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Abstract: Dimeric forms of flavonoids, known as biflavonoids, are much less studied compared to
monomeric forms. It is estimated that nearly 600 different natural biflavonoids have been described
to date, containing various subtypes that can be subdivided according to the position of their
combinations and the nature of the subunits. The group in which two monomers are linked by a
3′-8′′-C atom includes the first isolated biflavonoid ginkgetin, derivatives of amentoflavone, and
several other compounds. 3′-8′′-biflavones recently attracted much attention as potential molecules
with biological activity such as antiviral and antimicrobial activity and as effective molecules for the
treatment of neurodegenerative and metabolic diseases and in cancer therapies. With the growing
interest in them as pharmacologically active molecules, there is also increasing interest in finding new
natural sources of 3′-8′′-biflavones and optimizing methods for their extraction and identification.
Herein, we have summarized the available data on the structural diversity, natural occurrence, role
in plants, extraction, and identification of 3′-8′′-biflavones.
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1. Introduction

Flavonoids are undoubtedly the best known and most studied specialized metabolites.
They are produced by plants primarily through two distinct pathways: the acetate pathway
(ring A) and the shikimate pathway (ring B), along with the connecting chain (ring C)
that forms the C6-C3 component [1]. In a plant, they are essential for plant–environment
interaction, but in science, they have come into focus as potential natural compounds to
treat various diseases due to their antioxidant [2], antimicrobial [3], anti-inflammatory [4],
neuroprotective [5], anticancer [6], and other activities [7]. Although some of the activities
are often associated with the presence of flavonoids in general, their roles in plants and
biological activity are largely dependent on the molecular structure [8]. Flavonoids include
several subclasses of compounds, such as flavones, isoflavones, flavonols, flavanols, fla-
vanones, flavanonols, chalcones and dihydrochalcones, aurones, and anthocyanidins [3],
which can be further modified by glycolization, esterification, or polymerization. They
can occur in free form, but in plants, plant foods, and pharmaceutical preparations, they
are mostly present in conjugated form, with one or more sugar residues attached by β-
glycosidic bonds to a hydroxyl group (O-glycosides) or a carbon atom of the aromatic ring
(C-glycosides) [9]. Flavonoids can be polymerized, with two, three, or more monomers
forming a new molecule that has a different biological activity than the monomers.
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Biflavonoids or flavonoid dimers are a class of flavonoids that have been known for al-
most 100 years, since the first biflavonoid–ginkgetin was isolated from yellow ginkgo leaves
in 1929 [10]. Biflavonoids are much less studied compared to monomeric flavonoids, al-
though studies show a wide range of pharmacological activities, including anti-inflammatory,
antioxidant, antibacterial, antiviral, antidiabetic, antitumor, cytotoxic, and neuroprotective
properties [11]. According to He et al. [11] nearly 600 different biflavonoid structures have
been described, which can be divided into two groups: C-C and C-linear fragments-C
biflavonoids, depending on whether the linker between the two residues contains an atom.
The C-C type contains different subtypes, which can be divided according to the position of
their combinations into: 2-3′′, 2′-2′′′, 2′-6′′, 2′-8′′, 3-3′′, 3-3′′′, 3′-3′′′, 3′-4′′′, 3′-5′′, 3-6′′, 3′-6′′,
3-7′′, 3′-7′′, 3-8′′, 3′-8′′, 4-6′′, 4-8′′, 4′-8′′, 5-5′′, 6-6′′, 6-γ, 6-8′′, 7-7′′, and 8-8′′. The group
of biflavonoids in which two flavones are linked by a 3′-8′′ C atom (Figure 1) includes
the first isolated biflavonoid ginkgetin, derivatives of amentoflavone, and various other
compounds that possess biological activity.
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Most notably, during the coronavirus pandemic, they became known as potential
antiviral agents against SARS-CoV2 viruses [12], but they also may be beneficial in the
treatments of other conditions. Recently, several review papers have focused on biflavones’
antiviral and other antimicrobial activity [12,13], neurodegenerative effects [14–16], and
roles in metabolism-related diseases and in cancer therapies [17,18]. However, to the best
of our knowledge, there is no review summarizing the occurrence, possible role in plants,
extraction of, or identification technique for amentoflavone and their derivatives, known as
3′-8′′ -biflavones.

2. Structural Diversity of 3′-8′′-Biflavones

Monomeric subunits of biflavones are, as the name implies, flavones a subclass of
flavonoids that differ from other flavonoids in that they have a double bond between C2
and C3 in the flavonoid skeleton, there is no substitution at the C3 position, and they are ox-
idized at the C4 position [19] Flavones may contain various number of hydroxy group and
form molecules with distinct biological activity such as chrysin (5,7-dihydroxyflavone) [20],
apigenin (4′,5,7-trihydroxyflavone) [21], baicalein (5,6,7-trihydroxyflavone), luteolin
(3′,4′,5,7-tetrahydroxyflavone) [22], norwogonin (5,7,8-trihydroxyflavone), tangeritin
(4′,5,6,7,8-pentamethoxyflavone) [23], etc. The hydroxy group in the structure may be
methylated, and O-methylated flavones, ones that obtain a methyl group through hy-
droxyl group and C-methylated flavonones, in which the methyl group is directly bound
to C atoms of the basic skeleton, may be formed. Methylated biflavones are acacetin (5,7-
dihydroxy-4′-methoxyflavone), genkwanin (4′,5-dihydroxy-7-methoxyflavone), echioidinin
(5,2′-dihydroxy-7-methoxyflavone), negletein (5,6-dihydroxy-7-methoxyflavone), wogonin
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(5,7-dihydroxy-8-methoxyflavone), echtochrysin (5-hydroxy-7-methoxyflavone), chryso-
eriol (4′,5,7-trihydroxy-3′-methoxyflavone), and many others. Methylated derivatives
usually show higher bioactivity, but bioactivity depends on the position of methylated
group and the number of methylated and hydroxy groups [24,25]. Another modifica-
tion that affects biological activity is prenylation, which can form prenylated flavones
with different biological activity, but only a few prenylated flavones have been studied in
detail [26].

Flavones may be present in plant material in free form or may be glycolyzed, but also,
they can form dimers at different positions. Among them, those forming dimers at 3′-8′′

(Figure 1) stand out as molecules with different biological activity [15,27,28]. The formulas
of the naturally occurring 3′-8′′-biflavones and their methylated forms which are known to
date are given in Table 1.

It should be noted that most of the known 3′-8′′-biflavones were isolated and charac-
terized 50 or more years ago, and many of them were not subsequently explored. Thus,
there is a possibility that some of the compounds were inadvertently misidentified because
of the lack of commercial standards and modern high-sensitivity instruments for identifica-
tion at that time. In addition, the nomenclature of (bi-)flavonoids was not standardized
at that time, so the same compound could be referred to in different ways, especially in
the case of isomers, where isomeric structures can be referred to as the same molecule in
different publications.

As can be noticed from Table 1, 3′-8′′-biflavones contain two flavone subunits, and,
like their monomeric subunits, may differ in a number of hydroxyl and methylated groups.
For monomers, methylation is known to increase metabolic stability by preventing the
formation of glucuronic acid and sulfate conjugates, resulting in increased membrane trans-
port that facilitates absorption and greatly increases bioavailability [25]. Also, methylated
monomeric derivatives usually show higher bioactivity, and the site as well as extent of
methylation play an important role [24,25]. In the case of biflavonoids, including biflavones,
how dimerization and the degree of methylation affect metabolism and biological activity
is not yet well documented.

In the structure of 3′-8′′-biflavones, the carbon–carbon double bonds C2-C3 and C2′′-
C3′′ can be readily hydrogenated, resulting in a wide range of naturally occurring hydro-
genation products (Table 2). Similarly to monomeric flavones, biflavones can also occur
in a prenylated form, such as in plants of the genus Garcinia, from which several different
prenylated 3′-8′′-biflavones have been reported [29], and the structure of which is shown
in Figure 2. Prenylated forms of biflavonoids are considered very rare in nature, and data
have been reported only in Garcinia sp.

