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Abstract: HER2-positive breast cancer is highly aggressive, with a significant risk of recurrence and metastasis, 
leading to a poor prognosis. While most early-stage HER2-positive breast cancer patients benefit from combining 
trastuzumab monoclonal antibody with chemotherapy, the therapeutic response to various drug combinations var-
ies across the HER2+ patient population. Therefore, predicting the prognosis and treatment response of HER2+ 
breast cancer patients to specific regimens is crucial for selecting appropriate precision individualized therapies. 
HER2DX is the first genomic tool designed to guide the treatment of HER2+ breast cancer patients. The three scores 
provided by HER2DX inform the entire treatment process, including predicting survival outcomes, recurrence, me-
tastasis, and treatment responses like Pathological Complete Response Rate (pCR). It offers recommendations 
on follow-up intervals, treatment plans, and the duration of drug therapy. This review examines the literature and 
analyzes studies applying HER2DX to guide the comprehensive treatment and predict prognosis in HER2+ breast 
cancer patients, aiming to promote the widespread use of HER2DX in individualized treatment. 
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Introduction

The latest data from the International Agency 
for Research on Cancer (IARC)’s Global Cancer 
Observatory indicates that 2.3 million people 
were diagnosed with breast cancer in 2022, 
making it the second most common cancer 
worldwide. About 670,000 people died from 
breast cancer, ranking it fourth in cancer mor-
tality rates [1]. Among women, breast cancer, 
lung cancer, and colorectal cancer are the most 
common cancer types, accounting for 51% of 
all new cancer cases in women, with breast 
cancer alone constituting 32% [2]. In the major-
ity of countries (157 out of 185), breast cancer 
is the most common malignant tumor in women 
[3]. In China, there were approximately 2.29 
million new cancer cases among women in 
2022, with 357,161 new cases of breast can-
cer, making it the second most common cancer 
among Chinese women [1], underscoring the 
significance of breast cancer as a major health 
concern. 

Breast cancer is categorized into four molecu- 
lar subtypes based on gene expression profiles 
and biomarkers: Luminal A, Luminal B, HER2-
positive (HER2+), and triple-negative breast 
cancer (TNBC), with HER2+ breast cancer ac- 
counting for 15%-20% of all cases [4]. The hu- 
man epidermal growth factor receptor-2 (HER2/
ERBB2) is a proto-oncogenes associated with 
inhibiting apoptosis and promoting cell prolifer-
ation, which enhances tumor invasiveness and 
promotes angiogenesis and lymphangiogenesis 
[5, 6]. The HER2 protein, encoded by the ERBB2 
gene, is a transmembrane protein with tyrosine 
kinase activity and is part of the EGFR family  
[5, 7]. This family includes HER1, HER2, HER3, 
and HER4, all characterized by an extracellular 
domain, an α-helical transmembrane region, 
and an intracellular tyrosine kinase domain 
[8-10]. The HER2 receptor does not directly 
bind to any known ligand; its extracellular do- 
main remains in an “open” conformation [11]. It 
functions in signal transduction either by form-
ing homodimers or heterodimers with other 
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HER family members upon ligand binding to 
their extracellular domains, predominantly th- 
rough heterodimerization [12, 13]. Upon di- 
merization, HER2 undergoes a conformational 
change, activating its intracellular tyrosine 
kinase activity, which initiates downstream sig-
naling pathways, promoting cell proliferation 
through the RAS-ERK pathway and inhibiting 
cell death via the PI3K-Akt-mTOR pathway 
[14-17]. 

HER2+ breast cancer is highly aggressive, with 
patients often experiencing early recurrence 
and metastasis, leading to poor prognosis [18-
20]. Initially, systemic chemotherapy was the 
primary treatment for HER2+ breast cancer 
patients, but it demonstrated unsatisfactory 
clinical efficacy [21]. The advent of anti-HER2 
targeted therapy drugs, characterized by their 
specificity, effectiveness, and fewer adverse 
reactions, has significantly improved the prog-
nosis for patients with HER2+ breast cancer 
and has become the main treatment approach 
[22, 23]. Currently, anti-HER2 therapy drugs are 
mainly categorized into three groups: monoclo-
nal antibodies (such as trastuzumab, pertu-
zumab, margetuximab, and ado-trastuzumab 
emtansine), small molecule tyrosine kinase 
inhibitors (TKIs) (such as pyrotinib, lapatinib, 
neratinib, and tucatinib), and antibody-drug 
conjugates (ADCs) (such as T-DM1, T-DXd, and 
RC-48). With the growing clinical demand for 
diverse anti-HER2 targeted drugs, the develop-
ment and clinical application of these therapies 
continue to advance (Figure 1). 

