Skip to main content
. 2024 Sep 15;14(9):4495–4505. doi: 10.62347/JYND6488

Table 1.

Comparison of deep learning models for predicting AS

Source Backbone Accuracy (SD) AUROC (SD) F1 (SD)
Tile ResNet18 - ImageNet 0.638 (0.034) 0.661 (0.033) 0.720 (0.042)
Tile ResNet18 - SSL 0.686 (0.038) 0.742 (0.023) 0.735 (0.040)
Tile Vgg11 - ImageNet 0.590 (0.017) 0.629 (0.043) 0.686 (0.030)
Tile DenseNet121 - ImageNet 0.670 (0.063) 0.717 (0.061) 0.738 (0.051)
Nucleus Resnet18 - ImageNet 0.667 (0.039) 0.752 (0.058) 0.720 (0.048)
Nucleus Resnet18 - SSL 0.673 (0.051) 0.736 (0.060) 0.730 (0.058)
Nucleus Vgg11 - ImageNet 0.670 (0.031) 0.714 (0.043) 0.734 (0.045)
Nucleus DenseNet121 - ImageNet 0.717 (0.059) 0.740 (0.060) 0.758 (0.053)