In the vast majority of reports, 3′-8′′-biflavones are described as aglycones, but, for
example, in whisk fern (Psilotum nudum L.), amentoflavone has also been detected in a
glycoside form with one to three sugars attached [30,31] Amentoflavone, ginkgetin, and
isoginkgetin glycosides have also been detected in ginkgo (Ginkgo biloba L.) (summarized
by Liu et al. [32]) This shows similar behaviour to the monomeric forms, but according to
the available data, the biflavone glycosides are present in much lower concentrations than
the free biflavones, which is in contrast to the monomeric forms, where the glycoside forms
are normally more abundant.
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Table 1. Chemical formula of naturally occurring 3′-8′′-biflavones.
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4. putraflavone (podocarpusflavone B) H OCH3 H OH OH H OH H OH H OCH3
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14. 7,7′′-di-O-methylamentoflavone H OCH3 H OH OH H OCH3 H OH H OH

15. 7′′-O-methylamentoflavone H OH H OH OH H OCH3 H OH H OH

16. kayaflavone H OH H OH OCH3 H OCH3 H OH H OCH3

17. 5′-methoxybilobetin H OH H OH OCH3 OCH3 OH H OH H OH

18. taiwanhomoflavone A H OCH3 CH3 OH OCH3 H OH H OH H OH

19. oliveriflavone B H OH CH3 OH OCH3 H OCH3 H OH H OCH3

20. oliveriflavone C H OH CH3 OH OCH3 H OH H OH H OCH3

21. amentoflavone
7,7′′,4′,4′′′-tetramethyl ether OH H OCH3 H OCH3 H OCH3 H OH H OCH3

22. amentoflavone 7,7′′-dimethyl ether OH H OCH3 H OH H OCH3 H OH H OH

23. 7,4′,5′′,7′′,4′′′-penta-O-
methylamentoflavone H OCH3 H OH OCH3 H OCH3 H OCH3 H OCH3

24. amentoflavone 4′-methyl ether OH H OH H OCH3 H OH H OH H OH

25. amentoflavone-7-methyl ether OH H OCH3 H OH H OH H OH H OH
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Nr. Compound R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 
1. amentoflavone H OH H OH OH H OH H OH H OH 
2. 5ʹ-hydroxyamentoflavone H OH H OH OH OH OH H OH H OH 
3. sumaflavone H OH H OH OH H OH OH OH H OH 
4. putraflavone (podocarpusflavone B) H OCH3 H OH OH H OH H OH H OCH3 

5. 
sequoiaflavone  

(7-O-methylamentoflavone) 
H OCH3 H OH OH H OH H OH H OH 

6. bilobetin H OH H OH OCH3 H OH H OH H OH 
7. ginkgetin H OCH3 H OH OCH3 H OH H OH H OH 
8. isoginkgetin H OH H OH OCH3 H OH H OH H OCH3 
9. sciadopitysin H OCH3 H OH OCH3 H OH H OH H OCH3 
10. 4ʹ,7ʹʹ-di-O-methylamentoflavone H OH H OH OCH3 H OCH3 H OH H OH 
11. 7,4ʹ,7ʹʹ,4ʹʹʹ-O-methylamentoflavone H OCH3 H OH OCH3 H OCH3 H OH H OCH3 
12. podocarpusflavone A H OH H OH OH H OH H OH H OCH3 
13. heveaflavone H OCH3 H OH OH H OCH3 H OH H OCH3 
14. 7,7ʹʹ-di-O-methylamentoflavone H OCH3 H OH OH H OCH3 H OH H OH 
15. 7ʹʹ-O-methylamentoflavone H OH H OH OH H OCH3 H OH H OH 
16. kayaflavone H OH H OH OCH3 H OCH3 H OH H OCH3 
17. 5ʹ-methoxybilobetin H OH H OH OCH3 OCH3 OH H OH H OH 
18. taiwanhomoflavone A H OCH3 CH3 OH OCH3 H OH H OH H OH 
19. oliveriflavone B H OH CH3 OH OCH3 H OCH3 H OH H OCH3 
20. oliveriflavone C H OH CH3 OH OCH3 H OH H OH H OCH3 

21. 
amentoflavone 7,7ʹʹ,4ʹ,4ʹʹʹ-tetramethyl 

ether 
OH H OCH3 H OCH3 H OCH3 H OH H OCH3 

22. amentoflavone 7,7ʹʹ-dimethyl ether OH H OCH3 H OH H OCH3 H OH H OH 

Nr. Compound R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

26. 3′′′-O-methylamentoflavone H OH H OH OH H OH H OH OCH3 OH

27. sotetsuflavone H OH H OH OH H OCH3 H OH H OH

28. amentoflavone-7,4′,7′′,4′′′-
tetramethyl ether H OCH3 H OH OCH3 H OCH3 H OH OCH3 H

29. 7,7′′-dimethoxyamentoflavone H OCH3 H OH H H OCH3 H OH H H

30. 7,7′′,4′-tri-O-methylamentoflavone H OCH3 H OH OCH3 H OCH3 H OH H OH

31. II-4′′,I-7-dimethoxyamentoflavone H OCH3 H OH OH H OH H OH OCH3 H

32. amentoflavone-7′′,4′′′-dimethyl
ether H OH H OH OH H OCH3 H OH H OCH3

33. 7,4′,7′′,4′′′-tetra-O-
methylamentoflavone H OCH3 H OH OCH3 H OCH3 H OH H OCH3

34. 7,4′,7′′-tri-O-methylamentoflavone H OCH3 H OH OCH3 H OCH3 H OH H OH

35. 7′′,4′′′-dimethylamentoflavone H OH H OH OH H OCH3 H OH H OCH3

36. 7,4′,4′′′-trimethylamentoflavone H OCH3 H OH OCH3 H OH H OH H OCH3
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Table 2. Naturally occurring hydrogenation derivatives of 3′-8′′ -biflavones.
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Figure 2. Molecular structure of naturally occurring prenylated 3′-8′′-biflavones.

3. Distribution in the Plant Kingdom

The first isolated 3′-8′′-biflavone, and biflavonoid altogether, was isolated in 1932 as
a yellow flavonoid pigment from the yellowed leaves of G. biloba L. (Figure 3a), and it
was later named ginkgetin [33]. Isoginkgetin and bilobetin were also named after ginkgo,
but several other 3′-8′′-biflavones were named after the plants from which they were first
isolated (Table 3).

Table 3. Examples of the 3′-8′′-biflavones named after the plants from which they were first isolated.

3′-8′′-Biflavones Plant Species

ginkgetin
isoginkgetin
bilobetin [33]

Ginkgo biloba L.

putraflavone [34] Putranjiva roxburghii

sequoiaflavone [35] Sequoia sempervirens

podocarpusflavone [36] Podocarpus sp.

heveaflavone [37] Hevea braseliensis

sciadopytisin [38] Sciadopitys verticillata

oliveriflavone [39] Cephalotaxus oliveri
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Later, other biflavones from ginkgo leaves were also characterized [40], and to date,
ginkgo is commonly mentioned and studied as a plant containing various 3′-8′′-biflavones.
Eight different 3′-8′′ biflavone aglycones and three glycosides have been detected in ginkgo
leaves [21,32], with amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin
being the most commonly detected. Older studies considered biflavonoid compounds
to be characteristic of gymnosperms [41], with 3′-8′′-biflavones most frequently detected
in the gymnosperm families Cupressaceae, Taxaceae, and Podocarpaceae, where they oc-
curred in 22, 16, and 12 different species (Table 4). Although most of the older studies
reported their occurrence only in gymnosperms, 3′-8′′-biflavons were later also found in
various angiosperm families such as Euphorbiaceae, Clusiaceae, Nartheciaceae, Primu-
laceae, Phyllanthaceae, Oxalidaceae, Malpighiaceae, Fabaceae, Calophyllaceae, Burseraceae,
Capparaceae, Salicaceae, Connaraceae, Cyperaceae, Moraceae, Putranjivaceae, Ericaceae,
Hypericaceae, Lanariaceae, Caprifoliaceae, Anacardiaceae, Ranunculaceae, Thymelaeceae,
Viburnaceae, and Ochnaceae. In addition, 3′-8′′-biflavones were detected in pteridophytes
from the families Psilotaceae and Selaginellaceae. They were particularly abundant in vari-
ous spikemosses (Selaginella sp.) (Figure 3b, in which 71 different species of biflavonoids
were detected, 24 of which were 3′-8′′-biflavones represented mainly by amentoflavone and
isoginkgetin [18]. The list of plants in which the presence of 3′-8′′-biflavones was reported
is shown in Table 4.
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Table 4. The list of the plants in which 3′-8′′ biflavones have been identified.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Pt
er

id
op

hy
ta

Fe
rn

s
an

d
fe

rn
al

lie
s

Psilotum nudum amentoflavone [31]

Selaginella

bryopteris

amentoflavone
(2S)-2,3-dihydroamentoflavone

(2′′S)-2′′,3′′-dihydroamentoflavone
(2S,2′′S)-2,3,2′′,3′′-tetrahydroamentoflavone

bilobetin
sequoiaflavone
heveaflavone
sciadopitysin

[42]

delicatula amentoflavone [43]

denticulata amentoflavone
sotetsuflavone [44]

doederleinii

ginkgetin [45]

amentoflavone-4′-methyl ether
amentoflavone-7-methyl ether [46]

podocarpusflavone A
heveaflavone [47]

amentoflavone-7,7′′,4′,4′′′-tetramethyl ether [45]