Large molecule monoclonal antibodies primari-
ly target the extracellular domain of HER2, aim-

ing to block the HER2-mediated signaling path-
ways. For instance, trastuzumab, a monoclonal 
antibody, specifically binds to the IV domain  
of the HER2 extracellular region, accelerating 
HER2 internalization and degradation, thereby 
inhibiting downstream signaling and exerting 
its antitumor activity. It also mediates antibody-
dependent cellular cytotoxicity, killing cells that 
express HER2-related proteins [24-26]. Per- 
tuzumab monoclonal antibody binds to the II 
domain of the HER2 extracellular region, pre-
venting the formation of heterodimers be- 
tween HER2 and HER1, HER3, HER4 [27, 28]. 
Clinical studies such as CLEOPATRA, PUFFIN, 
NeoSphere, and PEONY have confirmed the sig-
nificant efficacy of combining trastuzumab and 
pertuzumab in HER2+ breast cancer patients 
[29-32]. Small molecule TKIs diffuse through 
the cell membrane and competitively inhibit the 
binding of ATP to the ATP-binding site of the 
intracellular kinase domain of the HER family 
proteins, thereby blocking tyrosine phosphory-
lation and the activation of downstream signal-
ing cascades, which suppresses the growth 
and proliferation of cancer cells [25, 33-36]. 
Numerous clinical studies have demonstrated 
the significant therapeutic effects of TKIs in 
patients with HER2+ breast cancer [37-40]. 
ADCs consist of an antibody that selectively 
recognizes the HER2 receptor on the surface of 
cancer cells, a cytotoxic drug payload capable 
of killing cancer cells, and a linker connecting 
the antibody to the payload. Some ADCs also 
possess cytotoxic effects through their anti-
body component. These ADCs bind to the HER2 
receptors on the tumor cell surface, mediate 
endocytosis, and are subsequently degraded 
within the lysosomes of tumor cells, releasing 

Figure 1. Global launch timeline of anti-HER2 targeted drugs.
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the active cytotoxic drug that damages DNA or 
inhibits tumor cell division, leading to tumor cell 
death [41-43]. Furthermore, certain ADCs like 
T-DXd and RC-48 exhibit a bystander effect, 
where cytotoxic drugs released from dying 
tumor cells exert lethal effects on surrounding 
non-HER2+ tumor cells [44-47]. Clinical stu- 
dies such as EMILIA, KATHERINE, DESTINY-
Breast01, 02, and 03 have confirmed that 
ADCs like T-DM1 and T-DXd significantly im- 
prove the prognosis of HER2+ breast cancer 
patients who did not achieve expected results 
from previous treatment with monoclonal anti-
bodies or TKIs [48-52]. 

As anti-HER2 targeted therapies have ad- 
vanced, the prognosis of patients with HER2+ 
breast cancer has improved. However, clinical-
ly, some patients exhibit low response or even 
resistance to targeted therapies. Therefore, 
selecting the most suitable targeted therapy 
regimen for each patient, and deciding between 
or combining different targeted drugs, is cru-
cial. Breast cancer is a highly heterogeneous 
disease; each molecular subtype has its uni- 
que molecular characteristics and signaling 
pathways [53]. Previously, decisions to esca-
late or de-escalate breast cancer systemic 
therapy were primarily based on traditional 
parameters such as tumor size, regional lymph 
node status, hormone receptor (HR) status, 
tumor-infiltrating lymphocytes (TILs), Ki-67 pro-
liferation index, and pathological type. Among 
these, TILs can predict chemotherapy efficacy 
and prognosis for most breast cancers, includ-
ing TNBC and HER2+ breast cancer subtypes 
[54, 55]. To more accurately predict the effica-
cy and prognosis of breast cancer treatment 
regimens, various prognostic auxiliary models 
that combine pathology, molecular biology,  
and biomarkers are currently used, such as 
Oncotype DX, ProsignaTM, Mammaprint, and 
EndoPredict (Table 1). These models assist 
physicians in making adjuvant treatment deci-
sions and predicting prognoses for early-stage 
HR+/HER2- breast cancer patients who are pre-
menopausal or postmenopausal, with either 
negative regional lymph nodes or 1-3 positive 
regional lymph nodes [56-58]. However, the 
treatment plans for HER2+ breast cancer 
patients still primarily rely on traditional param-
eters and the clinical experience of physicians, 
lacking genomic tools for aiding decision-mak-
ing in HER2+ breast cancer. To achieve more 

precise personalized treatment for HER2+ 
breast cancer patients, Reveal Genomics has 
developed the first genomic tool targeted for 
these patients-HER2DX [59, 60]. 

HER2DX is a more comprehensive genomic tool 
compared to earlier ones, which have limita-
tions when used alone in clinical settings. 
Sestak et al. compared six clinical features 
(CTS, IHC 4, Oncotype DX, Prosigna, BCI, and 
EPclin) in the TransATAC cohort to assess  
their prognostic abilities for distant recurrence 
over 0-10 years. CTS and EPclin provided the 
most accurate prognostic information in the 
0-10 and 5-10 year periods. In node-negative 
patients, ROR of Prosigna had the highest prog-
nostic value, while RS of Oncotype DX had the 
lowest. In node-positive patients, CTS and 
EPclin were the most prognostic, while the 
other four features had less predictive value 
[65, 66]. These findings suggest that genetic 
testing alone cannot provide comprehensive 
prognostic information. Effective clinical appli-
cation of genetic testing requires integration 
with clinical features. Tools like Oncotype DX, 
Prosigna, MammaPrint, and EndoPredict were 
among the first to evaluate prognosis in HR+ 
breast cancer patients, but multiple studies 
[65, 67-69] indicate that using these tools 
alone may introduce bias. Combining them with 
clinical features is essential for accurate prog-
nosis and appropriate treatment selection. 

