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Abstract: To accurately quantify the variation in concrete carbonation depth, selecting an appropriate
mathematical curve model is crucial. Currently prevalent models, such as the Fick model and
exponential models, confront limitations in prediction accuracy and range of application. Given
that a single curve model struggles to precisely describe the pattern of concrete carbonation, this
work introduces a mixed-curve-based prediction model for carbonation depth, effectively integrating
the Fick model with a hyperbolic model. Compared to the Fick model, the additional term in the
mixed-curve model can be viewed as a reasonable correction to better adapt to the complex and
varied conditions of concrete carbonation. This hybrid model transcends the limitations of individual
models, enhancing fitting precision and broadening the scope of applicability. The new model boasts
a concise structure with only two fitting parameters, facilitating ease of application. To validate its
superiority, rigorous comparisons were conducted between the proposed model and existing ones,
leveraging experimental data from 10 distinct concrete carbonation scenarios. By comparing the
average error, standard deviation, and coefficient of determination across these cases, the new model
demonstrates a clear advantage over the Fick model and the exponential model. In terms of fitting
errors, the average error and standard deviation of the new model are notably lower than those
of the other two models. In terms of the coefficient of determination, the values achieved by the
new model in all examples are closer to 1 than those of both the Fick model and the exponential
model, underscoring the new model’s superior fitting quality and remarkable stability. This research
indicates that the combined model presented in this paper holds promising prospects for widespread
application in predicting concrete carbonation depth.

Keywords: concrete; elastic modulus; compressive strength; two-parameter curve model; three-
parameter curve model

1. Introduction

Concrete carbonation occurs when atmospheric CO2 permeates concrete pores and
cracks, chemically reacting with alkaline components to decrease alkalinity. Key reactions
are detailed in Equations (1)–(4) [1], with pore alterations depicted in Figure 1 [2]. Note
that Equations (2)–(4) are verified only for high CO2 concentrations (>5%). This process
lowers pH near reinforcing steel, accelerating corrosion, damaging structures, and reducing
their lifespan [3,4]. The assessment of concrete carbonation depth is of great significance in
ensuring structural safety and estimating service life [5–12].

Ca(OH)2 + CO2
H2O→ CaCO3 + H2O (1)
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(3CaO·SiO2·3H2O) + 3CO2 → (3CaCO3·2SiO2·3H2O) (2)

3CaO·SiO2 + 3CO2 + γH2O → SiO2·γH2O + 3CaCO3 (3)

2CaO·SiO2 + 3CO2 + γH2O → SiO2·γH2O + 2CaCO2 (4)
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Currently, there are two main methods for evaluating concrete carbonation depth (CD):
machine learning techniques and mathematical curve fitting. Among the machine learning
approaches, various models are constructed, including artificial neural networks (ANN),
support vector machines (SVM), and decision trees (DT), which are subsequently trained
on extensive datasets to accurately evaluate the CD of concrete. This reliance on large data
sets allows for more nuanced and precise assessments compared to traditional methods.
Majlesi et al. [13] trained an ANN model for predicting the CD of reinforced concrete
under different natural and environmental conditions. Tran [14] devised an ANN model to
forecast CD, utilizing 300 experimental data points for validation. Felix et al. [2] employed
an artificial neural network (ANN) coupled with a backpropagation algorithm for the
purpose of predicting the CD of concrete that incorporates fly ash additives. Concha [15]
created a new CD prediction model using ANN, analyzing 445 experimental data points
for enhanced accuracy. Akpinar and Uwanuakwa [16] refined carbonation simulation and
prediction accuracy with an ANN model utilizing a scale conjugate gradient (SCG) function.
Zhang et al. [17] introduced a hybrid prediction framework merging the least squares
support vector machine (LSSVM) with a metaheuristic algorithm to precisely forecast
the CD of fly ash-blended concrete. Huang et al. [18] compared ANN, radial product
function neural networks (RBF), random forests (RF), and SVM for CD prediction under
varying conditions. Çevik et al. [19] reviewed SVM’s applications in structural engineering,
citing case studies. Li et al. [20] applied SVM to forecast concrete carbonation, discovering
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its predictive accuracy surpassed Back Propagation (BP) neural networks. Ruan [21]
introduced the Support Vector Regression (SVR) to predict concrete CD, validated with real
case data of CD. Londhe et al. [22] introduced Model Tree (MT), RF, and Multi Gene Genetic
Programming (MGGP) for predicting concrete carbonation coefficients. Wang et al. [23]
comprehensively evaluated eight ML algorithms (DT, RF, AdaBoost, CatBoost, XGBoost,
K-Nearest Neighbors (KNN), SVR, and Multilayer Perceptron (MLP)) for predicting CD in
concrete with solid waste. Amirhossein et al. [24] crafted artificial bee colony expression
programming (ABCEP) models, rigorously analyzed, and compared the best ones with
previous models. Lee et al. [25] utilized a state-of-the-art deep learning model to forecast
concrete carbonation, outperforming the Architectural Institute Japanese (AIJ) Model and
the Finite Element Method (FEM) analysis. Kumar et al. [26] introduced an adaptive neural
fuzzy inference system (ANFIS) for estimating CD in fly ash concrete.

