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A residence-time analysis of enzyme kinetics
Jacqueline J. SINES and David D. HACKNEY
Department of Biological Sciences, Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

A 'first-passage-time' analysis is applied to enzyme kinetics. It is shown that the residence times determined
in this way are directly related to the steady-state parameters and are particularly useful in analysis of
isotopic exchange. A simple linear means is used for the calculation of these residence times that makes this
method easily applicable to the numerical evaluation of complex models. This stochastic type of approach
provides an alternative that avoids the classical steady-state approximation that the concentrations of
enzyme intermediates are constant. Instead, steady state is defined as the randomization of the states of the
enzyme following initial mixing due to completion of the turnovers of individual enzyme molecules at
different times.

INTRODUCTION
Many reaction schemes can be formulated as a set of

first-order or pseudo-first-order interconversions. These
schemes can be analysed by a first-passage-time
treatment (Weiss, 1967), in which the average lifetime or
residence time of a species before first passage through
a selected step is determined by integration of the time
course of the reaction. The present paper reports the
application of this approach to initial-rate enzyme
kinetics and isotopic exchange. The residence times for
the enzyme intermediates are evaluated during an
isolated turnover starting from a single intermediate.
Certain of these residence times are shown to be
proportional to the steady-state concentrations. Further-
more, ratios of residence times can provide information
about the partitioning of intermediates, and this is
directly useful in analysis of isotopic-exchange reactions.
This stochastic analysis underlies approaches based on
net rate constants and transit times (Yagil & Hoberman,
1969; Cleland, 1975; Fersht, 1985). The evaluation of
residence times follows directly and unambiguously from
the definition of the kinetic scheme and can be simply
determined numerically by matrix inversion for even
highly complex models.

Steady-state and isotopic-exchange parameters are
classically derived by direct solution of the set of
differential equations describing the kinetic scheme (see
Huang, 1979). The stochastic approach now presented
here represents an alternative type of analysis that is
useful both for the insights obtained from its different
perspective and for the unique set of residence times that
it can provide.

THEORY AND DISCUSSION
The mechanism of eqn. (1) serves as a minimal model

to illustrate the application of first time of passage
analysis to enzymic kinetic schemes:

k+1 k+2
S+E= EX = E+P (1)

k-, k_2

Pseudo-first-order conditions will be assumed, with the
concentrations of S and P unchanging during the

initial-rate phase. The differential equations describing
this complete system are:

d[E]/dt = -k[E]+k'[EX]
d[EX]/dt = k[E] - k'[EX]

where k = k+1[S]+ k_2[P] and k' = k,+ k+2 are pseudo-
first-order rate constants. On mixing E with S and P, a
transient phase occurs as the concentrations ofE and EX
adjust to their steady-state values. This is illustrated in
Fig. l(a) and described by:

[E] = 1-kkk (1 e-(k+k')t

[EX] = k+k' (1-e(k+k')t)

for the sum of concentrations of all enzyme species
normalized to 1. (Here and throughout, concentrations
will be normalized to 1, yielding a dimensionless
parameter that is equivalent to probability.)

Consider now a hypothetical 'isolated turnover' of
this system, defined as a turnover initiating with free E
and terminating with the first passage through a
ligand-release step, which for the scheme of eqn. (1) is
step 2 or the reverse of step 1. This is a simple system of:

/C k'
E -- EX

with

and

d[E]/dt = -k[E]
d[EX]/dt = k[E] - k'[EX]

[E] = e-kt
k

[EX] = k k (e-kt - e-k't)

The time course of such an isolated turnover is
illustrated for comparison in Fig. 1(b). Concentrations of
all enzyme species will decay to zero in the limit of
infinite time because the term for regeneration of E from
EX is absent whereas the term for loss of EX is still
present. Integration of these expressions for [E] and [EX]
from time zero to infinity yields the residence times rE
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Fig. 1. Time course of first-order schemes, calculated for the

scheme of eqn. (1) (a) under steady-state conditions or (b)
as an isolated turnover

Rate constants were 1.5 and 2 for k and k' respectively
in arbitrary units. , [El; ------, [EX].

and rEX, which are the total times spent as E or EX
during a single isolated turnover and are given by:

rE=j [E]-dt=

rEX = [EX] dt = kl
0

In a real experimental situation under pseudo-first-
order conditions, the free E released in the steps with rate
constants k+2 and k-, of each isolated turnover will
recycle through the scheme repeatedly, with E and EX
reaching their steady-state concentrations as different
enzyme molecules complete their cycles at different times.
The relative times spent as E and EX at steady state will
be equal to the relative times spent as E and EX during
a single isolated turnover (rE and rEX), and the average
turnover time at steady state will be equal to the total
time spent as E and EX during a single isolated turnover
(rtotai = rE+rEX). Thus at steady state:

and
[E]SS = E [E] = k-[E' t

rtotal

[EX]ss rEX [E]t = k k [Et
rtotal +k'

The net velocity in the forward direction will be the
difference between the rate of production of P and the
rate of loss of P or:

vnet = k+2[EX]ss-k (2)
k+2k-k-2[P]k'[.l

k+k'
which for the special case of [P] = 0 reduces to the
well-known Briggs-Haldane equation. The reverse
reaction can be analysed in an analogous manner. This
approach is applicable, within the limits of the initial-rate
approximation, to both the initial-rate period following
first mixing of free E with S and P and to the
instantaneous rate at each set of [S] and [P] values during
the progress of the reaction.