7,4′,7′′,4′′′-tetra-O-methylamentoflavone
amentoflavone

7,7′′-di-O-methylamentoflavone
heveaflavone

[48]

labordei amentoflavone [49]

moellendorffii

ginkgetin
isoginkgetin [50]

kayaflavone
podocarpusflavone A

amentoflavone-7,4′,7′′,4′′′-tetramethyl ether
[51]

nothohybrida amentoflavone [52]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Pt
er

id
op

hy
ta

Fe
rn

s
an

d
fe

rn
al

lie
s

Selaginella

bryopteris

amentoflavone
(2S)-2,3-dihydroamentoflavone

(2′′S)-2′′,3′′-dihydroamentoflavone
(2S,2′′S)-2,3,2′′,3′′-tetrahydroamentoflavone

bilobetin
sequoiaflavone
heveaflavone
sciadopitysin

[42]

rupteris amentoflavone [53]

selaginoides amentoflavone [44]

sinensis
ginkgetin [54]

4′,7′′-di-O-methylamentoflavone [55]

stautoniana bilobetin [56]

tamariscina

sotetsuflavone
heveaflavone [57]

sumaflavone
amentoflavone

taiwaniaflavone
[58]

bilobetin [59]

2,3-dihydroamentoflavone
2′′,3′′-dihydroamentoflavone [60]

uncinata

(2S,2′′S)-2,3,2′′,3′′-tetrahydroamentoflavone-4′-methyl ether
(2′′S)-2′′,3′′-dihydroamentoflavone-4′-methyl ether

(2S)-2,3-dihydroamentoflavone-4′-methyl ether
(2S,2′′S)-tetrahydroamentoflavone

(2S)-2,3-dihydroamentoflavone
(2′′S)-2′′,3′′-dihydroamentoflavone

amentoflavone

[61]

willdenowii
amentoflavone

bilobetin
4′,7′′-di-O-methylamentoflavone

[62]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Amentotaxus yunnanensis

sequoiaflavone
sotetsuflavone
sciadopitysin

2,3-dihydro-7,7′′-dimethoxyamentoflavone
7,7′′-dimethoxylamentoflavone

[63]

Araucaria angustifolia
ginkgetin [64]

bilobetin [65]

Dacrydium

balansae
amentoflavone
sotetsuflavone

7′′-O-methylamentoflavone
[66]

pierrei sotetsuflavone
amentoflavone-4′,4′′′,7,7′′-tetramethyl ether [67]

Decussocarpus rospigliosii

amentoflavone
sequoiaflavone

podocarpusflavone A
podocarpusflavone B

heveaflavone
7,7′′-di-O-methylamentoflavone

[68]

Dioon spinulosum sciadopitysin [69]

Calocedrus microleptic var. formosana amentoflavone [70]

Cephalotaxus

drupacea ginkgetin [71]

fortunei var. alpina ginkgetin [72]

harringtonia

ginkgetin [73]

bilobetin
ginkgetin

7,7′′,4′-tri-O-methylamentoflavone
amentoflavone-7,7′′,4′,4′′′-tetramethyl ether

2,3-dihydro-6-methylginkgetin
sciadopitysin

[74]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

koreana

ginkgetin
amentoflavone

bilobetin
sciadopitysin

4′,7′′-di-O-methylamentoflavone
amentoflavone-7,7′′,4′,4′′′-tetramethyl ether

7,4′,7′′,4′′′-O-methylamentoflavone

[75]

oliveri

oliveriflavone B
oliveriflavone C [76]

sciadopitysin
7,4′,5′′,7′′,4′′′-penta-O-methylamentoflavone [39]

sinensis ginkgetin [77]

wilsoniana taiwanhomoflavone A [78]

Cunninghamia lanceolata amentoflavone
sequoiaflavone [73]

Cupressocyparis leylandii
amentoflavone

7-O-methylamentoflavone
podocarpusflavone A

[79]

Cupressus

funebris

amentoflavone
methylamentoflavone [80]

sempervirens

glabra

goveniana

lusitanica

arizonica

torulosa amentoflavone
podocarpusflavone A [81]



Molecules 2024, 29, 4634 14 of 49

Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Cycas

beddomei
2,3-dihydro-4′′′-O-methylamentoflavone

2,3,2′′,3′′-tetrahydroamentoflavone
2,3-dihydroamentoflavone

[82]

circinalis

amentoflavone
bilobetin

isoginkgetin
(2S,2′′S)-2,3,2′′,3′′-tetrahydro-4′,4′′′-di-O-methylamentoflavone (tetrahydroisoginkgetin)

(2S,2′′S)-2,3-dihydro-4′,4′′′-di-O-methylamentoflavone
(2S)-2,3-dihydro-4′-O-methylamentoflavone

(2S,2′′S)-2,3,2′′,3′′-tetrahydro-4′-O-methylamentoflavone

[83]

media ginkgetin [84]

pectinata amentoflavone
2,3-dihydroamentoflavone [85]

revoluta

2,3-dihydroamentoflavone
amentoflavone

podocarpusflavone A
(2S)-2,3-dihydroamentoflavone

(2S,2′′S)-2,3,2′′,3′′-tetrahydroamentoflavone

[77,83]

Chamaecyparis obtusa

sciadopitysin
ginkgetin

isoginkgetin
podocarpusflavone A
podocarpusflavone B

7,7′′-O-dimethylamentoflavone
bilobetin

7-O-methylamentoflavone
sequoiaflavone

podocarpusflavone A
7,7′′-O-dimethylamentoflavone

[86]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Ginkgo biloba

amentoflavone
bilobetin
ginkgetin

isoginkgetin
sciadopytysin

[27]

5′-methoxybilobetin [32]

Juniperus
occidentalis amentoflavone [87]

rigida amentoflavone [88]

Microbiota decussata amentoflavone
7-O-methylamentoflavone [89]

Metasequoia glyptostroboides

sequoiaflavone
podocarpusflavone A
podocarpusflavone B

isoginkgetin
sciadopitysin

amentoflavone
2,3-dihydroamentoflavone-7′′,4′′′-dimethyl ether

amentoflavone-7′′,4′′′-dimethyl ether
bilobetin
ginkgetin

2,3-dihydroisoginkgetin
2,3-dihydrosciadopitysin

[90]

Nanuza plicata amentoflavone
3′,8′′-biisokaempferide [91]

Ochna schweinfurthiana amentoflavone [92]

Ouratea semiserrata amentoflavone
podocarpusflavone A [93]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Podocarpus

dacrydioides

amentoflavone
bilobetin

sequoiaflavone
podocarpusflavone A

ginkgetin
isoginkgetin

podocarpusflavone B
kayaflavone
sciadopitysin

[94]

henkelii isoginkgetin
7,4′,7′′,4′′′-tetra-O-methylamentoflavone [95]

elongatus isoginkgetin
bilobetin [96]

macrophyllus

amentoflavone
isoginkgetin [97]

podocarpusflavone A
podocarpusflavone B [77]

nagi amentoflavone-4′,4′′′,7,7′′-tetramethyl ether
sciadopitysin [98]

nakaii

amenotoflavone
podocarpusflavone A

II-4′′,I-7-dimethoxyamentoflavone
heveaflavone

[99]

neriifolius

amentoflavone
podocarpusflavone A
podocarpusflavone B

isoginkgetin

[100]

imbricatus amentoflavone-7,7′′-dimethyl ether
heveaflavone [101]

wallichiana isoginkgetin [102]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Sciadopitys verticillata
amentoflavone

podocarpusflavone A
isoginkgetin

[81]

Sequoiadendron giganteum
amentoflavone

podocarpusflavone A
isoginkgetin

[81]

Taxodium distichum var. distichum

amentoflavone
bilobetin

podocarpusflavone A
7,4′,4′′′-trimethylamentoflavone Summarized by

[11]

distichum var. mexicanum amentoflavone
bilobetin

Taxus

baccata

ginkgetin
sciadopitysin

amentoflavone
bilobetin

[81]

podocarpusflavone A
sequoiaflavone [103]

chinensis ginkgetin [104]

cuspidata ginkgetin [105]

mairei ginkgetin
ginkgetin [106]

media

wallichiana ginkgetin [107]

Thuja
plicata amentoflavone [77]

orientalis amentoflavone [108]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

Torreya

nucifera

amentoflavone
bilobetin
ginkgetin

sciadopytisin

[109]