Unlike these tools, HER2DX is the first design- 
ed specifically for HER2+ breast cancer. It com-
bines genetic analysis with clinical features like 
tumor size and lymph node status. HER2DX not 
only predicts clinical prognosis but also treat-
ment response to various therapies, making it 
well-suited for precise personalized treatment 
in clinical practice. HER2DX integrates genomic 
data with clinical features to generate three 
scores: the HER2DX Risk Score, the HER2DX 
pCR Score, and the HER2DX ERBB2 Expression 
Score. These scores help predict survival out-
comes and the risks of recurrence and metas-
tasis in HER2+ breast cancer patients, guiding 
treatment strategies. This approach reduces 
the risks of disease progression due to  
under-treatment and mitigates economic bur-
dens and adverse drug reactions associated 
with over-treatment [70]. Furthermore, Marín-
Aguilera et al. demonstrated in the lab that 
HER2DX shows high reproducibility and stabili-
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Table 1. Gene testing tools used for HR+ breast cancer
Gene Testing 
Tool

Number 
of Genes Clinical Application Involved Clinical Trials References

Oncotype DX 21 Predicts 10-year recurrence risk in ER+ 
and LN- patients

In the NSABP B-14 trial, patients receiving endocrine therapy showed 10-year 
distant recurrence rates of 6.8%, 14.3%, and 30.5% in the low, intermediate, 
and high-risk groups, respectively (P < 0.001).

[61]

Prosigna 55 Predicts prognosis in postmenopausal 
women with Stage I or II ER+ and LN+/- 
breast cancer

In the ABCSG-8 trial, the ROR score significantly enhanced prognostic infor-
mation beyond clinical predictors (P < 0.0001). Luminal A subtype showed a 
significantly lower 10-year ROR compared to Luminal B (P < 0.0001). 

[62]

MammaPrint 70 Predicts distant recurrence risk in Stage I 
or II ER+/- and LN- patients 

MammaPrint demonstrated the strongest prognostic ability for distant 
metastasis-free survival (dMFS) within the first 5 years after cancer diagnosis 
(HR=9.6; 95% CI: 4.2-22.1). 

[63]

EndoPredict 11 Predicts 10-year recurrence risk in women 
with ER+ and LN+/- disease receiving 
endocrine therapy only

In the ABCSG-6 cohort, the 10-year distant recurrence rates were 8% (3%-
13%) in the EP low-risk group and 22% (15%-29%) in the high-risk group (P < 
0.001); in ABCSG-8, these rates were 6% (2%-9%) and 15% (11%-20%) in the 
low- and high-risk groups, respectively (P < 0.001).

[64]

Table 2. Differences between HER2DX (2022) and HER2DX (2020) content
HER2DX (2020) HER2DX (2022)

Clinical 
feature

Tumour size, Nodal status, Number of tumour-infiltrating lymphocytes (TILS), 
PAM50 subtype

Tumour size, Nodal status

Genomic 
feature

Genes associated with better 
survival outcome (6 genes):

Genes related to luminal 
differentiation(BAG1)

Immunoglobulin (IGG) module 
(14 genes):

CD27, CD79A, HLA-C, IGJ, IGKC, IGL, IGLV3-25, IL2RG, 
CXCL8, LAX1, NTN3, PIM2, POU2AF1 and TNFRSF17

Genes related to the normal cell  
phenotype (KRT5, KRT14, MLPH, MYC)

The tumour cell proliferation 
signature (4 genes):

EXO1, ASPM, NEK2 and KIF23

Basal-like-related genes (PHGDH) The luminal differentiation  
signature (5 genes):

BCL2, DNAJC12, AGR3, AFF3 and ESR1

Genes associated with poor 
survival outcomes (7 genes):

Genes related to proliferation (CDC6, EXO1, 
RRM2)

The HER2 amplicon signature 
(4 genes):

ERBB2, GRB7, STARD3 and TCAP

Genes related to HER2 amplicion (TMEM45B, 
FGFR4)
Basal-like-related biology (CDH3)
Genes related to cell invasion (MMP11)

Application Predicting survival outcomes Predicting survival outcomes, the likelihood of pathological remission from treatment, 
and assessing ERBB2 expression
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ty in quantifying the risk of early HER2-positive 
breast cancer recurrence, the likelihood of 
pCR, and ERBB2 mRNA expression using For- 
malin-Fixed, Paraffin-Embedded (FFPE) tumor 
tissues and purified RNA analysis [71]. The 
introduction of HER2DX marks a significant 
advancement towards precision medicine in 
treating HER2+ breast cancer.

