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Abstract: Background/Objectives: The rate of force development (RFD), which is the change in force
over a period of time during muscle contraction, quantifies rapid muscle contractions. RFD may
serve as a measure of physical rehabilitation in patients with cardiovascular disease (CVD); however,
its reliability and validity in older patients remain unclear. This study examined the reliability and
validity of quadricep RFD in older patients with CVD. Methods: This prospective study enrolled
30 outpatients undergoing cardiac rehabilitation (median age, 77 years) and 30 inpatients hospitalized
for CVD (median age, 76 years). The quadricep RFD values at three time points (RFD50, 0–50 ms;
RFD100, 0–100 ms; and RFD200, 0–200 ms) were calculated from the slope of the force–time curve.
Physical performance was assessed using the Short Physical Performance Battery (SPPB). Intra-
and inter-rater correlation coefficients were assessed for outpatients. The correlation coefficients
between RFD values and physical performance indicators were assessed separately for outpatients
and inpatients. Results: The intraclass correlation coefficients (1,1) and (2,1) for RFD50, RFD100,
and RFD200 were 0.742, 0.893, and 0.873 and 0.810, 0.918, and 0.930, respectively. The correlation
coefficients for SPPB with RFD50, RFD100, and RFD200 were 0.553, 0.547, and 0.597 (all p < 0.05),
respectively, for inpatients; similar moderate correlations were observed for gait speed and the chair
stand test. Conclusions: The test–retest reliability of the RFD was excellent in older patients with
CVD. The RFD was positively correlated with physical function indicators, suggesting its validity as
a measure of physical rehabilitation.

Keywords: muscle strength; rate of force development; aging; cardiovascular disease; cardiac
rehabilitation

1. Introduction

Muscular structural integrity and functionality are critical determinants of exercise
tolerance and overall quality of life. These factors serve as significant predictors of physical
recovery in individuals diagnosed with cardiovascular disease (CVD) or heart failure
or those recovering from surgical procedures [1,2]. Guidelines for cardiac rehabilitation
and secondary prevention of cardiac events recommend implementing resistance training
along with aerobic exercises in exercise-based cardiac rehabilitation programs [3,4]. While
the effects of exercise training interventions have predominantly been investigated in
younger populations or individuals exhibiting relatively preserved physical function [5,6],
the impact of individualized exercise training on older patients with CVD, heart failure, or
deteriorating physical function remains underexplored [7].
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To implement an effective individualized exercise program, it is essential to under-
stand the functional characteristics and quality of skeletal muscles, as well as the physical
limitations of patients [6]. Currently, skeletal muscle assessment in cardiac rehabilitation
predominantly emphasizes the evaluation of muscle mass and MVC, reflecting the high
prevalence of sarcopenia among patients with CVD or heart failure compared to the gen-
eral population. Contributory factors for the development of sarcopenia include aging,
inadequate nutrition, physical inactivity, and inflammatory states resulting from various
underlying diseases, which can lead to diminished anabolic and heightened catabolic pro-
cesses in the muscles [8]. Ideally, a cardiac rehabilitation program should possess practical
relevance and focus on enhancing the functional capacities necessary for daily living by
accurately assessing muscle strength in older individuals with CVD and those recovering
from surgery.

Assessing instantaneous muscle contraction within 200 milliseconds is a significant
predictor of the ability to perform daily activities and prevent falls, whereas a measurement
of MVC does not provide predictive value for these activities. The rate of force develop-
ment (RFD), which is calculated as the change in force over a period of muscle contraction,
was used to quantify the rapid force increase [9]. The quantity and functionality of type
2 muscle fibers are important determinants in RFD measurements as well as MCV val-
ues. Additionally, early-phase RFD (muscle contraction within 50 or 100 ms) is associated
with neurological factors, including motor unit discharge rate, whereas late-phase RFD
is influenced by muscle size and muscle–tendon unit stiffness [9], suggesting that RFD
measurements may provide deep insights into the causes of decreased physical perfor-
mance. The RFD has been studied in young athletes and patients with neurological or
musculoskeletal diseases; however, there are only a few studies on patients with other
chronic diseases [10,11].