4′,7′′-di-O-methylamentoflavone
kayaflavone [74]

yunnanensis
amentoflavone
sotetsuflavone
sciadopityisin

[63]

Retrophyllum rospigliosii

7,4′,7′′,4′′′-tetra-O-methylamentoflavone
7,4′,7′′-tri-O-methylamentoflavone

sciadopitysin
7,7′′-di-O-methylamentoflavone

podocarpusflavone A
amentoflavone

[110]

Wollwmia nobilis 7,4′,7′′,4′′′-tetra-O-methylamentoflavone [111]

A
ng

io
sp

er
m

s
Fl

ow
er

in
g

pl
an

ts

Alchornea
glandulosa amentoflavone [112]

triplinervia amentoflavone [113]

Allanblackia monticola amentoflavone
podocarpusflavone A [114]

Aletris spicata amentoflavone [115]

Androsace umbellata amentoflavone
sequioaflavone [116]

Antidesma bunius amentoflavone
podocarpusflavone A [117]

Antidesma laciniatum amentoflavone [118]

Amanoa almerindae
amentoflavone
sequoiaflavone

podocarpusflavone B
[119]

Biophytum sensitivum amentoflavone [120]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

A
ng

io
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er
m

s
Fl

ow
er

in
g

pl
an

ts

Byrsonima
crassa amentoflavone [121]

intermedia amentoflavone [122]

Caesalpinia pyramidalis
amentoflavone

5′- hydroxyamentoflavone
podocarpusflavone A

[123]

Calophyllum

ferrugineum amentoflavone [124]

flavoramulum amentoflavone [125]

incrassatum amentoflavone [126]

inophylloide amentoflavone [127]

pinetorum amentoflavone [128]

rivulare amentoflavone [129]

symingtonianum amentoflavone [126]

venulosum amentoflavone
2,3-dihydroamentoflavone [130]

Campylospermum

elongatum 7,7′′-O-dimethylamentoflavone [131]

calanthum
amentoflavone
sequoiaflavone

podocarpusflavone B
[132]

mannii amentoflavone [133]

Canarium
album amentoflavone [134]

schwenfurthii amentoflavone [135]

Capparis spinosa gingetin [136]

Casearia clarkei amentoflavone [137]

Celaenodendron mexicanum

amentoflavone
bilobetin
ginkgetin

[138]

podocarpusflavone A
podocarpusflavone B [139]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

A
ng
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m

s
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g
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ts

Chrozophora tinctoria amentoflavone [140]

Cnestis ferruginea amentoflavone [141]

Cyperus rotundus
ginkgetin

[142]
isoginkgetin

Dorstenia barteri amentoflavone [143]

Drypetes gerrardii amentoflavone [144]

Elateriospermum tapos

amentoflavone
ginkgetin

podocarpusflavone B
sequoiaflavone

[145]

Garcinia

bakeriana
amentoflavone

podocarpusflavone A
4′′′-O-methylamentoflavone

[146]

brasiliensis amentoflavone
podocrpusflavone A [147]

brevipedicellata amentoflavone
podocarpusflavone A [148]

intermedia amentoflavone
podocarpusflavone A [149]

livingstonei
amentoflavone [150]

podocarpusflavone A [151]

madruno amentoflavone [152]

merguensis amentoflavone [153]

multiflora amentoflavone [154]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

A
ng
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m

s
Fl
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g
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ts

Garcinia
subelliptica

amentoflavone
podocarpusflavone A

garciniaflavone A
garciniaflavone B
garciniaflavone C
garciniaflavone D

[155]

xanthochymus amentoflavone [156]

Gaultheria yunnanensis ginkgetin [157]

Hevea brasiliensis 7′′,4′′-dimethylamentoflavone
heveaflavone [74]

Hypericum
connatum amentoflavone [158]

perforatum amentoflavone [159]

Hyeronima alchorneoides amentoflavone [160]

Lanaria lanata amentoflavone [161]

Lonicera macranthoides amentoflavone
3′′′-O-methylamentoflavone [162]

Luxemburgia nobilis amentoflavone [163]

Lysimachia christinae amentoflavone [164]

Mangifera indica amentoflavone [165]

Ouratea

parviflora amentoflavone [166]

ferruginea amentoflavone
sequoiaflavone [167]

multiflora

amentoflavone
podocarpusflavone A

amentoflavone-7′′,4′′′-dimethyl ether
heveaflavone

[168]

semiserrata amentoflavone
podocarpusflavone A [92]

sulcata amentoflavone [169]
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Table 4. Cont.

Division Genus Species Reported 3′-8′′-Biflavone Reference

A
ng
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s
Fl
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g
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ts

Ranunculus ternatus kayaflavone [170]

Rhus pyroides amentoflavone [171]

Rhus succedanea amentoflavone [154]

Speranskia tuberculata amentoflavone [172]

Struthiola argentea amentoflavone [173]

Viburnum
jucundum amentoflavone

2,3-dihydroamentoflavone [174]

chinshanense amentoflavone [175]

Zabelia tyaihyonii amentoflavone [176]
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The accumulation of 3′-8′′-biflavones is highly dependent on the tissue type studied
and other environmental conditions. For example, ginkgo leaves are rich in bilobetin,
isoginkgetin, ginkgetin, and sciadopytisin [177,178], but their content is highly dependent
on the growing location of the ginkgo plant [179] and the developmental stage of the
leaves [177,178], so these parameters should be taken into account when ginkgo leaves are
used as a source of 3′-8′′-biflavones for pharmaceutical purposes. According to currently
available data, the yellow autumn leaves are more abundant in 3′-8′′-biflavones than the
green leaves used in traditional medicine and for extract preparations [27]. In addition
to the leaves, 3′-8′′-biflavones have also been detected in other parts of the ginkgo plant,
but their content depends strongly on the tissue type, with the leaves having the highest
content, followed by the sarcotesta [178].

4. Role in Plants

In general, flavonoids in plants have a protective function against biotic and abiotic
stress conditions. They accumulate when plants are exposed to UV-B radiation and act
as sunscreens due to their absorption in the UV range. They also act as scavengers of
reactive oxygen species (ROS) due to the phenolic hydroxyl groups in their structure
and are often accumulated in plants exposed to various stress factors [177]. However,
flavonoids are a large group of molecules that have 6000 different structures and, de-
pending on their structure, can play different roles in plants growth, development, and
protection from stress [27]. Although flavonoids are often considered as good antioxidants,
biflavonoids, including 3′-8′′-biflavones, have significantly lower antioxidant activity than
monomeric flavonoids [136], and their role in plants is probably different from that of
monomeric flavonoids.

The role of biflavonoids in plants is still largely unexplored. Their localization in
plant tissues may indicate roles in plant–environment interactions. Tissue-specific profiling
of five 3′-8′′-biflavones, amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopi-
tysin, in ginkgo showed that they are accumulated only in plant parts that are in direct
contact with the environment [178]. A similar result was observed in MALDI imaging
studies. Li et al. [180] used MALDI imaging to investigate the spatio-chemical localiza-
tion of metabolites in ginkgo leaves and found that the 3′-8′′-biflavones amentoflavone,
bilobetin/sequioflavone, isoginkgetin/ginkgetin, sciadopytisyn, and methoxybilobetin
accumulate in the upper and lower epidermis. The accumulation of ginkgetin/isoginkgetin
on the surfaces of the ginkgo leaves was also shown by Beck and Stengel [179]. They re-
ported an increased concentration on the lower side of the leaf compared to the upper side,
which might be related to the proposed functions of biflavonoids in plants as fungitoxins
and predators, because for both fungi and insects, the lower side of the leaf seems to be a
preferred site of invasion. Amentoflavone in whisk fern is also accumulated in the outer
part of the above-ground rhizome, according to MALDI imaging [31].