The development and refinement of HER2DX

The emergence of HER2DX (2020)

In 2020, Prat et al. developed HER2DX (2020), 
a tool designed to assess whether escalating 
or de-escalating systemic treatment regimens 
for early-stage HER2+ breast cancer patients 
could improve outcomes [59]. These strategies 
included reducing chemotherapy dosage, 
shortening the duration of targeted therapy, 
replacing traditional single-target treatments 
with dual-target therapies, and substituting 
monoclonal antibodies with ADC drugs in 
patients who did not achieve a pCR after neo-
adjuvant therapy with monoclonal antibodies. 
The study revealed that most early-stage 
HER2+ breast cancer patients could achieve 
desired outcomes with chemotherapy com-
bined with trastuzumab alone, avoiding over-
treatment. Further analysis highlighted that 
traditional parameters, such as tumor size, 
lymph node status, HR status, and stromal 
TILs, along with biomarkers like PAM50 sub-
types and PIK3CA mutations, were associated 
with prognosis. Using data from the Short-
HER3 clinical trial [72], Pret integrated these 
factors to form the HER2DX (2020) prognostic 
model. This model includes tumor size, lymph 
node status, TILs, subtypes, and 13 genomic 
markers, and was found to correlate with dis-
tant metastasis-free survival (DMFS) in HER2+ 
patients (P < 0.0001). HER2DX (2020) strati-
fied patients into low, medium, and high-risk 
groups, with distinct 5-year DMFS rates: 98.1%, 
88.9%, and 73.9%, respectively, showing sig-
nificant differences between low and high-risk 
groups (HR = 0.04, 95% CI: 0.0-0.1, P < 0.0001) 
[59]. 

The refinement of HER2DX (2022)

As HER2DX (2020) was applied and researched 
further, Pret et al. identified several limita- 
tions: (1) The subjective nature of TILs evalua-
tion, causing inconsistencies across patholo-

gists; (2) HER2DX (2020) assessed only 55 
genes, insufficient for a comprehensive genetic 
tool; (3) With neoadjuvant therapy becoming 
more common, HER2DX (2020) could not eval-
uate the pCR rate post-neoadjuvant therapy, 
limiting its use in guiding comprehensive treat-
ment for early-stage HER2+ patients. Therefore, 
based on research from various study cohorts 
and databases, Pret refined HER2DX, resulting 
in HER2DX (2022) [60]. 

HER2DX (2022) introduced several improve-
ments compared to its predecessor (Table 2). 
(1) Genetic Markers Expansion: The number of 
genes analyzed expanded from 55 to 185, 
enhancing the comprehensiveness of genomic 
analysis. (2) Adjustment in Scoring for TILs: To 
address the subjectivity of TILs evaluation [73], 
HER2DX (2022) adjusted its approach, possi- 
bly incorporating quantitative gene expression 
related to immune infiltration [54, 70, 74]. (3) 
Optimization of Cut-off Values: HER2DX (2022) 
optimized cut-off values for risk and pCR 
scores, offering refined predictions tailored to 
different patient groups. (4) Increased Focus 
on Treatment Response Prediction: HER2DX 
(2022) introduced or refined scores to better 
predict responses to neoadjuvant and adjuvant 
therapies. (5) Enhanced Predictive Capabilities 
for ERBB2 Expression: HER2DX (2022) im- 
proved its prediction of ERBB2 expression, aid-
ing in selecting the most suitable patients  
for anti-HER2 therapies. (6) Application to a 
Broader Range of Clinical Scenarios: HER2DX 
(2022) extended its applicability to include 
patients with advanced disease. (7) Validation 
Across Diverse Populations: HER2DX (2022) 
was validated across a more diverse popula-
tion, enhancing its global utility.

HER2DX (2022) is developed based on two clin-
ical-pathological features and 27 genes, divid-
ed into four genetic marker groups, aiming to 
predict survival outcomes, distant relapse risk, 
and treatment response in HER2+ breast can-
cer patients using three scoring systems: the 
HER2DX Risk Score, the HER2DX pCR Score, 
and the HER2DX ERBB2 Expression Score, 
thus aiding treatment decisions (Figure 2). The 
two clinical features include tumor size and 
lymph node staging. The four genetic groups in 
HER2DX include 14 immune infiltration-related 
genes (CD27, CD79A, HLA-C, IGJ, IGKC, IGL, 
IGLV3-25, IL2RG, CXCL8, LAX1, NTN3, PIM2, 
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Figure 2. The application of HER2DX in clinical practice.

POU2AF1, and TNFRSF17), 4 tumor cell prolifer-
ation-related genes (EXO1, ASPM, NEK2, and 
KIF23), 5 luminal differentiation-related genes 
(BCL2, DNAJC12, AGR3, AFF3, and ESR1), and 
4 HER2 amplicon-related genes (ERBB2, GRB7, 
STARD3, and TCAP). Pret et al. [60] developed 
the three scoring systems by integrating data 
from retrospective studies, prospective stud-
ies, and international database data. HER2DX 
pCR Likelihood Score: developed within the H.
Clinic HER2+ cohort, this score is based on 
HER2, IGG, luminal and proliferation signatur- 
es, tumor stage, and nodal stage. It was vali-
dated and explored in multiple cohorts (PA- 

MELA/H.Clinic/Padova HER2+, CALGB-40601, 
and ISPY-2 cohorts), showing a significant cor-
relation with pCR as both a continuous and  
categorical variable. Group cutoff values were 
established as low-pCR groups (0, 33.3), me- 
dium-pCR groups (33.3-66.7), and high-pCR 
groups (66.7-100). HER2DX Risk Score: Deve- 
loped in the Short-HER HER2+ cohort, this 
score is primarily based on IGG, luminal and 
proliferation signatures, tumor stage, and nodal 
stage. It was validated across various cohorts 
(H.Clinic/Padova/PAMELA HER2+ cohorts and 
TCGA, METABRIC, SCAN-B, CALGB-40601 data-
bases), showing a significant correlation with 
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Table 3. Summary of studies related to HER2DX

