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1. Introduction

Carbon-based nanomaterials have garnered widespread attention and application be-
cause of their exceptional electrical conductivity, thermal conductivity, mechanical strength,
and optical properties. Common representative materials mainly include graphene, carbon
nanotubes, fullerenes, and carbon quantum dots [1-3]. These materials not only attract
significant interest because of their unique physical and chemical properties but also be-
cause they demonstrate immense potential in a wide range of fields. Therefore, exploring
the key characteristics, application domains, and development prospects of carbon-based
multifunctional nanomaterials is crucial for gaining a comprehensive understanding of this
field and advancing its progress.

The exceptional properties of carbon-based multifunctional nanomaterials make them
highly prominent in the fields of electronic devices and energy storage. Carbon materials
can be classified into two-dimensional, one-dimensional, and zero-dimensional categories.
For instance, two-dimensional graphene exhibits remarkable electrical and thermal con-
ductivity, granting it significant potential in high-performance electronic devices, sensors,
and supercapacitors. One-dimensional carbon nanotubes, with their unique structure,
demonstrate outstanding mechanical strength and electrical conductivity, making them
ideal for enhancing composite materials and fabricating nanoscale electronic devices [4].
Zero-dimensional materials such as fullerenes and carbon quantum dots, owing to their
high specific surface area and excellent optical properties, excel in areas such as catalysis,
optoelectronic devices, and bioimaging [5]. Moreover, carbon-based multifunctional nano-
materials show great promise in environmental protection and biomedical applications.
For example, graphene can be employed for detecting pollutants in air and water. Carbon
quantum dots, because of their excellent biocompatibility and strong fluorescence, are
emerging as a research focus for the next generation of biomarkers and imaging probes [6].
Fullerenes and their derivatives also hold significant potential in drug delivery and antioxi-
dant therapy.

Despite the remarkable performance advantages of carbon-based multifunctional
nanomaterials in various fields, there are still some challenges in their practical application.
First, the synthesis and functionalization processes of these nanomaterials need to be further
optimized to reduce costs and improve consistency and reproducibility [7-9]. For example,
structural defects and irregularities in the production of graphene and carbon nanotubes
can affect the stability and reliability of their performance [10]. To address these challenges,
researchers are exploring novel synthesis methods and functionalization techniques to meet
the needs of various applications. Furthermore, the integration of nanomaterials with other
functional materials could further improve their properties. In summary, carbon-based
multifunctional nanomaterials, as a new generation of high-performance materials, are
at the forefront of materials science research because of their exceptional physical and
chemical properties and their broad application potential.
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2. An Overview of Published Articles

Christoph et al. (Contribution 1) present a renewable source of carbon nanoparticles.
They report the synthesis and material and biological characterization of two colloidal
suspensions of CQDs in water derived from lignin-based carbon. The material exhibits non-
toxic and biocompatible properties, laying a new foundation for the use of lignin-derived
CQPDs in tissue engineering applications.

Ioni et al. (Contribution 2) demonstrate a method for preparing a tailored composite
based on nickel nanoparticles on the reduced graphene oxide surface using supercritical
isopropanol treatment. The reduction in Ni salts enables the deoxygenation of graphene,
with nickel nanoparticles uniformly distributed on the surface of graphene, and the com-
posite exhibits magnetic properties. This enhances the understanding of the mechanism of
composite fabrication in supercritical isopropanol.

Lietal. (Contribution 3) modified graphene with dopamine (PDA) at the interface, and
then constructed multilayer composite films with boron nitride and bacterial cellulose. PDA
improved the interface compatibility between the hybrid fillers and the matrix, increasing
the material density and stabilizing the thermal conduction pathways. The composite film
exhibited significant improvements in thermal conductivity and tensile strength.

Oswald et al. (Contribution 4) investigate the effects of thermally evaporated C60
(n-type) and Pentacene (p-type) thin films on the in-plane charge transport properties of
large-area CVD graphene under vacuum. C60 induces a decrease in Fermi energy and an
increase in Fermi energy in graphene. The increase in charge carriers was accompanied by
a reduction in charge mobility. Interestingly, the contact resistance was not significantly
affected by the deposition of the organic molecules.

Sun et al. (Contribution 5) provide a comprehensive overview of emerging materials
and approaches in the development of smart thermally conductive fiber materials. Struc-
tural materials are classified based on their functions. Finally, they discuss the challenges
and opportunities presented by smart thermally conductive fiber materials and present
prospects for their future development.

3. Conclusions

Carbon-based multifunctional nanomaterials are expected to continue to play a pio-
neering role in materials science in the future and have great potential, particularly in the
fields of electronics, energy storage, environmental protection, and biomedicine. Despite
their enormous potential, current synthesis technologies face challenges such as high costs,
difficulties in mass production, and performance instability, which require further tech-
nological breakthroughs. The future focus is on improving the manufacturing processes
of carbon-based multifunctional nanomaterials to improve their quality, consistency, and
controllability to meet the requirements of large-scale industrial production. Meanwhile,
advances in functionalization techniques will provide these with materials improved com-
petitiveness for certain applications. The performance of carbon-based multifunctional
nanomaterials is also expected to be further improved through their integration with other
functional materials, especially in the development of novel electronic devices, sensors, and
efficient energy storage systems. In addition, with the increasing demand for environmen-
tally friendly materials, the sustainability and environmental friendliness of carbon-based
materials is also increasing.
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