Linear solution for residence times
Evaluation of residence times by explicit integration of

the time course of an isolated turnover was trivial for the
minimal model of eqn. (1), but becomes highly involved
for schemes even of only modest complexity. These
integrations, however, reduce to a simple form for
first-order reactions (see the Appendix) that is easily
applied to complex mechanisms. For the scheme of eqn.
(1), the differential equations describing an isolated
turnover with E as the recycling species can be expressed
in matrix notation as

d[E]/dt -k
d[EX]/dt k

0 [E]

k' [EX]

or

d[E]/dt
d[EX]/dt =BX (3)

where B is the 2 x 2 matrix of differential coefficients and
X is the column vector of the amounts of E and EX. The
vector of residence times, Tr, is defined as:

rETr =
rEX

and can be evaluated by matrix inversion (see the
Appendix) by using:

Tr =-B-'-Xo = R Xo (4)
where R is a matrix of residence times calculated as the
inverse of matrix -B and X0 is the distribution of
enzyme species at the start of the isolated turnover. For
an isolated turnover of the scheme of eqn. (1) starting
with all of the enzyme as free E and with E and EX
designated intermediates and 2 respectively:

T rE _ -k 0 'l _ 1/k 0 1 I_ I/k
rEX k -k' 0 1/k' 1/k' 0 1/k'

The first column of matrix R contains the residence
times for an isolated turnover starting from free E. It can
also be seen that the second column of R contains the
residence times for E and EX starting from EX in this
isolated turnover, with free E as the recycling species (i.e.
multiply R by 10, ll). Steady-state parameters for the
scheme of eqn. are taken from the column of R
corresponding to free enzyme because free enzyme is the
species that links successive isolated turnovers. We define
rj to be the entries of the matrix R, and Tr is defined to
be the vector of net residence times ri from which
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steady-state parameters are derived. Tr is obtained by
multiplying R by the value of XO that has all of the
enzyme present as the recycling species (i.e. a vector of
zeros except for a value of 1 for the recycling species).

It should be emphasized that free E was selected as the
recycling species in the above treatment because this
is the conventional perspective. It is equally valid,
however, for any intermediate to be considered as the
species that initiates the isolated turnover and recycles.
Thus an isolated turnover can also be defined for EX as
the recycling species as:

k' k

EX- E -

with rE and rEX unchanged from above.
For branched schemes, the absolute values of the net

residence times for isolated turnovers with different
recycling intermediates will not in general be identical,
but the relative values of the net residence times for any
one recycling intermediate will still be proportional to the
steady-state concentrations.

Complex schemes
The random binding scheme of eqn. (5) with two

substrates and two products serves to illustrate the
application to more complex mechanisms:

EA
k+1[AJ

-1

E

EP
[B]k k+2

k 3[B] k+4[AJ

EB

k+9
EAB ;=±: EPQ

k-9

EQ

The kinetics for the isolated turnover, with free E as the
recycling species, are given by:

d[E]/dt -al 0 0
d[EA]/dt k+1[A] -o2-k-1 0
d[EB/dt k+3[B] 0 - a3-k-3
d[EAB]/dt = 0 k+2[B] k+4[A]
d[EPQ]/dt 0 0 0
d[EP]/dt k_6[P] 0 0
d[EQ]/dt k_8[Q] 0 0

where oi is the sum of all the other rate constants in the
ith column. Note that, in defining this matrix, steps 2, 4,
5, 7 and 9 are considered to be reversible, as they do not
result in release of the recycling species, free E, whereas
regeneration of free E in step 1, 3, 6 or 8 terminates the
isolated turnover. Thus the k-1, k-3, k+6 and k+8 terms
are included as negative entries on the diagonal, but are
not included as corresponding positive entries in the
off-diagonal positions. Solution of this system by eqn.
(4), with the only non-zero entry of XO corresponding to
free E, yields the set of net residence times that are
proportional to the steady-state concentrations.