Clinicaltrials Number Study Molecular typing Number of analyzed 
samples References

NCT02411344 PerELISA HR+ HER2+ 55 [75]
NCT01853748 ATEMPT HER2+ 187 2022 SABCS Abstract PD18-01
NCT00542451 APT HER2+ 284 [76]
NCT03716180 DAPHNe HER2+ 80 [77]
NCT00770809 CALGB-40601 HER2+ 263 [78, 79]
NCT01973660 PAMELA HER2+ 91 [79, 80]
NCT01042379 ISPY-2 HER2+ 127 [79, 81]
NCT05912062 BiOnHER HER2+ 46 [79]

NEOHER HER2+ 67 [79]
GOM HER2+ 155 [79, 82]

disease-free survival (DFS), overall survival 
(OS), and other prognostic factors. Group  
cutoff values were established as low-risk 
groups (0, 50) and high-risk groups (50, 100). 
HER2DX ERBB2 Expression Score: Developed 
in the Short-HER and H.Clinic cohorts and vali-
dated in multiple HER2+ cohorts (H.Clinic/
Padova/PAMELA HER2+ and SOLTI HER2- co- 
horts), this score is correlated with the clinical 
HER2 status in HER2+ breast cancer patients. 
An optimal cutoff value of -0.98 was deter-
mined using Youden’s analysis to predict HER2 
receptor status. 

These scoring systems reveal the long-term  
risk of recurrence and metastasis, the probabil-
ity of pCR, and the tumor HER2 expression 
level, enabling more accurate treatment deci-
sions and survival predictions. HER2DX is cur-
rently being applied and evaluated in multiple 
clinical studies (Table 3). 

The prognostic value of HER2DX

The HER2DX Risk Score, whether analyzed as a 
continuous or categorical variable, is statisti-
cally associated with survival outcomes and 
distant relapse in HER2+ breast cancer pa- 
tients. This score predicts survival and the like-
lihood of relapse and distant metastasis across 
different patient populations following systemic 
therapy [59, 60]. Villacampa et al. evaluated 
survival in patients treated with trastuzumab, 
followed up long-term within the combined 
NEOHER and PAMELA cohorts [79]. They cate-
gorized patients using HER2DX Risk Score cut-
off values. Among those achieving pCR, the 
6-year event-free survival (EFS) was 98.1% in 
the low-risk group compared to 89.4% in the 

high-risk group. For patients not achieving pCR, 
the 6-year EFS was 93.5% in the low-risk group 
versus 78.8% in the high-risk group. Overall, 
the HER2DX Risk Score, as a categorical vari-
able, correlated with EFS (P < 0.001) and OS (P 
= 0.006), helping to identify patients at low 
recurrence risk. Similarly, in the SCAN-B datas-
et [83], Villacampa et al. found a statistically 
significant correlation between HER2DX Risk 
Score, as a continuous variable, and OS (HR = 
1.31 per 10-unit increment, 95% CI: 1.13-1.51, 
P < 0.001). As a categorical variable, 7-year OS 
was 94.5% in the low-risk group and 78.6% in 
the high-risk group (HR = 3.87, 95% CI: 2.26-
6.65, P < 0.001). In the APT phase II clinical 
trial [76], Tolaney et al. used HER2DX to assess 
the association between HER2DX Risk Score 
and invasive disease-free survival (iDFS) and 
relapse-free interval (RFI). They found that 
HER2DX Risk Score, as a continuous variable, 
significantly correlated with iDFS (P = 0.047) 
and RFI (P = 0.011). Grouping patients by a pre-
defined HER2DX Risk Score cutoff of 50 
revealed a significant increase in recurrence 
risk in the high-risk group. However, using the 
Contal and O’Quigley method [84], the opti- 
mal cutoff to differentiate low and high-risk 
patients in the APT trial was determined to be  
a HER2DX Risk Score of 32. Patients with a 
score below 32 had a 1.4% probability of recur-
rence after 10 years, compared to 13.3% for 
those with a score of 32 or higher. The HER2DX 
genomic tool accurately identifies patients at 
increased recurrence risk. For these higher-risk 
patients, it is advisable to shorten follow-up 
intervals, monitor them closely, and conduct 
regular exams to prevent and detect recurrence 
early for timely intervention.
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Although advances in anti-HER2 therapy have 
significantly improved the prognosis of patients 
with HER2+ breast cancer, more than 10% of 
these patients may still develop distant metas-
tases during follow-up [49, 85]. Further re- 
search has shown that the HER2DX Risk Score, 
in combination with the PAM50 subtype, can 
predict the likelihood of distant metastasis. 
Dieci et al. demonstrated that the HER2DX Risk 
Score is associated with the risk of any distant 
metastasis: the 10-year cumulative incidence 
of relapse and metastasis was 19.7% for 
patients with high risk scores and 5.3% for 
those with low risk scores (P < 0.001) [86]. The 
combination of the HER2DX Risk Score and the 
PAM50 subtype can predict the likelihood of 
specific metastatic sites. Tumors of the HER2-
enriched intrinsic molecular subtype are more 
likely to metastasize to the brain, basal-like 
tumors are associated with an increased risk of 
lung metastasis, and luminal tumors are more 
prone to bone metastasis. When combining the 
HER2DX Risk Score with PAM50 subtypes, 
Luminal A subtype showed a lower incidence of 
any distant metastasis in both low and high 
HER2DX risk groups, although this difference 
was not statistically significant. In terms of 
brain metastasis, the cumulative incidence 
was very low in the low HER2DX risk group, 
regardless of the intrinsic subtype. In contrast, 
in the high HER2DX risk score group, patients 
with HER2-enriched subtype had a significantly 
higher incidence of brain metastasis compared 
to other subtypes. For lung metastasis, the inci-
dence was significantly higher in basal-like sub-
types than in other subtypes, both in low and 
high HER2DX risk groups [86]. These results 
indicate that patients with a low HER2DX Risk 
Score and Luminal A tumors have a very low 
probability of developing metastasis within 10 
years, suggesting that these patients may not 
require intensified follow-up. For other patient 
groups classified by combining HER2DX and 
PAM50 subtypes, intensified follow-up targeted 
at specific potential metastatic sites and cor-
responding intensified treatment measures 
may be necessary. 