The model evaluated by combining mathematical curves mainly considers the influ-
ence of concrete composition on the CD of concrete. The fundamental concept behind
this approach involves establishing the functional relationship between the mechanical
properties of concrete and the various influencing factors based on initial experimental
data. This information is then leveraged to apply data-fitting techniques, allowing for
the calculation of concrete’s mechanical properties under a range of different influencing
conditions. Through this process, a clearer understanding of how varying factors affect per-
formance can be achieved, leading to more accurate predictions and analyses. At present,
the main models include the evaluation model based on the water–cement ratio [27,28],
the evaluation model based on concrete compressive strength [29,30], and the evaluation
model considering multiple parameters [31,32]. The original model was based on Fick’s
diffusion law to predict the depth of carbonation, and the original model was called the
Fick model [33]. Other scholars have conducted in-depth research based on the Fick model
and extended this model. For example, Possan et al. [34] proposed a mathematical model
for estimating the CD of concrete and predicting the service life of concrete structures
under carbon dioxide, which was validated using multiple sets of data. The results indicate
that the model has the potential to predict the CD of concrete under boundary conditions
that guide its development. Ekolu [35] proposed a mathematical model for predicting the
effects of concrete composition and environmental factors on natural carbonation. Multiple
datasets were used for model development and calibration, and the proposed model was
compared with the fib model. The results indicate that the proposed model is relatively
accurate. Liang and Lin [36] developed a new one-dimensional mathematical model. A
one-dimensional linear partial differential equation was derived based on the principle of
mass balance and convection dispersion equation, and an analytical solution was found
through mathematical methods. Various parameters determine the numerical results of
concrete carbonation. The numerical results indicate the practical application of the model.
These results indicate that the proposed model can describe the carbonation process of con-
crete chemically and physically. The advantage of mathematical curve models lies in their
ability to directly establish functional relationships between concrete CD and a multitude
of influencing variables, such as the water-to-cement proportion, material temperature,
pressure, and the chemical makeup of the constituents [2].

In general, while existing evaluation models are capable of predicting the mechanical
properties of concrete to some degree, they exhibit certain limitations in specific areas. The
drawbacks of machine learning-based evaluation models can primarily be categorized into
two main issues: first, these models require a training phase before they can be effectively
utilized for assessments; second, the complexity of the parameters considered by machine
learning evaluation models can make their application in practical engineering challenging.
This complexity can hinder their ease of use in real-world scenarios. The limitations of
current mathematical curve models mainly lie in their limited applicability. For example,
multi-parameter models must consider multiple factors and require a large amount of
experimental data for fitting, which can lead to defects such as difficulty in obtaining
variable data. To overcome the problems of insufficient early data and difficulty obtaining
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various variables in practical engineering, this study aims to develop a new dual-parameter
curve model by integrating the advantages of existing curve models. In comparison to
pre-existing curve formulations, the present model offers improved precision in assessing
the interplay between the CD and the temporal evolution of concrete carbonation. Drawing
upon the outcomes of this model’s evaluations, a more nuanced comprehension of the CD
within the component is achievable, thereby facilitating the anticipation and expeditious
adoption of preventive actions. Therefore, this article first analyzes the advantages and
disadvantages of the original Fick model and exponential model and then proposes a
new digital curve model that overcomes the shortcomings of existing curve models. The
improvement of the new model is mainly reflected in two aspects: firstly, the mathematical
formula of the new model is concise, only considering the fitting of two parameters, which
is convenient for practical engineering applications; second, the curve used in the new
model has been improved based on the Fick model, resulting in higher fitting accuracy
than existing models. This article mainly studies the application of a new model in the
assessment of CD in concrete. This study engages in a comparative analysis utilizing ten
sets of experimental data sourced from the established literature, aiming to evaluate the
computational accuracy of a new model against existing ones. The objective is to highlight
the advancements and improved performance of the new model over its predecessors.

2. Mathematical Models for Predicting the Carbonation Depth of Concrete
2.1. Analysis of Existing Models

The existing evaluation models that describe the relationship between the age of
concrete and CD primarily consist of power function, exponential, and logarithmic models.
The foundational power function model is the Fick model, and the corresponding curve
equation is as follows [33]:

z(t) = a
√

t (5)

Among them, z(t) represents the quantified CD of the concrete at the specific time
denoted by t; a denotes an unknown non-negative parameter that must be determined
using experimental data. As indicated in Equation (5), a key advantage of the Fick model
is that it requires fewer parameters for fitting, which facilitates its application in practical
engineering scenarios. However, the Fick model also has its limitations. The primary
drawback is that it incorporates only one parameter for fitting; thus, when dealing with
experimental data that exhibit considerable variability, the fitting accuracy may be reduced,
leading to substantial errors.

The curve equation of the exponential model is expressed as [37]:

z(t) = a + b·e−t/c (6)

In Equation (6), a, b, and c are the three fitting parameters that need to be obtained
through curve fitting based on experimental data. The advantage of this model is that the
model function is a monotonic function, which is consistent with the increasing trend of
concrete CD over time in practical engineering. And when t → 0 , z(t) tends to converge.
However, due to the need to fit three parameters in this model, more experimental data are
required for fitting, making it less convenient for practical engineering applications.