RFD values may be more beneficial in designing optimal individualized exercise and
postural training programs aimed at enhancing mobility and preventing falls. Therefore,
assessment based on RFD values could offer a novel perspective for the rehabilitation
of older individuals, potentially proving more effective in mitigating muscle atrophy.
However, to the best of our knowledge, the clinical usefulness of the RFD in patients
with CVD has not yet been evaluated. RFD measurement reliability has been investigated
in younger populations [12–14]. As the number of older patients with CVD increases,
investigating the reliability of the RFD in this population is clinically significant and serves
as a basis for examining its potential usefulness in cardiac rehabilitation. Consequently,
this study investigated the reliability and validity of quadricep RFD in older individuals
with cardiovascular disease within a clinical context.

2. Materials and Methods
2.1. Study Design and Participants

This methodological study prospectively enrolled (1) patients aged ≥65 years who par-
ticipated in an outpatient cardiac rehabilitation program and (2) inpatients aged ≥65 years
who were admitted for heart failure or cardiovascular surgery. Consecutive patients who
met the eligibility criteria and agreed to participate in the study were enrolled. Participants
in the outpatient cardiac rehabilitation program were eligible for inclusion if they had been
discharged from the hospital for a minimum of 2 months to avoid the influence of significant
changes in physical function and physical activity in the early post-discharge period.

We excluded patients who could not walk, had difficulty understanding the experi-
mental procedures, had neurological disorders, had hemiplegia following stroke, had any
orthopedic diseases affecting RFD assessment, or were judged by a physician to be unsuit-
able for muscle strength measurements for reasons such as circulatory or respiratory status.

2.2. Study Procedure

The test–retest reliability of the RFD was evaluated. The RFD assessment comprised
three sessions, with each subsequent session occurring one week later to minimize the
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effects of muscle fatigue on the experimental outcomes and to prevent the overestimation
of reliability. Two independent and well-trained raters (Raters 1 and 2) separately measured
the RFD of the knee extensor muscles. On the first and second days (after a 1-week interval),
the participants were tested using the Rater 1. On the third day (one week after the second
day), the participants were tested using Rater 2.

Due to significant differences in disease severity and physical activity levels, the
validity of the RFD was analyzed separately for inpatient and outpatient groups. We
assessed the association between RFD values measured on the first day and the physical
performance of participants in outpatient cardiac rehabilitation. Additionally, we assessed
the association between RFD values measured before discharge (commonly 1–2 days before
hospital discharge) and the physical performance of inpatients.

2.3. RFD Quadricep Measurements

The measurement setup is illustrated in Figure 1. Quadricep isometric strength was
measured using a load cell (UNCLB 1KN, UNIPULSE, Tokyo, Japan) fixed to a rigid bar
on a bench for measurement (T.K.K.5715a, Takei, Niigata, Japan). As quadricep isometric
strength measured in the sitting position can predict exercise capacity and prognosis in
patients with CVD [15–17], the RFD measurements in this study were also performed in the
same position. The participants were seated on a bench with their hips and knees flexed at
90◦, ensuring that their toes were not in contact with the floor. A belt attachment was used
to connect and fix the load cell to the distal shin.
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Figure 1. Measurement setup for rate of force development for quadricep isometric strength.

Participants were instructed to extend their knees for 3 s “as fast with maximum force”
as possible following a 3 s countdown [14,18–20]. Standardized verbal encouragement was
provided by the raters during each trial. The quadricep isometric strength was converted
into electrical quantities and subsequently recorded using a strain amplifier (TSA-210, Takei,
Niigata, Japan) at a sampling rate of 500 Hz (sampling time of 2 ms). The strain amplifier
device was connected to a personal computer via a universal serial bus (USB) cable. The
rater confirmed that each measurement trial was properly performed by checking the
muscle force waveform displayed on the monitor. Three trials were performed for each leg
after each practice trial. The rest time between trials was set at 2 min. The moment arm
was measured from the lateral knee joint space to the median belt space.

RFD values were calculated as the mean change in torque per second (delta torque/delta
time) during the intervals of 0–50 ms (RFD50), 0–100 ms (RFD100), and 0–200 ms (RFD200) [21].
The MVC values were then calculated. All muscle force data analyses were performed
using MATLAB (MathWorks, Natick, MA, USA). Torque onset was identified using the
“findchangepts” function of the MATLAB software version 24.2, which returns the index
at which the mean of the parameter changes most significantly. The baseline value was
calculated using the 1 s mean value before the onset of the identified torque. Based on
previous studies [9,22], a zero-phase low-pass digital filter (fourth-order Butterworth, cut-off
frequency: 14 Hz) was used to remove noise in the high-frequency components and prevent
time shifts when using a normal smoothing function. RFD values and MVC were divided
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by body weight (units: Nm/kg/s for RFDs; Nm/kg for MVC), and the highest values were
used for the analyses.