HER2DX-guided precision individualized com-
prehensive treatment

HER2DX pCR score predicts the likelihood of 
pCR in anti-HER2 neoadjuvant therapy

The HER2DX pCR Score, both as a conti- 
nuous and categorical variable, is statistically  

correlated with the pCR rate in HER2+ breast 
cancer patients [60]. Research by Villacampa 
et al. demonstrated that across different 
patient subgroups from clinical trials such as 
ISPY-2, CALGB-40601, DAPHNe, GOM, BiOn- 
HER, NEOHER, and PAMELA, the HER2DX pCR 
Score was significantly associated with pCR. 
Specifically, the pCR rates for low, medium, and 
high HER2DX pCR groups were 20.2%, 55.3%, 
and 74%, respectively, indicating that patients 
with higher HER2DX pCR Scores are more like- 
ly to achieve pathological complete remission, 
regardless of the treatment modality used  
[79]. Therefore, grouping HER2+ breast cancer 
patients based on the HER2DX pCR Score can 
guide the selection of different treatment plans, 
enhancing the personalization and effective-
ness of therapy. 

Guiding the personalized selection of ADCs 

Research by Brasó-Maristany et al. indicated 
that in second-line treatment of advanc- 
ed HER2+ breast cancer, the HER2DX ERBB2 
expression score correlates with response to 
T-DM1 therapy. The overall response rates to 
T-DM1 in the low, medium, and high HER2DX 
ERBB2 expression groups were 0%, 29%, and 
56%, respectively (P < 0.001) [87]. Similarly, 
Villacampa et al. found in the SCAN-B da- 
taset that patients with low HER2DX ERBB2 
scores showed no significant benefit from 
T-DM1 (HR = 1.00, 95% CI: 0.21-4.77). However, 
significant benefits were observed in patients 
with medium (HR = 0.10, 95% CI: 0.01-0.92) 
and high (HR = 0.15, 95% CI: 0.10-0.23) 
HER2DX ERBB2 scores [83]. Patients in the 
medium/high HER2DX ERBB2 score groups 
may be ideal candidates for T-DM1, which, 
compared to T-DXd, offers higher efficacy, lower 
cost, and reduced toxicity. Considering efficacy, 
economic costs, and safety, T-DM1 is a strong 
treatment option for patients with high HER2DX 
ERBB2 scores.

Personalized choice of anti-HER2 therapy com-
bined with chemotherapy

Chemotherapy drugs, such as anthracyclines, 
have significant side effects, potentially caus-
ing cardiotoxicity, neutropenia, diarrhea, and 
other adverse events [88-90]. Although the 
combination of trastuzumab monoclonal anti-
body with chemotherapy remains the first-line 
choice for many patients with HER2+ breast 
cancer [23], for some patients, the use of vari-
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ous combination treatments or chemothe- 
rapy drugs may constitute overtreatment. The 
HER2DX pCR Score plays an essential role in 
this regard, as it can effectively select those 
patient groups who can still achieve the expect-
ed treatment outcomes with reduced or even 
no chemotherapy drug use. This precise treat-
ment selection helps to reduce adverse events 
and improve the quality of life for patients. 
Through the HER2DX pCR Score, physicians 
can more accurately assess patients’ respons-
es to chemotherapy, thereby developing more 
suitable and personalized treatment plans  
for patients with HER2+ breast cancer. This 
approach not only improves treatment efficacy 
but also reduces the physical burden on pa- 
tients, enhancing their overall treatment ex- 
perience. 