2.2. The Proposed Curve Model

Due to the numerous factors influencing concrete carbonation, such as concrete
strength and porosity, it is challenging to precisely capture the variation pattern of concrete
carbonation depth using a single curve model. This is also the underlying reason for the
poor fitting accuracy of traditional models. A promising approach is to combine various
curves into a mixed model to adapt to the complexity and variability of concrete carbon-
ation conditions. In view of this, this work proposes a new mixed-curve model, which
improves the accuracy of describing the variation in concrete carbonation depth over time
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in practical engineering applications. The mathematical expression of this mixed-curve
model is provided below:

z(t) = a
√

t + b·
√

t√
t + 1

(7)

In Equation (7), t and z(t) represent the time and the corresponding concrete carbona-
tion depth at that time, consistent with the definitions provided in previous equations. The
two unknown parameters a and b are determined by fitting experimental data. Comparing
Equation (7) with Equation (5), it can be seen that this new model is a hybrid of the Fick
model and the hyperbolic model, where the additional term can be regarded as a reasonable
modification to the Fick model to adapt to different concrete carbonation conditions. The
newly added term

√
t√

t+1
exhibits the following characteristics: when t = 0,

√
t√

t+1
= 0, and

as t approaches infinity,
√

t√
t+1

approaches 1. This indicates that the added term
√

t√
t+1

is
a bounded function that can, to a certain extent, compensate for the shortcomings of the
Fick model in adapting to complex and variable carbonation scenarios, thereby enhancing
the fitting accuracy. Compared to other mathematical curve models that involve multiple
influencing parameters, the proposed combined curve model boasts a simple and clear
structure, containing only two unknown fitting parameters, making it more suitable for
engineering applications.

2.3. Solving Process of Fitting Parameters

In this section, we will further discuss the method for calculating the fitting param-
eters in the previously proposed mathematical curve model. To begin, we will create a
linear equation system that relates CD to age, using the actual data obtained from experi-
ments. Subsequently, we will derive the corresponding fitting parameters. Through the
employment of diverse collections of experimental data, the linear system pertaining to
Equation (7) can be formulated in the manner depicted below:

y = C·x (8)

y =


z(t1)

...
z(tn)

, (9)

x =

{
a
b

}
(10)

C =


√

t1

√
t1√

t1+1
...

...
√

tn

√
tn√

tn+1

 (11)

where z(tn) denotes the CD of the concrete specimen measured at time tn. It is evident
that both the coefficient matrices and vectors in Equation (8) can be derived from the
experimental data. Consequently, the least squares method can be employed to determine
the vector of undetermined fitting coefficients x. Thus, Equation (8) can be reformulated
as follows:

CTy = (CTC)·x (12)

Pursuant to Equation (11), the representation of the solution for x is formulated as

x̂ = (CTC)
−1

CTy (13)

The computed value of x̂ represents the least squares estimation of x. After obtaining
the fitting parameters using the above formulas, the specific curve model is correspondingly
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established for predicting the carbonation depth. Different fitting parameters can be
obtained by employing the aforementioned curve-fitting method for different concrete
strengths, porosities, and other relevant factors. These fitting parameters, in turn, enable the
generation of unique prediction curves for carbonation depth that precisely correspond to
each specific concrete carbonation condition. In other words, the proposed model precisely
adapts to changes in the properties of concrete materials and environmental conditions
by adjusting the fitting parameters. This is a common characteristic shared by predictive
models of this kind, which is to accommodate changes in the properties of the research
object by adjusting the built-in parameters of the model. Figure 2 provides a more intuitive
illustration of the operational process of the proposed model for predicting the carbonation
depth of concrete.
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To assess the accuracy of these model predictions, we can compare the predicted
values against the experimental values. The quantitative divergence between the predicted
outcomes and the experimental measurements is defined as follows:

{δ} = |C·x̂ − y| (14)

where {δ} = (δ1, · · · , δn)
T is referred to as the residual vector. In particular, δi represents

the residual error between the ith experimental data point and its corresponding predicted
value. The average and standard deviation of these residual errors can be computed using
the following methods:

δ =
δ1 + · · ·+ δn

n
(15)

σ =

√√√√√ n
∑

i=1
(δi − δ)

2

n
(16)

In this context, δ denotes the average of the residual errors, while σ represents the
corresponding standard deviation. A lower value of δ and σ indicates a greater accuracy in
the curve model fitting.

To evaluate the model’s predictive capability, the coefficient of determination (R2)
is calculated. This metric assesses the degree of closeness between the predicted and
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experimental values, thereby providing insights into the model’s effectiveness in estimating
CD. The formula for calculating R2 is as follows:

R2 = 1 −

n
∑

i=1
(ye − yp)

2

n
∑

i=1
(ye − ye)

2
(17)

where ye = experimental value; ye = mean of experimental values; yp = predicted value,
and n = total number of observations

3. Model Verification and Comparison via Concrete Experiment Data

We validated the results of the new evaluation model proposed in this paper by
collecting experimental data from references [38–47] (Case 1–10). The fitting results are
compared with the existing Fick and exponential models to demonstrate the superiority of
the new model.

Case 1: In citation [38], some fly ash concrete specimens measuring 100 mm × 100 mm
× 400 mm were cast and subjected to standard curing for 28 days. Initially, the CD of the
concrete was measured after 0 days of curing. Subsequently, the fly ash concrete underwent
rapid carbonation treatment following the initial measurement. The concentration of carbon
dioxide for rapid carbonation is set to 20% + 3%; the temperature is set to 20 ◦C + 2 ◦C,
and the relative humidity is set to 70% ± 5%. The CD was measured after three days,
seven days, 14 days, and 28 days of rapid carbonation treatment. The average value of
these measurements for each time point was considered the CD. Table 1 shows the material
composition of the fly ash concrete, while Table 2 presents the CD data for each time point.