2.4. Physical Performance Test

The Short Physical Performance Battery (SPPB) was used to evaluate lower-limb
physical performance. We measured SPPB to evaluate the validity of the RFD in order
to analyze the relationship between gait and postural control ability rather than aerobic
capacity or symptom severity. The SPPB consists of three physical performance tests
related to mobility: the 4 m walk time, five repeated chair stands, and static standing
balance [23]. Each test was scored from 1 (worst) to 4 (best performance) based on the
quartile distribution of the test results in an older reference population. A score of 0
indicated that the patient was unable to complete the individual test. For gait speed
assessment, the participants’ usual speed was measured during a 4 m walk. In the chair
stand test, participants were instructed to stand and sit five times as quickly as possible.
For the balance tests, the participants were instructed to maintain their feet in side-by-side,
semi-tandem, and tandem positions for 10 s/position. The SPPB score (range: 0–12) is
the sum of the individual test scores, with higher scores indicating better performance.
The SPPB score is a reliable [24] and widely used physical performance test for patients
with CVD. The SPPB score can predict exercise tolerance and prognosis in patients with
CVD [25,26]. Additionally, it has been reported that this measure predicts the incidence
of CVD in community-dwelling older individuals without a known history of CVD [27].
Based on these previous findings, SPPB is a good proxy for cardiac status and has recently
been used in clinical trials [28]. An SPPB score of ≤9 points has been used as a cut-off for
decreased physical performance [29]. In Japanese adults, a ceiling effect has often been
observed in this test, with a high proportion having a score of 11 or 12 points, even among
patients with CVD [30]. Therefore, the 4 m walk (gait speed) and chair stand tests (time
required for completion), which can be evaluated as continuous variables, were used to
assess RFD validity.

2.5. Clinical Data

Participant medical records were reviewed to collect data regarding age, sex, height,
etiology, comorbidities, left ventricular ejection fraction, biochemical data, and prescribed
medications. Comorbidities were defined based on diagnostic or treatment history. Body mass
index was calculated using body weight on the day the RFD measurement was performed.

2.6. Statistical Analyses

Continuous variables are expressed as the mean and standard deviation for normally
distributed variables and as the median with the interquartile range (IQR) for non-normally
distributed data. Normality was assessed using the Shapiro–Wilk test and histograms.
Categorical data are expressed as numbers and percentages. Characteristics were compared
between outpatients and inpatients using the unpaired t-test, Mann–Whitney U test, and
chi-square test, as appropriate. Pearson’s correlation coefficients for MVC with RFD50,
RFD100, and RFD200 were calculated separately for outpatients and inpatients.

The intra- and inter-rater reliabilities of the RFD and MVC were evaluated using the
intraclass correlation coefficient (ICC) with a 95% confidence interval (CI) among outpatients
who participated in cardiac rehabilitation. Intra-rater reliability was evaluated using ICC
(1,1), and inter-rater reliability was determined using ICC (2,1). ICC values were interpreted
as follows: <0.5, poor reliability; 0.5–0.75, moderate reliability; 0.75–0.90, good reliability;
and >0.90, excellent reliability [31]. RFD validity was examined by calculating Spearman’s
correlation coefficient (correlation with SPPB) and Pearson’s correlation coefficient (correlation
with gait speed and chair stand test). SPPB scores were reported to show a left-skewed distri-
bution in Japanese patients [30], and Spearman’s correlation coefficient was used. Correlation
coefficients were calculated for both inpatients and outpatients.
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All statistical analyses were performed using Stata/SE software (version 15.1; Stat-
aCorp LP, College Station, TX, USA). Results were considered statistically significant at
p < 0.05.

2.7. Ethics

This study was performed in accordance with the principles of the Declaration of
Helsinki and the Japanese Ethical Guidelines for Medical and Biological Research Involving
Human Subjects. The study protocol was approved by the Ethics Committee of Nagoya
University School of Medicine (15 September 2023; approval number: 2023–0223) and the
Research Ethics Committee of the School of Health Sciences, Nagoya University (11 May
2023; approval number: 22–523). All participants provided written informed consent.