This accumulation of 3′-8′′-biflavones, as we already mentioned, might be related
to defence against biotic stress. 3′-8′′-biflavones showed strong antimicrobial effects
against pathogenic fungi in several studies. Krauze-Baranowska and Witwart [103] stud-
ied the antifungal activity of bilobetin, 4′′′-O-methylamentoflavone, amentoflavone, 7-
O-methylamentoflavone, ginkgetin, sciadopitysin, and 2,3-dihydrosciadopitysin against
the fungi Alternaria alternata, Fusarium culmorum, and Cladosporium oxysporum. Bilobetin
completely inhibited the growth of C. oxysporum and F. culmorum at a concentration of
100 mmol/L, but the activity of ginkgetin and 7-O-methylamentoflavone towards A. alter-
nata was stronger than that of bilobetin. Amentoflavone, along with other biflavonoids,
has been shown to affect the production of aflatoxins in Aspergillus flavus and A. par-
asiticus [181]. In this study, the authors found that biflavonoids were generally more
active in inhibiting aflatoxin production at lower concentrations than the monomeric
flavonoids, which may indicate that the dimeric structure would cause stronger activity.
According to the authors [181], biflavonoids can be used to develop compounds to control
aflatoxin production.
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There is evidence that the role of biflavonoids in plants may be related to their role in
photosynthesis, more precisely in inhibiting photosynthesis. Aguilar et al. [182] reported in
their study with spinach chloroplasts that biflavonoids isolated from Selaginella lepidophylla
inhibited ATP synthesis and several other photosynthetic processes, including electron flow,
PSII, PSI, and their partial reactions on chloroplasts. Céspedes et al. [183] also reported that
biflavonoids can case a concentration-dependent inhibition of photophosphorylation. In
an experiment with cyanobacteria, Microcystis aeruginosa, a harmful cyanobacterial bloom,
lost its original shape and chlorophylls after treatment with extracts containing high levels
of amentoflavone [184]. In this study, the authors show that amentoflavone selectively
kills only M. aeruginosa strains without harming other non-cyanobacteria, which may be
related to the photosynthetic capacity of cyanobacteria. Few studies have also shown that
amentoflavone has an allelopathic effect. De Almeida et al. [185] studied the in vitro effects
of Byrsonima crassa extract, rich in amentoflavone, on tomato seedlings and showed that
all doses tested had stimulatory effects on root length and inhibitory effects on the length
of the aboveground parts of the tomato. Interestingly, biflavonoids are used as taxonomic
markers in species of Ochnaceae, known to exhibit allelopathic activity against Lactuca
sativa [186]. However, the exact mechanisms of action are unknown, and further studies
should explain the above effects and clarify the role of 3′-8′′-biflavones and biflavonoids in
plants as a whole.

5. Extraction

As mentioned earlier, biflavonoids are much less studied compared to monomeric
flavonoids, and most of the older work dealing with biflavonoids merely reports the
presence of individual 3′-8′′-biflavones in plant material without optimizing extraction
or identification/quantification methods. As biflavones, 3′-8′′-biflavones are of interest
for industrial application, and progress has also been made in the development of extrac-
tion methods. Because of their beneficial properties, especially when it comes to medical
and food applications, effective, controlled, and safe extraction methods are needed [187].
Before extraction, plant samples typically undergo freeze drying, convection drying, or mi-
crowave vacuum drying, followed by milling, grinding, and homogenization, after which
an appropriate solvent and extraction method are selected [188,189]. Traditionally, most
extraction procedures for 3′-8′′-biflavones extraction are based on conventional methods
such as organic solvent extraction, reflux extraction, percolation extraction, and Soxhlet
extraction [104] (Table 5). Although these methods are widely used, they are time- and
energy-consuming, inefficient [190–192] and require large volumes of possibly toxic sol-
vents [192,193]. New solvents, ionic liquids (IL), and deep eutectic solvents (DES) are being
researched more and more [191–193]. The main advantages of DESs are their versatility,
tunability, wide temperature range, high polarity, low vapor pressure, non-flammability,
and potential as eco-friendly solvents that reduce extraction costs, environmental impact,
and degradation of temperature-sensitive molecules [193].

To develop a successful extraction method, formulation and optimization, evaluation,
and standardization of process variables are required. This is the only way to achieve a
reproducible and efficient extraction process [192]. When it comes to extraction processes,
the choice of solvent, liquid/solid ratio, temperature, extraction time, and plant material
size are likely to be the starting point for process design and optimization [188]. When using
novel methods such as ultrasound-assisted extraction (UAE), enzyme-assisted extraction
(EAE), microwave-assisted extraction (MAE), and liquid extraction under pressure (PLE),
some additional variables such as ultrasound frequency and power, microwave power,
solvent amount, pressure, etc., should be considered [188]. To find the optimal conditions,
it is necessary to optimize each process individually due to the different characteristics
of biflavonoids and the sources [192–195]. Figure 4 illustrates the biflavonoid extraction
process from plant material, highlighting the various steps involved in the procedure.
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Figure 5.
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The UAE-DES extraction process has the advantages such as short extraction time,
low solvent and energy consumption, and high extraction efficiency [193]. In the paper
presented by Liu et al. [196], the authors described the UAE-DES extraction of total bi-
flavonoids (including heveaflavone and amentoflavone) from S. chaetoloma. Comparing the
effect of UAE-DES extraction with conventional methods (maceration and percloration with
95% ethanol), the authors observed that by using UAE-DES, the extraction rate increased
by 1.5–3-fold compared to conventional methods. In the paper by Li et al. [193] the authors
combined MAE-IL for the extraction of amentoflavone (and hinokiflavone) from S. sinen-
sis. Under optimal conditions, the content of amentoflavone was 1.96 mg/g dry weight.
Compared with the conventional extraction methods, MAE-IL achieved a higher yield in
a shorter time, but also reduced the consumption of the solvent. Lei et al. [188] extracted
four main biflavonoids (bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) from G. biloba
L. using UAE-IL. Compared with UAE-ethanol, infiltration extraction, and percolation
extraction, by applying UAE-IL, more biflavonoids were obtained in less time. In addition,
the results of the recovery test indicated that the recovered IL could be repeatedly extracted
six times. A comparison of different methods for 3′-8′′-biflavonoid extraction is given in
the Table 5.

Once the extraction is performed, unfortunately, 3′-8′′-biflavonoids are not the only
components present in the extract. Since neither of mentioned methods is selective to
extract only 3′-8′′-biflavonids, the extract is a mixture of different phytochemicals. Due
to this, and in order for 3′-8′′-biflavonoids to be used in pharmacology, they need to be
isolated with high purity. The most common methods used for 3′-8′′-biflavonoid isolation
are liquid–liquid extraction, macroporous resin adsorption, antisolvent crystallization, and
chromatography, with chromatography being the primary technique to obtain high-purity
compounds. Column chromatography, using silica gel, polyamide, and sephadex LH 20 as
packing materials, has been successfully employed for this purpose. Although this method
is widespread, it is time-consuming, expensive, and not environmentally friendly since
it requires large amounts of organic solvents. To obtain high purity, this method has to
be repeated multiple times, thus leading to low recovery. The additional problem is the
selectivity of traditional chromatography methods. Isolating isomers such as ginkgetin
and isoginkgetin from G. biloba L. poses even greater challenges with traditional column
chromatography [197]. As a possible solution, two-dimensional preparative HPLC methods
have been proposed and applied for isolating high-purity compounds on a large scale [198].
But, as for the extraction methods, the combination of approaches is also crucial for efficient
isolation of biflavonoids. In the paper presented by Shen et al. [199] the authors proposed
an efficient and industrially viable protocol for large-scale targeted isolation of high-purity
bioactive biflavonoids from industrial waste G. biloba L. exocarp. The process involved
several key steps to achieve high purity and substantial yields. Firstly, macroporous
adsorption resin was employed to enrich the bioflavonoids from the G. biloba L. waste. This
step ensured the concentration of the target compounds for further processing. Next, a
targeted on-line recognition method based on their characteristic UV absorption at 210 nm,
270 nm, and 330 nm was applied to identify and isolate the biflavonoids selectively. This
recognition process facilitated the efficient separation of the desired compounds from the
mixture. The core technique used in the protocol was the two-dimensional preparative
normal phase/reversed phase HPLC-DAC system. This state-of-the-art system allowed for
the precise and reliable isolation of the biflavonoids. Within a remarkably short period of
30 min, a total of three biflavonoids, namely, bilobetin, ginkgetin, and isoginkgetin, were
isolated with purity exceeding 99.0%. The yield from each isolation run reached dozens or
even hundreds of milligrams, making it highly suitable for large-scale production.
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Table 5. Comparison of different extraction methods for 3′-8′′ biflavone extraction.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Amentoflavone

T. chinensis leaves Soxhlet extractor, methanol,
textraction = 7 h 4.08 ± 0.03

Supercritical CO2 extraction plus co-solvent (78% ethanol),
textraction = 2 h,

T = 48 ◦C,
p = 25 Mpa,

qCO2 = 2 L/min

4.47 ± 0.06 [104]

G
.b

ilo
ba

L.