Table 1. The material composition of the fly ash concrete test block in Case 1 (kg/m3).

Cement Sand Spall Water Fly Ash Water–Binder Ratio

156 695 1135 175 234 0.45

Table 2. CD of concrete specimens at different ages in Case 1 (mm).

Age 0d 3d 7d 14d 28d

CD 1.4 6.2 9.4 11.2 16.6

The obtained data were then fitted into the Fick, exponential, and mixed models for
analysis. The resulting fitting curves can be seen in Figure 3. Table 3 displays the models’
average fitting error, standard deviation, and coefficient of determination (R2). The specific
fitting equations of the three models are as follows:

z(t) = 3.1799
√

t (18)

z(t) = 17.9559 − 15.8783·e−t/12.9828 (19)

z(t) = 2.8194
√

t + 1.7914·
√

t√
t + 1

(20)

Case 2: In citation [39], some standard-sized lime powder concrete test blocks were
poured and cured under standard conditions for seven days before being cured under
natural conditions. Then, concrete CD at 14, 28, 60, and 90 days of curing was measured.
The materials used include the following: Class II fly ash with a fineness of 18.0% and a
water requirement of 101%; S105 grade ground granulated blast-furnace slag; limestone
powder with 20% residue on a 45 µm sieve and a flowability ratio of 101%; Polycarboxylate
superplasticizer; medium sand with a fineness modulus of 2.67 and an apparent density of
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2630 kg/m3; granite gravel with a particle size ranging from 5 to 25 mm and an apparent
density of 2670 kg/m3; and P·O 42.5 grade cement. Table 4 shows the material composition
of concrete, while Table 5 displays the CD data at each time point.
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Table 3. The fitting mean errors, standard deviations, and coefficient of determination from the three
models in Case 1.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.8007 0.8130 0.3313
Fitted standard

deviation σ
1.4056 1.3674 0.6854

Coefficient of
determination (R2) 0.9692 0.9709 0.9927

Table 4. The material composition of the lime powder concrete test block in Case 2 (kg/m3).

Cement Sand Spall Water Limestone
Powder Admixture

306 850 1030 170 34 5.1

Table 5. CD of concrete specimens at different ages in Case 2 (mm).

Age 14d 28d 60d 90d

CD 0 1.1 1.9 2.8

Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 4 shows the final fitting curve. Table 6 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 0.2453
√

t (21)

z(t) = 3.5205 − 4.4714·e−t/52.53 (22)

z(t) = 0.4617
√

t − 1.8014·
√

t√
t + 1

(23)
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Table 6. The fitting mean errors, standard deviations, and coefficient of determination from the three
models in Case 2.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.3972 0.1445 0.1201
Fitted standard

deviation σ
1.0513 0.3086 0.2952

Coefficient of
determination (R2) 0.7399 0.9776 0.9795

Case 3: In citation [40], several C30 concrete cube samples measuring 100 mm on each
side were cast and underwent conventional curing procedures. The CD of the concrete was
measured after 3, 7, 14, and 28 days of the curing process. This design employs 42.5 grade
ordinary Portland cement as the primary binding material. For fine aggregate, high-quality
river sand with an apparent density of 2640 kg/m3, a fineness modulus of 2.9, and a
low mud content of only 0.5% is selected, belonging to the Grade II gradation zone with
excellent gradation. As for coarse aggregate, two types of continuously graded crushed
stones are used: the first is granite crushed stone with an apparent density of 2800 kg/m3,
a crushing value of 6.0%, a mud content of 1.0%, and a particle size range of 2.5 to 20.0 mm;
the second is limestone crushed stone with an apparent density of 2740 kg/m3, a crushing
value of 7.9%, a similar mud content of 1.0%, and an extended particle size range of 2.5 to
40.0 mm. Additionally, Grade I fly ash is introduced, featuring a fineness of 8.4, a moisture
content of 0.3%, and a water requirement of 95%. The material composition of the concrete
is detailed in Table 7, with Table 8 presenting the CD values recorded at the specified
time intervals.

Table 7. The material composition of the concrete test block in Case 3 (kg/m3).

Cement Sand Spall W/C Fly Ash

300 856 975 0.5 60

Table 8. CD of concrete specimens at different ages in Case 3 (mm).

Age 3d 7d 14d 28d

CD 0.8 2.4 3.2 5.0
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Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 5 shows the final fitting curve. Table 9 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 0.8878
√

t (24)

z(t) = 6.0251 − 6.1031·e−t/16.2279 (25)

z(t) = 1.1291
√

t − 1.1847·
√

t√
t + 1

(26)

Case 4: In citation [41], 12 concrete cube test blocks, each with a side length of 100 mm,
were cast. Following standard curing for 26 days, the test blocks underwent drying at
a constant temperature of 60 ◦C. Once they reached a curing age of 28 days, wax was
applied to seal the test blocks around all sides except for two opposing ones. Subsequently,
they were placed in a standard carbonation box for carbonation testing. The temperature,
humidity, and CO2 concentration within the carbonation chamber all meet the requirements
specified in the standard “Test Scheme for Long-term Performance and Durability of
Ordinary Concrete” (GB/T 50082-2009) [48]. The CD of the concrete was measured at
3 days, 7 days, 14 days, and 28 days. The material composition of the concrete is outlined
in Table 10, and the CD data at each time point are presented in Table 11.
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Figure 5. The fitting results of Case 3.