3. Results

A flowchart of the patient selection process is shown in Figure 2. The characteristics of
the study participants are presented in Table 1. The median ages of the outpatients (n = 30)
and inpatients (n = 30) were 77 (IQR 72–81) years and 76 (IQR 74–82) years, respectively.
None of the outpatients had an SPPB score of ≤9 points. The prevalence of inpatients with
an SPPB score of 9 points at discharge was 56.7% (n = 17).
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MVC had significant correlations with the RFD values of outpatients (RFD50, r = 0.486,
p = 0.007; RFD100, r = 0.594, p = 0.001; RFD200, r = 0.705, p < 0.001) and inpatients (RFD50,
r = 0.494, p = 0.006; RFD100, r = 0.631, p < 0.001; RFD200, r = 0.743, p < 0.001).

The inter-rater reliability results are presented in Table 2. The ICCs (1,1) of RFD50,
RFD100, RFD200, and MVC were 0.742 [95% CI 0.523–0.868], 0.893 [95% CI 0.528–0.963], 0.873
[95% CI 0.636–0.948], and 0.943 [95% CI 0.886–0.973], respectively. The intra-rater reliability
results are presented in Table 2. The ICCs (1,2) of RFD50, RFD100, RFD200, and MVC were
0.810 [95% CI 0.640–0.904], 0.918 [95% CI 0.837–0.961], 0.930 [95% CI 0.858–0.966], and 0.947
[95% CI 0.891–0.974], respectively.

The correlations among RFD values, MVC, and physical performance in outpatients
are shown in Figure 3. SPPB was significantly associated with RFD200 (r = 0.371, p = 0.044)
and MVC (r = 0.552, p = 0.002), although not with RFD50 or RFD100. The 4 m gait speed
was not significantly associated with any muscle strength parameters. The chair stand test
time was significantly associated with RFD50 (r = −0.443, p = 0.014), RFD100 (r = −0.472,
p = 0.008), RFD200 (r = −0.547, p = 0.002), and MVC (r = −0.431, p = 0.017).
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Table 1. Characteristics of the study participants.

Outpatients (n = 30) Inpatients (n = 30) p

Age, years 77 (72–81) 76 (74–82) 0.689
Men 70.0% 36.7% 0.010

Body mass index, kg/m2 22.2 ± 3.1 21.8 ± 4.1 0.691
Heart failure 50.0% 33.3% 0.190

Cardiovascular surgery
CABG 13.3% 3.3% 0.161

Valvular surgery 33.3% 30.0% 0.781
Aortic surgery 3.3% 16.7% 0.071

Concomitant surgery 6.7% 23.3% 0.085
Hypertension 53.3% 49.8% 0.602
Dyslipidemia 63.3% 53.3% 0.432

Diabetes mellitus 50.0% 40.7% 0.015
Left ventricular ejection fraction, % 51 (41–60) 55 (45–61) 0.085

NT-proBNP, pg/mL 345 (151–792) 1126 (353–1745) 0.003
MMSE, points 28 (26–30) 27 (23–29) 0.065
SPPB, points 12 (11–12) 9 (8–11) <0.001

Continuous variables are expressed as mean ± standard deviation or median (interquartile range). CABG,
coronary artery bypass grafting; BNP, N-terminal pro-brain natriuretic peptide; MMSE, Mini-Mental State
Examination; SPPB, Short Physical Performance Battery.

Table 2. Results of inter-rater and intra-rater reliabilities in outpatients (n = 30).

Intra-Rater Reliability Inter-Rater Reliability

Mean ± SD
ICC (1,1) [95% CI]

Mean ± SD
ICC (2,1) [95% CI]

Day 1 Day 2 Rater 1 Rater 2

RFD50 (Nm/kg/s) 6.76 ± 5.45 6.86 ± 6.01 0.742 [0.523–0.868] 6.86 ± 6.01 6.37 ± 4.84 0.810 [0.640–0.904]
RFD100 (Nm/kg/s) 7.07 ± 3.18 6.08 ± 3.09 0.893 [0.528–0.963] 6.08 ± 3.09 6.14 ± 2.87 0.918 [0.837–0.961]
RFD200 (Nm/kg/s) 5.07 ± 2.01 4.48 ± 2.04 0.873 [0.636–0.948] 4.48 ± 2.04 4.52 ± 1.82 0.930 [0.858–0.966]