tree bark

Sonification,
tsonification = 10 min; 80% methanol,

textraction = 45 min,
T = 25 ◦C

0.06 ± 0.004 - -

[178]

twig bark 0.08 ± 0.007 - -

buds 0.04 ± 0.002 - -

leaf blades 0.09 ± 0.001 - -

petioles 0.18 ± 0.005 - -

seed petioles 0.03 ± 0.002 - -

sarcotesta 0.02 ± 0.002 - -

S. tamariscina (Beauv) Spring

So
lv

en
te

xt
ra

ct
io

n,
so

ni
fic

at
io

n,
t e

xt
ra

ct
io

n
=

2
h,

T
=

25
◦ C

70% ethanol 14.05
Supercritical CO2 fluid extraction extractor

T = 60 ◦C,
p = 200 bar, static, textraction static = 0.5 h,

textraction dynamic = 1 h, 70% ethanol

20.18

[200]70% hexane 0.40

70% n-butanol 1.72

Accelerated solvent extraction, 70% ethanol,
textraction = 4 min, elution is flushed with 60% volume, the

nitrogen purge lasts 60 s, and extraction is performed three
times. The extraction T = 80 ◦C, and p < 1500 psi

27.77

70% ethyl acetate 1.71

Reflux extraction, 70% ethanol,
textraction = 1 h,

T = 90 ◦C
33.00

Percolation extraction, textraction = 2 h,
T = 40 ◦C 14.73
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Amentoflavone

S. uncinata

Maceration extraction, DES,
textraction = 3 h 0.05 ± 0.01

Ultrasonic-assisted deep eutectic solvent extraction,
33% (w/w), textraction = 0.5 h

0.71 ± 0.01 [201]Percolation extraction,
textraction = 4 h,

T = 40 ◦C
0.60 ± 0.01

G. biloba L. leaves

Sonification,
tsonification = 10 min; 70% ethanol,

textraction = 45 min,
T = 25 ◦C

0.064 ± 0.004

Enzyme-assisted extraction(Viscozyme L),
textraction = 4 h,
T = 50 ◦C and

200 rpm

0.066 ± 0.003

[202]

Enzyme-assisted extraction
(Viscozyme L),
textraction = 24 h,
T = 50 ◦C and

200 rpm

0.069 ± 0.002

Ultrasound-assisted extraction, 20 kHz,
62% amplitude, textraction = 10 min, T = 0 ◦C 0.064 ± 0.000

Mechanically assisted extraction, textraction = 20 min,
T = 25 ◦C and

600 rpm
0.065 ± 0.001

Chemically assisted extraction, 0.1% TritonX and 10%
NaClO

solution,
T = 25 ◦C and

200 rpm.

0.044 ± 0.001
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Amentoflavone G. biloba L. leaves

Sonification,
tsonification = 10 min; 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.081 ± 0.002

So
ni

fic
at

io
n,

t s
on

ifi
ca

ti
on

=
10

m
in

;
D

ES
,t

ex
tr

ac
ti

on
=

45
m

in
,

T
=

25
◦ C

Betaine: ethylene glycol 1:2 with
20% H2O (w/w)

0.061 ± 0.009

[178]
Betaine: ethylene glycol 1:2 with

30% H2O (w/w)
0.053 ± 0.000

Bilobetin

G. biloba L.
leaves

Ethanol-based Ultrasound
Assisted Extraction,

70% ethanol
textraction = 25 min, solid–liquid

ratio of 1:14 g/mL, and ultrasonic
power of 280 W

2.00 *

Ultrasonic-assisted ionic liquid extraction
c[Epy]BF4 = 0.148 mol/L,textraction = 25 min,

solid–liquid ratio of 1:14 g/mL, and ultrasonic
power of 280 W

2.44 [188]
Infiltration extraction

c[Epy]BF4 = 0.148 mol/L,
textraction = 48 h

1.60 *

Percolation extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 30 min,
percolate:

q = 2 drops/min

1.40 *

G
.b

ilo
ba

L.

twig bark
Sonification,

t sonification = 10 min); 80%
methanol,

textraction = 45 min,
T = 25 ◦C

0.03 ± 0.002 - -

[178]

petioles 0.98 ± 0.006 - -

leaf blades 1.38 ± 0.01 - -

seed petioles 0.25 ± 0.02 - -

sarcotesta 0.14 ± 0.05 - -
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Bilobetin

G. biloba L. leaves

Sonification,
t sonification = 10 min; 70% ethanol,

textraction = 45 min,
T = 25 ◦C

0.164 ± 0.014

Enzyme-assisted extraction (Viscozyme L),
textraction = 4 h,
T = 50 ◦C, and

200 rpm

0.166 ± 0.003

[202]

Enzyme-assisted extraction (Viscozyme L),
textraction = 24 h,
T = 50 ◦C, and

200 rpm

0.172 ± 0.002

Ultrasound-assisted extraction, 20 kHz,
62% amplitude,

textraction = 10 min,
T = 0 ◦C

0.167 ± 0.001

Mechanically assisted extraction, textraction = 20 min,
T = 25 ◦C, and

600 rpm
0.177 ± 0.012

Chemically assisted extraction, 0.1% TritonX and 10%
NaClO

solution,
T = 25 ◦C, and

200 rpm.

0.108 ± 0.023

G. biloba L. leaves

Sonification,
tsonification = 10 min; 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.471 ± 0.013

So
ni

fic
at

io
n,

t s
on

ifi
ca

ti
on

=
10

m
in

;
D

ES
,t

ex
tr

ac
ti

on
=

45
m

in
,

T
=

25
◦ C

Betaine: ethylene glycol 1:2 with
10% H2O (w/w) 0.107 ± 0.008

[203]

Betaine: ethylene glycol 1:2 with
20% H2O (w/w) 0.171 ± 0.029

Betaine: ethylene glycol 1:2 with
30% H2O (w/w) 0.118 ± 0.013

Betaine: sucrose 1:4 with 30% H2O
(w/w) 0.063 ± 0.000

Betaine: glycerol 1:2 with 10% H2O
(w/w) 0.092 ± 0.013
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Bilobetin G. biloba L. leaves

Sonification,
tsonification = 10 min; 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.471 ± 0.013

So
ni

fic
at

io
n,

t s
on

ifi
ca

ti
on

=
10

m
in

;
D

ES
,t

ex
tr

ac
ti

on
=

45
m

in
,

T
=

25
◦ C

Choline chloride: ethylene glycol
1:2 with 10% H2O (w/w) 0.065 ± 0.002

[203]

Choline chloride: ethylene glycol
1:2 with 20% H2O (w/w) 0.072 ± 0.000

Choline chloride: urea 1:2 with
10% H2O (w/w) 0.066 ± 0.003

Choline chloride: urea: ethylene
glycol 1:2:2 with 10% H2O (w/w) 0.077 ± 0.003

Ginkgetin

T. chinensis leaves
Soxhlet extractor; extraction

solvent, methanol;
textraction = 7 h

2.17 ± 0.02

Supercritical CO2 extraction Plus co-solvent
(78% ethanol)
textraction = 2 h,

T = 48 ◦C,
p = 25 Mpa;

qCO2 = 2 L/min

3.39 ± 0.02 [104]

G. biloba L.
leaves

Ethanol-based ultrasound-assisted
extraction, 70% ethanol

textraction = 25 min, solid–liquid
ratio of 1:14 g/mL, and ultrasonic

power of 280 W

3.90 *

Ultrasonic-assisted ionic liquid extraction
c[Epy]BF4 = 0.148 mol/L, textraction = 25 min,

solid–liquid ratio of 1:14 g/mL, and ultrasonic
power of 280 W

4.33 [183]Infiltration extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 48 h
2.60 *

Percolation extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 30 min, percolate:
q = 2 drops/min

2.00 *
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Ginkgetin

G
.b

ilo
ba

L.
twig bark

Sonification,
t sonification = 10 min, 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.03 ± 0.002 - -

[178]

buds 0.01 ± 0.001 - -

petioles 0.63 ± 0.003

leaf blades 1.33 ± 0.005 - -

seed petioles 0.15 ± 0.01 - -

sarcotesta 0.12 ± 0.007 - -

G. biloba L. leaves

Sonification,
t sonification = 10 min; 70% ethanol,

textraction = 45 min,
T = 25 ◦C

0.607 ± 0.050

Enzyme-assisted extraction
(Viscozyme L),
textraction = 4 h,
T = 50 ◦C, and

200 rpm

0.627 ± 0.010

[202]

Enzyme-assisted extraction
(Viscozyme L),
textraction = 24 h,
T = 50 ◦C, and

200 rpm

0.646± 0.007

Ultrasound-assisted extraction, 20 kHz,
62% amplitude,

textraction = 10 min, T = 0 ◦C
0.622 ± 0.003

Mechanically assisted extraction, textraction = 20 min,
T = 25 ◦C, and

600 rpm
0.634 ± 0.009

Chemically assisted extraction, 0.1% TritonX and 10%
NaClO

solution,
T = 25 ◦C, and

200 rpm.