Table 9. The fitting mean errors, standard deviations, and coefficient of determination from the three
models in Case 3.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.3032 0.2008 0.1741
Fitted standard

deviation σ
0.8081 0.4523 0.4233

Coefficient of
determination (R2) 0.9286 0.9776 0.9804
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Table 10. The material composition of the concrete test block in Case 4 (kg/m3).

Cement Sand Spall Water Reducing Agent Fly Ash Silica Fume Water W/C

380 655 983 4.9 40 74 101.1 0.38

Table 11. CD of concrete specimens at different ages in Case 4 (mm).

Age 3d 7d 14d 28d

CD 5.82 6.70 7.47 8.73

Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 6 shows the final fitting curve. Table 12 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 1.9606
√

t (27)

z(t) = 9.897 − 4.6611·e−t/20.437 (28)

z(t) = 0.8046
√

t + 5.6756·
√

t√
t + 1

(29)
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Table 12. The fitting mean errors, standard deviations, and coefficient of determination from the
three models in Case 4.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 1.4289 0.0648 0.0444
Fitted standard

deviation σ
3.2996 0.1471 0.1079

Coefficient of
determination (R2) −1.3841 0.9953 0.9974

Case 5: In citation [42], C30 cubic specimens measuring 100 × 100 × 100 mm were cast,
demolded, and subsequently placed in a standard curing chamber for a period of 28 days.
After this curing phase, the specimens were removed and subjected to a 48-hour drying
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process in an oven at 60 ◦C to halt hydration. Following this, the specimens were coated
with wax for sealing and then placed in a concrete carbonation chamber for accelerated
carbonation testing. The specimens were retrieved at various carbonation ages of 3d, 7d,
14d, and 28d to measure their CD. The experiment employed P·O 42.5 ordinary Portland
cement as the primary cementitious material, complemented by a continuously graded
limestone gravel ranging from 5 to 25 mm in size (with an apparent density of 2690 kg/m3,
bulk density of 1470 kg/m3, crushing value of 14%, void ratio of 45%, and mud content of
0.2%). As fine aggregate, granite-based manufactured sand containing black mica was used
(featuring an apparent density of 2670 kg/m3, stone dust content of 12.2%, mica content
of 11.8%, water absorption rate of 2.2%, and fineness modulus of 3.1). To further enhance
the mixture, a polycarboxylate superplasticizer with a water-reducing rate of 22.3% and a
solids content of 20.0% was added, along with an admixture to regulate the workability
and compactness of the concrete, boasting a solids content of 10.0%. Table 13 outlines
the concrete material composition, while Table 14 displays the CD data recorded at each
time point.

Table 13. The material composition of the concrete test block in Case 5 (kg/m3).

Cement Sand Spall
Water

Reducing
Agent

Regulator Water

400 818 1038 6.8 40 165

Table 14. CD of concrete specimens at different ages in Case 5 (mm).

Age 3d 7d 14d 28d

CD 3.7 4.8 5.1 7.6

Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 7 shows the final fitting curve. Table 15 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 1.3347
√

t (30)

z(t) = 7.9998 − 5.2683·e−t/23.7058 (31)

z(t) = 0.8577
√

t + 2.3417·
√

t√
t + 1

(32)

Case 6: In citation [43], C25 prismatic specimens with dimensions of 100 × 100 × 400 mm
were cast and subjected to accelerated carbonation testing in a concrete carbonation test
chamber in accordance with the standard “Standard Test Methods for Long-term Perfor-
mance and Durability of Ordinary Concrete” GB/T 50082-2009. The carbonation environ-
ment within the chamber was maintained at a temperature of (20 ± 2) ◦C, relative humidity
of (70 ± 5)%, and a CO2 concentration of (20 ± 3)%. After carbonation ages of 3, 7, 14, 28,
and 56 days, the specimens were retrieved to measure their CDs. The concrete mix design
employed P·O 42.5 ordinary Portland cement. The fine aggregate was a blend of river sand
and iron tailings sand in a mass ratio of 9:1, with an apparent density of 2659 kg/m3, a bulk
density of 1548 kg/m3, a fineness modulus of 2.94, and a void ratio of 41%. The coarse
aggregate was a continuous gradation from 5 mm to 20 mm, achieved by mixing iron
tailings stones of 5 mm to 10 mm continuous grain size and 10 mm to 20 mm single-grain
size in a mass ratio of 1:4. This coarse aggregate had an apparent density of 2695 kg/m3, a
bulk density of 1576 kg/m3, a mud content of 2.6%, a void ratio of 39%, and a crushing
index of 8.2%. The mineral admixtures included S95 grade slag powder (with an apparent
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density of 2910 kg/m3 and a moisture content of 0.44%), Class II fly ash (with an apparent
density of 2240 kg/m3, a fineness of 19%, a water requirement of 104%, and a moisture
content of 0.06%), and iron tailings powder (with an apparent density of 2960 kg/m3 and a
specific surface area of 468 m2/kg). Additionally, polycarboxylate-based superplasticizer
was added as an admixture, with a water-reducing rate of 25% and a solid content of 40%.
Table 16 presents the material composition of the concrete, while Table 17 displays the CD
data at each time point.
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Table 15. The fitting mean errors, standard deviations, and coefficient of determination from the
three models in Case 5.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.5814 0.0694 0.0468
Fitted standard

deviation σ
1.3649 0.1580 0.1069

Coefficient of
determination (R2) 0.6409 0.9952 0.9978

Table 16. The material composition of the concrete test block in Case 6 (kg/m3).