MVC (Nm/kg) 1.62 ± 0.44 1.56 ± 0.42 0.943 [0.886–0.973] 1.56 ± 0.42 1.55 ± 0.37 0.947 [0.891–0.974]

SD, standard deviation; ICC, inter- or intra-rater correlation coefficient; CI, confidence interval; RFD, rate of force
development; MVC, maximal voluntary contraction. The ICC (1,1) was calculated based on the two measurements
(Day 1 and Day 2) by Rater 1. The ICC (2,1) was calculated based on the measurements of Rater 1 on Day 2 and Rater 2.
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The correlations among the RFD values, MVC, and physical performance at discharge
among inpatients are shown in Figure 4. Spearman’s correlation coefficients between SPPB
and RFD50, RFD100, RFD200, and MVC were 0.553, 0.547, 0.597, and 0.618 (p < 0.05 for all),
respectively. Pearson’s correlation coefficients between the 4 m gait speed and RFD50, RFD100,
RFD200, and MVC were 0.483, 0.394, 0.449, and 0.441, respectively (p < 0.05 for all). Pearson’s
correlation coefficients between the chair stand test time and RFD50, RFD100, RFD200, and
MVC were −0.413, −0.457, −0.496 (p < 0.05 for all), and −0.374 (p = 0.055), respectively.
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4. Discussion

This study investigated the reliability and validity of RFD measurements in older
patients with CVD. Overall, the RFD values demonstrated excellent test–retest reliability.
The RFD was correlated with physical performance indicators, suggesting its validity as a
measure of physical rehabilitation in older patients with CVD. The RFD and MVC had a sig-
nificant positive correlation, although the correlation coefficient was smaller for RFD at an
earlier time after the force onset. This suggests that early RFD may reflect different aspects
of muscle strength compared to MVC, which is a widely used conventional muscle strength
measure. Although the functional limitations in patients with various CVDs cannot be de-
termined solely by muscle strength, the findings from this study may provide preliminary
data to support the incorporation of RFD assessment in the formulation of optimal exercise
training programs aimed at enhancing functional mobility in older individuals.

The test–retest reliability of RFD measurements among older patients in this study
was comparable to that in a healthy younger population in previous studies. RFD mea-
surements were studied using large laboratory-based measuring instruments; however, it
was shown that even simple measurements using a handheld dynamometer have good
reproducibility [12–14]. The present study supports these findings and demonstrates the
feasibility of RFD measurements in clinical settings when resources and space are lim-
ited. Careful interpretation of our study results is essential for patients who may have
experienced significant changes in health status during hospitalization or for those in the
inpatient setting. This caution is particularly relevant as our study focused on individuals
in the outpatient setting who maintained good physical function. This was because the
short length of hospital stay, in addition to the dramatic change in health status during
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hospitalization, limited the examination of the reliability of the RFD among inpatients.
The measurement procedures and instructions should be well controlled, and patient un-
derstanding of the task, especially for those with cognitive decline, should be confirmed
by pre-practice sessions. Nevertheless, this study has clinical significance because it pro-
vides fundamental data for examining the usefulness of the RFD in older patients with
chronic diseases.

There was a moderate correlation between the RFD and physical performance, suggest-
ing the validity of the RFD as a measure of physical rehabilitation in older patients with
CVD. Lower-extremity RFD reportedly decreases for various reasons, including aging [9],
knee osteoarthritis [32], neurodegenerative diseases [33], and cerebrovascular diseases [34–36].
Instantaneous muscle contractions, including the RFD, are predictive of physical perfor-
mance [37], frailty [38], and mobility [39] in community-dwelling older adults. A systematic
review of neurodegenerative diseases suggested that lower-extremity RFD is sensitive to
neurodegeneration and could serve as a useful indicator of changes in neuromuscular func-
tion elicited by neurodegeneration. However, evidence for the clinical usefulness of the RFD
in patients with CVD is lacking. A previous report showed a positive association between
quadricep RFD and sit-to-stand performance in patients with chronic kidney disease [10].
Another study demonstrated that patients with chronic kidney disease have higher fatigability
than controls, which may be associated with impaired motor unit recruitment [11]. In this
study, the RFD was correlated with SPPB score, gait speed, and chair stand test performance
in patients hospitalized for heart failure or cardiovascular surgery. The results of this study
imply that the association between the RFD and physical function may vary depending on
the type of physical function indicator and the RFD time interval. Larger studies are needed
for more detailed analyses. Additionally, the impact of sex on the study findings should be
considered because of the difference in cross-sectional areas of type 2 fibers between men and
women [40].