0.466 ± 0.055
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Ginkgetin G. biloba L. leaves

Sonification,
tsonification = 10 min; 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.367 ± 0.004

So
ni

fic
at

io
n,

t s
on

ifi
ca

ti
on

=
10

m
in

;
D

ES
,t

ex
tr

ac
ti

on
=

45
m

in
,

T
=

25
◦ C

Betaine: ethylene glycol 1:2 with
10% H2O (w/w) 0.110 ± 0.010

[203]

Betaine: ethylene glycol 1:2 with
20% H2O (w/w) 0.105 ± 0.016

Betaine: ethylene glycol 1:2 with
30% H2O (w/w) 0.074 ± 0.03

Betaine: glycerol 1:2 with 10% H2O
(w/w)

0.073 ± 0.004

Isoginkgetin

G. biloba L.
leaves

Ethanol-based ultrasound-assisted
extraction,

70% ethanol
textraction = 25 min, solid–liquid

ratio of 1:14 g/mL, and
ultrasonic power of 280 W

5.20 *

Ultrasonic-assisted ionic liquid extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 25 min, solid–liquid ratio of 1:14 g/mL,
and ultrasonic power of 280 W

6.50 [188]
Infiltration extraction

c[Epy]BF4 = 0.148 mol/L,
textraction = 48 h

5.00 *

Percolation extraction
c[Epy]BF4 = 0.148 mol/L, textraction

= 30 min, percolate:
q = 2 drops/min

3.50 *
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Isoginkgetin

G
.b

ilo
ba

L.
twig bark

Sonification,
t sonification = 10 min, 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.03 ± 0.003 - -

[178]

buds 0.005 ± 0.001 - -

petioles 0.88 ± 0.005 - -

leaf blades 1.90 ± 0.01 - -

seed petioles 0.38 ± 0.03 - -

sarcotesta 0.31 ± 0.02 - -

G. biloba L. leaves

Sonification,
t sonification = 10 min; 70% ethanol,

textraction = 45 min,
T = 25 ◦C

0.945 ± 0.090

Enzyme-assisted extraction
(Viscozyme L),
textraction = 4 h,
T = 50 ◦C, and

200 rpm

0.974 ± 0.018

[202]

Enzyme-assisted extraction (Viscozyme L),
textraction = 24 h, T = 50 ◦C, and 200 rpm 1.007 ± 0.013

Ultrasound-assisted extraction, 20 kHz,
62% amplitude,

textraction = 10 min,
T = 0 ◦C

0.969 ± 0.004

Mechanically assisted extraction, textraction = 20 min,
T = 25 ◦C and

600 rpm
0.994 ± 0.015

Chemically assisted extraction, 0.1% TritonX and 10%
NaClO

solution,
T = 25 ◦C, and

200 rpm.

0.631 ± 0.123
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Isoginkgetin G. biloba L. leaves

Sonification,
tsonification = 10 min; 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.543 ± 0.005

So
ni

fic
at

io
n,

t s
on

ifi
ca

ti
on

=
10

m
in

;
D

ES
,t

ex
tr

ac
ti

on
=

45
m

in
,T

=
25

◦ C

Betaine: ethylene glycol 1:2 with
10% H2O (w/w) 0.146 ± 0.016

[203]

Betaine: ethylene glycol 1:2 with
20% H2O (w/w) 0.124± 0.006

Betaine: ethylene glycol 1:2 with
30% H2O (w/w) 0.094 ± 0.006

Betaine: sucrose 1:4 with 30% H2O
(w/w) 0.063 ± 0.001

Betaine: glycerol 1:2 with 10% H2O
(w/w) 0.082 ± 0.009

Choline chloride: ethylene glycol
1:2 with 10% H2O (w/w) 0.062 ± 0.001

Choline chloride: ethylene glycol
1:2 with 20% H2O (w/w) 0.061 ± 0.000

Choline chloride: urea 1:2 with
10% H2O (w/w) 0.061 ± 0.000

Choline chloride: urea: ethylene
glycol 1:2:2 with 10% H2O (w/w) 0.062 ± 0.001

G. biloba L.
leaves

Ethanol-based ultrasound-assisted
extraction,

70% ethanol
textraction = 25 min, solid–liquid

ratio of 1:14 g/mL, and
ultrasonic power of 280 W

10.00 * Ultrasonic-assisted ionic liquid extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 25 min, solid–liquid ratio of 1:14 g/mL,
and ultrasonic power of 280 W

13.97 [188]

Infiltration extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 48 h
9.10 *
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

G. biloba L.
leaves

Percolation extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 30 min, percolate:
q = 2 drops/min

9.00 *

Ultrasonic-assisted ionic liquid extraction
c[Epy]BF4 = 0.148 mol/L,

textraction = 25 min, solid–liquid ratio of 1:14 g/mL,
and ultrasonic power of 280 W

13.97 [188]

G
.b

ilo
ba

L.

twig bark

Sonification,
tsonification = 10 min, 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.04 ± 0.004 - -

[178]

buns 0.01 ± 0.003 - -

petioles 0.73 ± 0.003 - -

leaf blades 2.40 ± 0.006 - -

seed petioles 0.29 ± 0.02

sarcotesta 0.22 ± 0.004 - -

G. biloba L. leaves

Sonification,
tsonification = 10 min; 70% ethanol,

textraction = 45 min,
T = 25 ◦C

1.387 ± 0.105

Enzyme-assisted extraction
(Viscozyme L),
textraction = 4 h,
T = 50 ◦C, and

200 rpm

1.430 ± 0.021

[203]

Enzyme-assisted extraction
(Viscozyme L),
textraction = 24 h,
T = 50 ◦C, and

200 rpm

1.461 ± 0.105

Ultrasound-assisted extraction, 20 kHz,
62% amplitude,

textraction = 10 min,
T = 0 ◦C

1.419 ± 0.006

Mechanically assisted extraction, textraction = 20 min,
T = 25 ◦C, and

600 rpm
1.450 ± 0.018
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

G. biloba L. leaves

Sonification,
tsonification = 10 min; 70% ethanol,

textraction = 45 min,
T = 25 ◦C

1.387 ± 0.105

Chemically assisted extraction, 0.1% TritonX and 10%
NaClO

solution,
T = 25 ◦C, and

200 rpm.

1.054 ± 0.099 [203]

G. biloba L. leaves

Sonification,
tsonification = 10 min; 80%

methanol,
textraction = 45 min,

T = 25 ◦C

0.344 ± 0.026

So
ni

fic
at

io
n,

t s
on

ifi
ca

ti
on

=
10

m
in

;
D

ES
,t

ex
tr

ac
ti

on
=

45
m

in
,T

=
25

◦ C

Betaine: ethylene glycol 1:2 with
10% H2O (w/w) 0.154 ± 0.019

[203]

Betaine: ethylene glycol 1:2 with
20% H2O (w/w) 0.077± 0.001

Betaine: ethylene glycol 1:2 with
30% H2O (w/w) 0.071 ± 0.005

Betaine: sucrose 1:4 with 30% H2O
(w/w) 0.054 ± 0.002

Betaine: glycerol 1:2 with 10% H2O
(w/w) 0.059 ± 0.001

Choline chloride: ethylene glycol
1:2 with 10% H2O (w/w) 0.051 ± 0.002

Choline chloride: ethylene glycol
1:2 with 20% H2O (w/w) 0.050 ± 0.000

Choline chloride: urea 1:2 with
10% H2O (w/w) 0.050 ± 0.000

Choline chloride: urea: ethylene
glycol 1:2:2 with 10% H2O (w/w) 0.050 ± 0.001
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Table 5. Cont.