Cement Water Sand-
Aggregate

Water–Binder
Ratio

Iron Tailings
Powder

Fly
Ash

Slag
Powder

Water Reducing
Agent Spall Sand

141 180 43.5 0.57 31 47 94 1.85 1055 812

Table 17. CD of concrete specimens at different ages in Case 6 (mm).

Age 3d 7d 14d 28d 56d

CD 6.13 8.34 11.33 15.04 21.42

Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 8 shows the final fitting curve. Table 18 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 2.9162
√

t (33)
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z(t) = 29.0566 − 24.0750·e−t/49.2683 (34)

z(t) = 2.6481
√

t + 1.6646·
√

t√
t + 1

(35)

Case 7: In citation [44], prismatic specimens of 100 mm × 100 mm × 300 mm were
cast. Following the specifications outlined in the “Standard for Test Methods of Long-Term
Performance and Durability of Ordinary Concrete” (GB/T50082-2009), a rapid carbonation
method was employed. The test blocks were placed in a concrete carbonation test chamber
for accelerated carbonation testing. Within the chamber, the concentration of carbon dioxide
was maintained at (20 ± 3)%, humidity at (70 ± 5)%, and temperature at (20 ± 2) ◦C. The
specimens were removed at intervals of 7, 14, 28, and 56 days for CD measurements. This
experiment utilized a cementitious material consisting of ordinary Portland cement (with
a strength grade of P·O 42.5R) mixed with fly ash having a fineness of 12 and a water
requirement ratio of 93%. Natural crushed stone was used, along with fine aggregates
composed of river sand (with an apparent surface area of 2689 kg/m3, a loose bulk density
of 1655 kg/m3, a water absorption rate of 0.5%, and a mud content of 3.1%) and iron tailings
sand (with an apparent surface area of 2745 kg/m3, a loose bulk density of 1824 kg/m3,
a void ratio of 8.7%, a water absorption rate of 2.9%, and a mud content of 19.53%).
Additionally, a naphthalene-based superplasticizer with a water-reducing rate of 20% was
incorporated. Table 19 details the concrete’s material composition, while Table 20 presents
the CD data for each time point.
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Table 18. The fitting mean errors, standard deviations, and coefficient of determination from the
three models in Case 6.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.5832 0.2609 0.1642
Fitted standard

deviation σ
1.0111 0.4527 0.3198

Coefficient of
determination (R2) 0.9859 0.9971 0.9986
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Table 19. The material composition of the concrete test block in Case 7 (kg/m3).

Cement Water Sand Spall Iron Tailings Sand Fly Ash Water Reducing Agent

440 220 459.2 1103 196.8 110 2.2

Table 20. CD of concrete specimens at different ages in Case 7 (mm).

Age 7d 14d 28d 56d

CD 5.42 6.62 8.04 10.40

Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 9 shows the final fitting curve. Table 21 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 1.5189
√

t (36)

z(t) = 13.8148 − 9.4456·e−t/55.2963 (37)

z(t) = 1.0198
√

t + 3.2447·
√

t√
t + 1

(38)

Case 8: In citation [45], researchers cast standard-sized concrete blocks and put them
in a chamber for quick carbonation tests, adhering to the “Standard for Test Methods of
Long-Term Performance and Durability of Ordinary Concrete” (GB/T 50082-2009). They
took out the blocks on days 3, 7, 14, 28, and 56 after carbonation to precisely gauge their
carbonization depth. This study used P·O 42.5 cement, fly ash, natural and artificial sand,
crushed stone, and other additives. Concrete composition details are in Table 22, while
CDs are logged in Table 23.
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Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 10 shows the final fitting curve. Table 24 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 0.9651
√

t (39)
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z(t) = 7.5522 − 5.9846·e−t/28.7005 (40)

z(t) = 0.8167
√

t + 0.9210·
√

t√
t + 1

(41)

Table 21. The fitting mean errors, standard deviations, and coefficient of determination from the
three models in Case 7.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.8269 0.0771 0.0518
Fitted standard

deviation σ
1.9430 0.1769 0.1201

Coefficient of
determination (R2) 0.7253 0.9977 0.9990

Table 22. The material composition of the concrete test block in Case 8 (kg/m3).

Cement Water Artificial Sand Natural Sand 5–10 Stone 10–20 Stone Fly Ash Proportion of Additives (%)

317 175 244 569 250 779 56 2.1

Table 23. CD of concrete specimens at different ages in Case 8 (mm).