The correlation between the RFD and the SPPB score was higher in inpatients than
in outpatients. In this study, outpatients exhibited high SPPB scores (median, 12; IQR,
11–12), which may have contributed to a low correlation coefficient between the RFD
and SPPB. Conversely, among hospitalized patients, the inclusion of individuals with
lower physical function likely resulted in a broader distribution of SPPB scores and a
stronger correlation with the RFD. Additionally, the non-linear relationship between leg
muscle strength and gait speed in older populations [41] may elucidate these findings,
as outpatients demonstrated superior muscle strength and physical function compared
to inpatients.

In this study, earlier RFD values had smaller correlation coefficients with MVC. These
results are consistent with a previous study of healthy younger men, which reported
correlation coefficients of RFD50, RFD100, and RFD200 with MVC of approximately 0.5, 0.6,
and 0.8, respectively [42]. Early- (≤100 ms) and late-phase (≥200 ms) RFD values reportedly
have different determinants. Early RFD values appear to be affected by neurological factors,
as indicated by their relationship with electromyography activity [9,42,43]. These findings
suggest that exercise and postural control training may improve physical performance
without mediating changes in muscle mass. A previous study on resistance-type training
reported improvements in muscle strength and physical performance in older individuals
without an increase in muscle mass [44]. A recent randomized controlled trial demonstrated
that tailored physical rehabilitation improved the physical performance and quality of life of
older patients with heart failure, and the effects were greater for patients with than without
frailty [28,45]. Although exercise training and nutritional support focused on increasing
muscle mass are recommended for patients with impaired physical function, individualized
training to improve muscle contraction efficiency may be a novel intervention to improve
physical performance.

Due to the preliminary nature of this study, there are insufficient data regarding the
clinical utility of the RFD in cardiac rehabilitation. The mechanisms underlying the decline
in physical function and exercise tolerance are multifactorial, encompassing factors such as
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aging, cardiovascular function, comorbidities, and energy metabolism [46]. These elements
should be analyzed to investigate the causes of the decline in the RFD. Additionally,
comparing the responsiveness of the RFD to exercise and treatment against conventional
muscle strength parameters may present a valuable avenue for further research. Despite
the limited evidence available in older populations, movement velocity during resistance
training may significantly influence training outcomes related to muscle size, MVC, and
RFD [47,48]. Finally, this study examined only the preliminary associations between the
RFD and the SPPB and its subcomponents. The relationship between the RFD and other
indicators of physical function, including physical frailty and body composition, warrants
further investigation.

This study had several limitations. First, the generalizability of our results should be
carefully considered owing to the small sample size. Second, subgroup sensitivity analysis
for different patient characteristics could not be performed because of the limited size of
the study population. As the patients analyzed in this study were hospitalized because
of heart failure or cardiovascular surgery, a detailed analysis should be performed for a
larger number of cases. Third, although we demonstrated the reproducibility and validity
of quadricep RFD measured in a simple setting, the methodology was primarily designed
for research purposes. The availability of the necessary devices may pose a challenge for
routine clinical practice. Fourth, several potential confounding factors, such as disease
severity, cognitive function, and physical activity, may have affected the relationship
between the RFD and physical performance. Therefore, the results of this study should
be considered as preliminary data for hypothesis generation. Finally, because this was
a cross-sectional analysis, the longitudinal association between the RFD and functional
prognosis was not evaluated.

In conclusion, the test–retest reliability of the RFD was excellent in older patients
with CVD, even with a simple measurement setup. The RFD was positively correlated
with SPPB score, gait speed, and chair stand test performance. The RFD reflects distinct
aspects of muscle force compared to MVC and is recognized as an index closely associated
with ambulatory capacity and daily living activities. Although this study was preliminary
in nature, the evaluation of RFD may contribute to the development of individualized
strength training protocols based on a patient’s muscle strength and physical function in
elderly individuals with CVD.
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