithm based on the concept of cooperative motions in dense soft-matter systems.
This tool allows for the study of very large systems (consisting of more than 106 elements)
on long time scales. The DLL algorithm made it possible to both simulate the synthesis of
the polymeric materials and study the solvent dynamics after the reaction was finished. In
this work, the dynamics of solvent molecules in regular and irregular polymer networks, as
well as in solution of star-like polymers (modeling separate network nodes), was compared.

The self-diffusion coefficients and diffusion relaxation times of the solvent were deter-
mined, showing that the differences in these parameters were only quantitative and that the
influence of irregular networks appeared to be significantly stronger than that of regular
networks and star-like polymers. It also turned out that despite the low polymer concentra-
tion, between 2% and 15%, the appearance of anomalous diffusion was observed in the
systems studied. Deviations from normal diffusion were found to be small and strongly
dependent on the mesh size of the polymer network. The variation in the dynamics of the
solvent was shown to depend on the position of the solvent molecule in relation to regions
of higher or lower polymer concentration. The movement of the solvent inside and near the
polymer can be described as subdiffusive precisely for short time scales for bulk solvent.
The release of the solvent molecule from a region of locally high polymer concentration
led to a significant instantaneous acceleration of its motion. Thus, the influence of the
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local structure rather than the averaged or model-regular structure of the cross-linked and
branched macromolecular systems on the dynamics of the surrounding and penetrating
solvent should be emphasized.
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