Age 3d 7d 14d 28d 56d

CD 1.5 3.7 4.1 4.7 6.9
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Table 24. The fitting mean errors, standard deviations, and coefficient of determination from the
three models in Case 8.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.5073 0.5031 0.4281
Fitted standard

deviation σ
0.9624 0.8896 0.8028

Coefficient of
determination (R2) 0.8772 0.8951 0.9146
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Case 9: In citation [46], ten sets of prismatic specimens with dimensions of 100 mm ×
100 mm × 400 mm were cast. These standard specimens were cured in a standard curing
chamber for 28 days before being placed in a drying oven set at 60 ◦C for continuous
drying for 48 h. Following the drying process, the specimens underwent wax sealing
treatment and were then placed in a carbonation chamber where the CO2 concentration
was maintained at (20 ± 3)%; the temperature was controlled at (20 ± 2) ◦C, and the
relative humidity was regulated at (70 ± 5)%. The specimens were retrieved at 3d, 7d, 14d,
and 28d intervals during the carbonation process to measure their CD. The cementitious
material system employed in this experiment consisted primarily of P.O 42.5 ordinary
Portland cement (with a specific surface area of 355 m2/kg), fly ash, and silica fume. For
reinforcement, 18 mm-long basalt fibers were selected, featuring a density of 2.5 g/cm3 and
an elastic modulus ranging from 91 to 110 GPa. To optimize the concrete’s performance, a
polycarboxylate liquid water-reducing agent was incorporated at a dosage of 0.5% by the
total mass of cementitious materials, offering a high water-reducing rate of 37%. Regarding
fine aggregate, medium sand with a fineness modulus of 2.6 was chosen. This sand exhibits
an apparent density of 2.610 g/cm3, a bulk density of 1.630 g/cm3, a moisture content
controlled below 0.8%, and a silt content of less than 1.9%. As for coarse aggregate, crushed
stone with a particle size ranging from 5 to 25 mm was utilized, possessing an apparent
density of 2.753 g/cm3, a bulk density of 1.634 g/cm3, a moisture content of 0.15%, and a silt
content of 0.4%. Tables 25 and 26, respectively, showcase the detailed material composition
of the concrete and the recorded CD data at each specified time point.

Table 25. The material composition of the concrete test block in Case 9 (kg/m3).

Cement Water Fine Aggregate Coarse Aggregate Water Reducing Agent (%)

441 150 511.68 1314.18 0.5%

Table 26. CD of concrete specimens at different ages in Case 9 (mm).

Age 3d 7d 14d 28d

CD 5.1 7.5 10.1 13.7

Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 11 shows the final fitting curve. Table 27 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 2.6723
√

t (42)

z(t) = 17.0893 − 13.8396·e−t/20.0009 (43)

z(t) = 2.4048
√

t + 1.3136·
√

t√
t + 1

(44)

Case 10: In citation [47], a carbonation test was conducted in accordance with the
“Standard Test Methods for Long-Term Performance and Durability of Ordinary Concrete”.
The test specimens measured 100 mm × 100 mm × 100 mm and were subjected to car-
bonation testing after being cured for 7 days. The specimens were retrieved, and their
CDs were measured at 3 days, 7 days, 14 days, 28 days, and 56 days of carbonation. The
raw materials used in this project comprised P.O42.5 grade cement with 3-day and 28-day
compressive strengths reaching 31.5 MPa and 48.0 MPa respectively; Class F, Grade I fly
ash (FA) featuring a water requirement ratio of 93% and a fineness of 7.3% (sieve residue
on a 45 µm square hole sieve); S95 grade ground granulated blast furnace slag (KF) with a
specific surface area of 425 m2/kg, maintaining a fluidity ratio of 100%, and an excellent
28-day mortar activity index of 104%; fine aggregate in the form of river sand with a
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fineness modulus of 2.81 and strict control of mud content below 1.6%; coarse aggregate
composed of crushed stone with a crushing value of 15.1% and a flaky and elongated
particle content of 4.9%, employing a two-stage grading of 5~20 mm, with a blending ratio
of 4.75~9.5 mm to 9.5~19.0 mm particles at 2:8; and polycarboxylate superplasticizer as
an admixture, boasting a water-reducing efficiency of 27%. Table 28 presents the concrete
material composition, while Table 29 displays the CD data at each time point.

Materials 2024, 17, 4710 19 of 23 
 

 

 
Figure 11. The fitting results of Case 9. 

Table 27. The fitting mean errors, standard deviations, and coefficient of determination from the 
three models in Case 9. 

Index Fick Model Exponential Model Mixed-Curve Model 
Fitting mean error δ  0.3607 0.0954 0.0824 

Fitted standard 
deviation σ  0.7818 0.2164 0.1692 

Coefficient of 
determination ( 2R ) 

0.9850 0.9989 0.9993 

Case 10: In citation [47], a carbonation test was conducted in accordance with the 
“Standard Test Methods for Long-Term Performance and Durability of Ordinary Con-
crete”. The test specimens measured 100 mm × 100 mm × 100 mm and were subjected to 
carbonation testing after being cured for 7 days. The specimens were retrieved, and their 
CDs were measured at 3 days, 7 days, 14 days, 28 days, and 56 days of carbonation. The 
raw materials used in this project comprised P.O42.5 grade cement with 3-day and 28-day 
compressive strengths reaching 31.5 MPa and 48.0 MPa respectively; Class F, Grade I fly 
ash (FA) featuring a water requirement ratio of 93% and a fineness of 7.3% (sieve residue 
on a 45 µm square hole sieve); S95 grade ground granulated blast furnace slag (KF) with 
a specific surface area of 425 m2/kg, maintaining a fluidity ratio of 100%, and an excellent 
28-day mortar activity index of 104%; fine aggregate in the form of river sand with a fine-
ness modulus of 2.81 and strict control of mud content below 1.6%; coarse aggregate com-
posed of crushed stone with a crushing value of 15.1% and a flaky and elongated particle 
content of 4.9%, employing a two-stage grading of 5~20 mm, with a blending ratio of 
4.75~9.5 mm to 9.5~19.0 mm particles at 2:8; and polycarboxylate superplasticizer as an 
admixture, boasting a water-reducing efficiency of 27%. Table 28 presents the concrete 
material composition, while Table 29 displays the CD data at each time point. 