Villacampa et al. reported that, within cohorts 
receiving trastuzumab monoclonal antibody 
combined with multi-drug chemotherapy, sin-
gle-agent taxane, or no chemotherapy, group-
ing by the HER2DX pCR Score showed differ-
ences in pCR rates between multi-drug 
chemotherapy and single-agent taxane as 
-4.5%, 25.5%, and -3.2% across different pCR 
score groups. The increase in pCR rate due to 
multi-drug chemotherapy was statistically sig-
nificant only in tumors of the HER2DX medium 
pCR group (OR = 3.11, 95% CI: 1.54-6.49, P = 
0.002) [79]. This suggests that for patients in 
the HER2DX medium pCR group, multi-drug 
chemotherapy could lead to a higher pCR rate, 
while for patients in the high and low pCR 
groups, the effect of multi-drug chemotherapy 
was not significantly superior to single-agent 
taxane. This finding is significant for the treat-
ment strategy of patients with HER2+ breast 
cancer. The HER2DX pCR Score can help iden-
tify patients who may benefit more from a dual 
anti-HER2 combination with single-agent tax-
ane, especially those with a medium HER2DX 
pCR score. For patients with high or low HER2DX 
pCR scores, using multi-drug chemotherapy 
does not significantly improve the pCR rate and 
may increase unnecessary toxic side effects. 
Furthermore, the PerELISA trial results showed 
that without using chemotherapy, the HER2DX 
ERBB2 Expression Score was significantly as- 
sociated with pCR (P = 0.003), and this rela-
tionship was independent of the clinical HER2 
immunohistochemistry level (2+ vs 3+) [75]. 
This suggests that patients with a high HER2DX 

ERBB2 Expression Score have a higher likeli-
hood of achieving pCR after anti-HER2 therapy 
and can opt for dual-targeted therapy to avoid 
chemotherapy. 

Personalized choice between dual anti-HER2 
therapy and single Anti-HER2 therapy

Previous studies have shown that single anti-
HER2 therapy with trastuzumab monoclonal 
antibody combined with chemotherapy achiev- 
ed a pCR rate of 29-46% [78, 91, 92]. The addi-
tion of a second anti-HER2 drug, such as per- 
tuzumab monoclonal antibody or lapatinib, 
increased the pCR rate by 10-20% [85, 93], 
with a slight improvement in long-term survival 
rates. However, this raises a critical question: 
can all HER2+ breast cancer patients benefit 
from dual anti-HER2 therapy? This is where the 
HER2DX pCR Score demonstrates its value. 
This score effectively identifies patient groups 
most likely to benefit from dual anti-HER2 
therapy. 

Villacampa et al. categorized patients into high, 
medium, and low pCR groups based on the 
HER2DX pCR Score. The differences in pCR 
rates between patients receiving trastuzumab 
monoclonal antibody combined with chemo-
therapy and those receiving dual anti-HER2 
therapy combined with chemotherapy were 
17.6%, 5.4%, and 4.6% across these groups, 
respectively, with a statistically significant dif-
ference only in the high HER2DX pCR group (OR 
= 2.36, 95% CI: 1.09-5.42, P = 0.03) [79]. The 
HER2DX pCR Score can identify those in the 
high HER2DX pCR group who would benefit 
from dual anti-HER2 therapy. The study’s 
results suggest that the HER2DX pCR Score 
can help physicians determine which HER2+ 
breast cancer patients might benefit from dual 
anti-HER2 therapy. For patients in the high pCR 
group, dual therapy might be more suitable, 
while for those in the medium and low pCR 
groups, considering the economic cost and 
potential toxic side effects of dual therapy,  
single anti-HER2 therapy might be a more rea-
sonable choice. 

Personalized endocrine therapy choices for 
HER2+/HR+ patient

The HER2+/HR+ subtype of breast cancer con-
stitutes about 70% of HER2+ cases [94]. This 
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subtype is generally more aggressive and as- 
sociated with a poorer prognosis compared to 
HR-negative (HR-) breast cancer [95]. The com-
plexity of treating HER2+/HR+ breast cancer 
lies in the potential insensitivity to anti-HER2 
therapy, possibly due to interactions between 
the estrogen receptor (ER) pathway and the 
HER2 pathway [96]. In treating HER2+/HR+ 
breast cancer, it is often necessary to consider 
both anti-HER2 therapy and endocrine therapy. 
However, resistance to endocrine therapy can 
be a significant challenge. The HER2DX pCR 
Score is crucial here, as it can help predict 
which HER2+/HR+ patients may respond well 
to endocrine therapy, guiding treatment deci-
sions effectively. 

In the perELISA phase III clinical trial [75], pre-
treatment biopsies were conducted on HER2+/
HR+ patients to assess the Ki-67 index, fol-
lowed by another biopsy after 2 weeks of letro-
zole treatment. This was to evaluate changes in 
Ki-67 and distinguish between estrogen-sensi-
tive disease (ESD) and estrogen-resistant dis-
ease (ERD). The HER2DX pCR Score showed a 
significant correlation with the Ki-67 response 
after letrozole treatment (P = 0.002). The 
response rates (a reduction of more than 20% 
in baseline Ki-67 levels) were 89.7%, 65.0%, 
and 16.7% in the low, medium, and high 
HER2DX pCR score groups, respectively. This 
suggests that a lower HER2DX pCR Score pre-
dicts a better response to letrozole, while a 
higher score indicates reduced tumor sensitivi-
ty to endocrine therapy. Additionally, the study 
revealed that the pCR rate in ESD patients  
was 22.5%, significantly lower than the 80% 
observed in ERD patients. The HER2DX pCR 
Score was significantly correlated with the pCR 
rate in ESD patients (P = 0.008), with rates of 
7.7%, 46.2%, and 100.0% in the low, medium, 
and high HER2DX pCR score groups, respec-
tively (P < 0.004). However, the score was not 
significantly associated with pCR in ERD pa- 
tients (P = 1). These findings suggest that the 
HER2DX pCR Score can not only predict early 
response to letrozole monotherapy but also 
help identify patients who may benefit from 
combined endocrine and anti-HER2 therapy. 
For ESD patients with a lower HER2DX pCR 
Score, escalated treatment may be necessary 
to improve outcomes.