Source Conventional Method Novel Methods Reference

Biflavonoid Extraction Conditions Yield mg/g Extraction Conditions Yield mg/g

Total biflavonoids

Amentoflavone,
ginkgetin, hi-
nokiflavone

and he-
veaflavone

S. helvetica

Ethanol-based ultrasound-assisted
extraction,

95% ethanol,
ultrasonic power 250 W,T = 45 ◦C,

textraction = 40 min

11.00 *

Ultrasonic-assisted ionic liquid extraction
c[C6mim]PF6 = 0.78 mol/L,

textraction = 40 min, solid–liquid ratio of 1:12.72 g/mL,
and ultrasonic power of 250 W,

T = 47.27 ◦C

18.69 [190]
Heat-reflux extraction, 95%
ethanol, textraction = 120 min 6.50 *

Soxhelt extraction, 95% ethanol,
textraction = 120 min 7.00 *

Percolation extraction, 95%
ethanol, textraction = 24 min 10.00 *

Amentoflavone,
ro-

bustaflavone,
and hinoki-

flavone

S. doederleinii
Soxhlet extraction, 70% ethanol,

textraction = 2 h,
T = 95 ◦C

4.97 ± 0.08

Microwave-assisted extraction; 70% ethanol, 460 W
microwave power, T = 45 ◦C, textraction = 45 min 8.91 ± 0.13

[193]

Ionic liquid microwave-assisted extraction,
c(Hmim) (PF6) = 2 mmol/L, solvent–material ratio =

1:15 g/mL, microwave power
460 W,

T = 45 ◦C,
textraction = 40 min

16.83 ± 1.51

Myricitrin,
iso-

quercitrin,
quercitrin,

amentoflavone
and hinoki-

flavone

P. cacumen - -

Deep eutectic solvents (choline
chloride:1,4-butanediol-lactic acid 1:3) and ultrasonic
extraction, ultrasonic time: 60 min, liquid/solid ratio:

20:1, and water content: 35%

23.11 ± 0.35 [204]

* Most Abundant.
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6. Identification, Quantification, and Localization within Tissue

Progress in developing methods to identify and quantify some natural compounds
depends on several factors, such as whether a compound is recognized as having biolog-
ical activity, whether regulatory agencies require control of the amount in a product, or
whether appropriate tools are simply available. If standards are not commercially available,
identification is usually performed by NMR. In most studies reporting 3′-8′′-biflavones
for the first time, such as those in a Table 1, identification is performed using NMR. In
the 1H NMR spectrum, aromatic proton signals typically appear between 6.0–8.0 ppm,
while hydroxyl protons resonate as broad singlets around 10.0–12.0 ppm. 13C NMR spectra
display aromatic carbon signals between 100 and 160 ppm, with carbonyl carbons around
175–180 ppm [43]. Carbons involved in the 3′-8′′ linkage, such as C3′ and C8′′, generally
exhibit downfield shifts compared to non-linked carbons [43]. Due to the dimeric nature of
3′-8′′-biflavones, duplicate or split signals may occur, reflecting the slightly different chemi-
cal environments of the two flavonoid units, especially near the linkage [205]. NMR spec-
troscopy of dimeric flavonoids is often complicated by hindered rotation of the monomers
around the C–C axis (atropisomerism), leading to high spectral complexity. Several ap-
proaches have been proposed to accelerate identification, such as 1,1-ADEQUATE [206],
while two-dimensional NMR techniques (HSQC, HMBC, and COSY) may help in resolving
duplicate signals and confirming structural connectivity [206]. However, these techniques
have not found widespread application in studies of 3′-8′′-biflavones. Problems with the
low sensitivity of NMR compared to other spectroscopic techniques are well known and
pose a significant challenge in identifying biflavonoids, which are often present at low
concentrations [205]. Over the past few decades, most advances in NMR spectroscopy have
focused on increasing sensitivity. However, an even greater challenge remains: the lack of a
comprehensive NMR database for the identification of 3′-8′- biflavones [205]. Many NMR
databases lack information on these compounds, but the Spektraris database [207] stands
out as an exception, having integrated data on biflavones and having been successfully
used for the identification of biflavonoids in P. nudum [31]. However, the structure of
some possible methyl-biflavones reported earlier should be corrected because structural
elucidation in the 1960s and 1970s was based on co-chromatography with isolated authentic
compounds, which may lead to misidentification [208].

Later, when liquid chromatography and suitable detectors became available, these
methods became methods of choice for the separation and detection of 3′-8′′-biflavones,
especially when standards and suitable databases became commercially available. Usually,
liquid chromatography is coupled with DAD or MS detectors [27]. The first report on
separation and quantification of biflavones by liquid chromatography and spectrophoto-
metric detector was reported in the early 1980s. In this publication, the authors separated
four biflavones from ginkgo leaves, bilobetin, ginkgetin, isoginkgetin and sciadopitysin,
using the LiChrosorb® HPLC column and quantified them using a spectrophotometric
detector. Today, the most commonly used detectors are mass detectors, but 3′-8′′-biflavones
have a strong signal at 330 nm, making the DAD detector in combination with standards
a compelling, rapid, and accessible method for identification and quantification [178].
An example of a 330 nm chromatogram separating five 3′-8′′-biflavones is presented in
Figure 6a.
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Figure 6. (a) Representative HPLC-DAD chromatogram of five biflavones recorded at 330 nm [179];
(b) MALDI-MS imaging of amentoflavone in cross sections of P. nudum above-ground rhizomes [31].

Over the past 20 years, MS-dependent imaging techniques have been developed to
study the small-scale localization of compounds from complex biological systems. The most
significant advances have been made with Assisted Laser Desorption/Ionization–Mass
Spectrometry (MALDI-MS) imaging, which can be applied at both the tissue and single-cell
level and provides information on the spatial distribution of specific molecules [209]. After
tissue preparation and matrix application, the instrument acquires a series of mass spectra,
each of which represents the profile of a specific region in the sample on a predefined x,y co-
ordinate grid. This allows the gradients of individual analytes in the tissue to be visualized
using specialized computer programs. The most commonly used ionization techniques
besides MALDI are desorption electrospray ionization (DESI) and secondary ionization
MS (SIMS). In the literature, ginkgo leaves in which 3′-8′′-biflavones had been detected and
localized were frequently used for method optimization [179,180]. Most of the available lit-
erature data showed that 3′-8′′-biflavones, such as amentoflavone, bilobetin/sequioflavone,
isoginkgetin/ginkgetin, sciadopytisyn, and methoxybilobetin, accumulate in the epider-
mis of ginkgo leaves [179,180]. The application of MALDI imaging in the study of the
above-ground rhizome of P. nudum provided evidence for preferential accumulation of
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amentoflavone in cells of the chlorenchyma [31] (Figure 6b). The application of MALDI
matrices to tissues sometimes complicates tissue preparation for imaging and can interfere
with the native distribution of the metabolites under study. Therefore, a matrix-free laser
desorption/ionization mass spectrometry method (LDI-MSI) was proposed in the study by
Holscher et al. [210], which successfully detected amentoflavone in Hypericum perforatum
pollen. MS-based imaging techniques provide valuable information not only on the pres-
ence of metabolites, but also on their localization, but are not widely used because of their
high cost.

7. Conclusions and Further Directions

In recent years, 3′-8′′-biflavones have become of interest as potential new compounds
with pharmaceutical applications. Most studies have focused on their biological activity,
with less information being available on their new natural sources and their role in plants.
Most of the naturally occurring 3′-8′′-biflavones have been elucidated as part of a larger
screening study of natural products in specific plants, with few studies focusing specifi-
cally on biflavones. According to the available data, they are common in Pteridophyta,
Gymnosperms, and Angiosperms, and so far, G. biloba and Selaginella sp. contain a variety
of different 3′-8′′-biflavones. Further studies to screen different species for the presence of
3′-8′′-biflavones are needed and are likely to reveal their presence in more plant species
and help to elucidate their role in plants and possible plant evolution. The content of 3′-8′′-
biflavones is highly dependent on the tissue type studied and other environmental factors,
as shown by several studies on ginkgo. Although their exact role in plants is not clear,
their localization in plants and tissues suggests their possible role in plant–environment
interactions, especially biotic interactions, as they exhibit antimicrobial activity. Several
studies suggest a possible role in the inhibition of photosynthesis, but more studies are
needed to explain this statement and also other possible role in plants.

To study the role of 3′-8′′-biflavones in plants, as well as their potential pharmaceutical
use, efficient methods for their extraction and identification are being developed. Tradi-
tionally, most extraction methods for the extraction of 3′-8′′-biflavones have been based
on conventional methods such as organic solvent extraction, reflux extraction, percola-
tion extraction, and Soxhlet extraction, but novel methods such as UAE, EAE, MAE, PLE,
and new green solvents IL and DES are also being increasingly explored. In particular,
extraction using environmentally friendly methods should be the focus in the future. It is
challenging to conclude that a single method is suitable for extraction all 3′-8′′-biflavones.
When optimizing extraction methods, it is important to consider both the plant part used
and the specific biflavone of interest, as their structures can vary significantly.

For the identification of new 3′-8′′-biflavone structures, NMR was used, but for routine
separation, identification, and quantification, especially when standards are available,
HPLC coupled with MS or DAD is the method of choice. Great progress has also been
made in the development of MALDI imaging methods for the identification and localization
of 3′-8′′-biflavones in tissues, particularly in G. biloba leaves. However, most of the studies
performed are targeted analyses that are likely to miss some 3′-8′′-biflavones. Therefore,
more untargeted analyses using high-resolution mass spectrometry should be performed
in the future to identify additional 3′-8′′-biflavones.
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