Then, the obtained data were put into the Fick, exponential, and mixed models for 
analyses. Figure 12 shows the final fitting curve. Table 30 shows the model’s average fitting 
error, standard deviation, and coefficient of determination ( 2R ). The specific fitting equa-
tions for the three models are as follows: 

( ) 0.7676z t t=  (45)
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Table 27. The fitting mean errors, standard deviations, and coefficient of determination from the
three models in Case 9.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.3607 0.0954 0.0824
Fitted standard

deviation σ
0.7818 0.2164 0.1692

Coefficient of
determination (R2) 0.9850 0.9989 0.9993

Table 28. The material composition of the concrete test block in Case 10 (kg/m3).

Cement Water Fly Ash Slag Powder Sand Stone Water–Binder Ratio Water Reducing Agent Dosage

329 146 94 47 743 1114 0.31 1.25%

Table 29. CD of concrete specimens at different ages in Case 10 (mm).

Age 3d 7d 14d 28d 56d

CD 0.2 1.0 2.5 4.0 6.6

Then, the obtained data were put into the Fick, exponential, and mixed models for
analyses. Figure 12 shows the final fitting curve. Table 30 shows the model’s average
fitting error, standard deviation, and coefficient of determination (R2). The specific fitting
equations for the three models are as follows:

z(t) = 0.7676
√

t (45)
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z(t) = 9.1571 − 9.5449·e−t/43.0316 (46)

z(t) = 1.1189
√

t − 2.1803·
√

t√
t + 1

(47)

Through a comprehensive analysis of the errors and coefficient of determination
across the ten case studies, it is discernible that the novel model outperforms both the
Fick and exponential models, exhibiting a diminished mean fitting error and a reduced
standard deviation in its assessments. Additionally, the determination coefficients of the
new model surpass those of the Fick and exponential models, underscoring the superior
fitting quality of the new model. For example, compared to the second-best model, the
new model exhibits a reduction of 59% and 50% in average fitting error and standard
deviation in Case 1, 31% and 27% in Case 4, 33% and 32% in Case 5, and 37% and 29%
in Case 6. These results demonstrate that this new model significantly enhances fitting
accuracy. Upon meticulous examination of Figures 3–12, the fitting curve of the novel
model is observed to be more closely aligned with the experimental data points, indicating
the model’s heightened precision in replicating the empirical observations. To sum up,
the new model demonstrates superior data fitting capabilities relative to the Fick and
exponential models, rendering it more precise and dependable in assessing concrete CD.
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Figure 12. The fitting results of Case 10.

Table 30. The fitting mean errors, standard deviations, and coefficient of determination from the
three models in Case 10.

Index Fick Model Exponential Model Mixed-Curve Model

Fitting mean error δ 0.6900 0.1111 0.0998
Fitted standard

deviation σ
1.2675 0.2173 0.1680

Coefficient of
determination (R2) 0.8762 0.9964 0.9978

4. Conclusions

This article introduces a novel mathematical curve model for assessing the CD of
concrete. By fitting mathematical curves using limited initial experimental data, this model
offers a more accurate evaluation of concrete CD. The validity of this new model was
confirmed through validation with various experimental data sets. The calculated results
lead to the following key conclusions:
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• The new model introduced in this article combines elements of the Fick and hyperbolic
models. Unlike the index model, which may prematurely reach its limit value, the
new model offers a more precise fit for the later stages of concrete carbonation;

• Compared to the Fick and exponential models, the new model introduced in this
paper shows reduced fitting errors and higher R2, indicating superior fitting precision.
Unlike the exponential model, which necessitates fitting three unknown parameters,
this new model only needs the fitting of two unknown parameters. This reduced
parameter requirement makes this new model more efficient for practical engineering
applications, requiring less data for fitting and easier implementation.

This article primarily focuses on the relationship between the CD of concrete and time
without extensively addressing other factors that may influence this depth. The newly
proposed model does not simultaneously account for multiple influencing variables about
concrete CD. However, in contrast to multi-factor models, this new model requires only
limited experimental data to derive the mathematical curve equation for evaluation. In
scenarios where experimental data are scarce, this model can be integrated with machine
learning techniques to simulate and generate additional data for training purposes, thereby
enhancing the generalization capabilities of the machine learning models. The validation
of the model presented in this article is based on a subset of the available data, indicating
a need for further research to confirm that the model is fitting, evaluate capabilities for
concrete, and optimize the fitting conditions. Additionally, this model may be relevant for
the property parameters of other materials, and future experiments could be conducted to
assess the model’s applicability in those contexts.
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