HER2DX for predicting prognosis in special 
populations and personalizing de-escalation 
treatment choices

Research on trastuzumab therapy duration has 
shown that long-term treatment (12 months) 
offers a lower risk of recurrence compared to 
short-term treatment (e.g., 9 weeks or 6 
months), but with an increased risk of side 
effects like cardiotoxicity [72, 97-99]. Ex- 
ploratory research within the Short-Her trial 
suggested that a low HER2DX Risk Score  
might guide the choice of treatment regimen 
for specific patient groups [60, 72]. Patients 
with a low HER2DX Risk Score, particularly 
those with significant comorbidities or a history 
of cardiotoxicity, might be suitable candidates 
for short-term trastuzumab therapy. This find-
ing helps physicians create more personalized 
treatment plans for HER2+ breast cancer 
patients, aiming for optimal outcomes while 
minimizing side effects.

Conclusion and future perspective

The HER2DX pCR Score and Risk Score, despite 
their weak correlation (correlation coefficient 
about -0.19) [60], provide complementary 
information critical for guiding treatment deci-
sions and selecting appropriate escalation or 
de-escalation strategies. The core value of 
HER2DX lies in its pCR and Risk Scores, while 
the HER2DX ERBB2 Expression Score serves 
mainly as supplementary information. Although 
most early-stage HER2+ breast cancer patients 
can achieve treatment goals with trastuzumab 
and chemotherapy, the effectiveness of differ-
ent drug combinations varies. HER2DX can 
help predict pCR rates and survival outcomes 
after various treatments, offering personalized 
treatment options: for some patients, de-esca-
lation (e.g., reducing chemotherapy types or 
cycles) may achieve similar therapeutic effects 
as standard treatment, minimizing toxicity and 
adverse events, thus avoiding overtreatment. 
Other patients may require escalated treat-
ment (e.g., adding more effective drugs or 
extending treatment duration) to achieve ex- 
pected results, especially when trastuzumab 
and chemotherapy alone do not meet thera-
peutic needs. HER2DX provides a tool for mak-
ing more precise treatment choices based on 
individual patient conditions, predicting surviv-
al outcomes, recurrence, and the risk of distant 
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metastasis, guiding follow-up intervals, and 
enabling more effective treatment and moni- 
toring.

As the field of HER2+ breast cancer treatment 
advances, challenges remain for specific pa- 
tients. Long-term use of the same anti-HER2 
therapy may lead to disease progression or 
ineffective outcomes when switching thera-
pies. This could be due to tumor biology, indi-
vidual patient differences, or resistance devel-
opment. Resistance is a crucial issue in HER2+ 
breast cancer treatment, potentially caused by 
genetic mutations, expression changes, or sig-
naling pathway alterations, rendering previous-
ly effective treatments ineffective. The HER2DX 
model, while effective in predicting pCR, may 
also help predict drug resistance. Although 
research in this area is limited, the correlation 
between drug resistance and reduced pCR 
rates suggests HER2DX’s potential in predict-
ing resistance. Further research into the genes 
within the HER2DX model and their roles in 
resistance mechanisms could unveil new ther-
apeutic targets and strategies to overcome 
resistance.

Despite the promising results, HER2DX has 
limitations that future research must address. 
(1) Grouping Threshold Values: Different trials 
may identify different optimal cutoff values. For 
example, the APT trial found “32” as the opti-
mal HER2DX Risk Score cutoff, differing from 
the standard threshold, suggesting the need 
for score adjustments based on patient popula-
tions and treatment contexts. (2) Geographical 
Applicability and Case Numbers: HER2DX has 
been evaluated in over 2,000 patients, with 
relatively few Chinese participants. Genetic 
and environmental differences suggest that 
effectiveness may vary between Asian and 
Western populations, necessitating broader 
evaluations. (3) Applicability to Advanced Bre- 
ast Cancer: HER2DX was developed for early-
stage HER2+ breast cancer. Its accuracy and 
applicability in advanced cases, particularly for 
predicting systemic treatment outcomes, may 
require further validation. (4) Validation Scope 
for Dual Anti-HER2 Therapy: HER2DX primarily 
validated trastuzumab and pertuzumab combi-
nation therapy, possibly overlooking the roles 
of TKIs and ADCs in dual-targeted therapy. 
Evaluating HER2DX in broader treatment regi-
mens is necessary. (5) Lack of Prospective 

Studies: Most HER2DX research is retrospec-
tive, with few prospective studies that are cru-
cial for validating its clinical applicability and 
effectiveness. (6) Cost Issues: HER2DX, based 
on genetic testing, may involve higher costs, 
limiting its widespread clinical use. Cost-
effectiveness and financial burden must be 
considered. 

Future research should address these limita-
tions to enhance HER2DX’s clinical value. With 
more studies, HER2DX can be optimized for 
broader drug combinations, patient groups, 
and treatment stages. As new drugs and stra- 
tegies emerge, HER2DX may evolve to meet 
new clinical challenges.
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