This treatment is easily generalized to any first-order
scheme with n species. The terms of the n x n matrix B are
defined by the coefficients of the differential equations
describing the isolated turnover for any designated
recycling species. The bij terms for i t j are equal to the
rate constants kj, for conversion of species j into species

i (note inversion of subscript order between b and k
terms), and the bi,i terms are the negative sums of all rate
constants leading away from species i. This set of
equations will be identical with the usual equations
describing steady state (d[Ei]/dt = 0) except for the
absence of the off-diagonal terms for the regeneration of
the recycling species. Inversion of matrix - B yields R,
the matrix of residence times, in which the column
corresponding to the designated recycling species
contains the net residence times that are proportional to
steady-state values. Each other rij term is the time spent
as species i during a cascade from speciesj in the isolated
turnover specific for the designated recycling inter-
mediate.

If only the net residence times at steady state are
desired, the calculation of the complete inverse can be
avoided. Thus eqn. (4) can be multiplied on both sides by
-B to yield:

(6)-B Tr = Xo
or for the scheme of eqn. (1):

kO0rE I

-k k' rEX 0

In the general case this will be a simple linear system of
n simultaneous equations in n unknowns that can be
solved by any of the standard methods for such systems.

These methods are useful conceptually for derivation
of exact solutions to specific kinetic schemes with rate
constants treated as variables, but such solutions would
contain a very large number of terms for any but the
simplest schemes. In practice with a complex kinetic
scheme, numerical solutions can be readily obtained for
each set of numerical values of the rate constants
without explicit derivation of the exact solution.

O O 0 0 [E]
k-2 0 0 0 [EA]
k-4 0 0 0 [EB]
- a4 k-9 0 0 [EAB]
k+9 - 0T5 k_5[Q] k_7[P] [EPQ]
O -k+5_ 6-k+6 0 [EP]
O k+7 0 -o7-k+8 [EQ]

Computer programs are available from the authors for
performing such numerical evaluations.

Isotopic partitioning and exchange
In isotopic-exchange studies, it is useful to know the

total flux of free S into free P, such as would be measured
from the rate of appearance of radioactive label in P
starting from radioactively labelled S. For the minimal
scheme of eqn. (1), this forward flux, designated Rf, is
given by:

Rf = k+1[S][E]ss FEX,P
where FEX P is the fraction of EX that releases ligand as
P and is eqjual in this case to k+2/(k-l + k+2) or:

Rf = k +Sk' * [E]t [5] k+2[E]tk+k' t[S]+K' +
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where
K'= K k2[P]

and Km equals the Michaelis constant for the forward
reaction as (k-1 +k+2)/k+1. This expression is equivalent
to eqns. (7) and (9) of Boyer (1959) and applies both to
steady-state and equilibrium situations.

Analysis of the partitioning of enzyme intermediates
was trivial for the case of eqn. (1), but is more complex
for the scheme of eqn. (5). For example, if labelled A is
converted into labelled P, then the initial rate of transfer
of label from the A pool to the P pool, RA,P, can be
determined as:

RA,P = k+l[A][E]sSFEA,P+k+4[A][EB]SSFEAB,P
where Fi p is the fraction of intermediate i that first
releases iigand as P rather than as A. The relevant
residence times for determination of these partitioning
factors are those of an isolated turnover for a reduced
scheme that begins with all intermediates containing A or
P and terminates with the first step releasing A or P. Such
a reduced scheme is given by:

kv 1

E

and

EA

EB

EP
k+2B] k+

k-2 k+,, /k51Q]
EAB =± EPQ

k4 k\k9

EQ

Ek+

E

employed by Rose et al. (1974) in that the partitioning
of intermediates is determined by integration of a single
turnover. The specific procedure presented here has the
advantage that the algorithm is simple and unambiguous
and can be easily applied to complex schemes. More
importantly, however, is the fact that matrix inversion
provides a simple and direct way to evaluate the
residence times. Even the simple scheme considered by
Rose et al. (1974) was difficult to integrate analytically,
and such an approach could not be feasibly applied to a
complex scheme. Matrix inversion, in contrast, can
provide numerical evaluations of residence times even
with large complex schemes, and programs for inversion
are readily available.

Comparison of residence times and transit times
The use of turnover analysis to derive steady-state

parameters is also employed in methods that rely on net
rate constants and transit times (Yagil & Hoberman,
1969; Cleland, 1975; Fersht, 1985). The reciprocal of the
net rate constant is the time required for a given
intermediate, once formed, to decay, and is often
designated a transit time. A residence time is defined here
as the actual time spent as a given intermediate during an
isolated turnover. For a simple linear scheme, every
intermediate is formed during each turnover and the
reciprocals of the net rate constants are closely related to
residence times starting from free enzyme. Specifically,
the reciprocal of the net rate constant for an intermediate
will be proportional to the sum of the residence times for

d[EA]/dt _1-k+
d[EAB]/dt = k+2[B]
d[EPQ]/dt 0
d[EP]/dt 0

The residence times for this reduced scheme can be
obtained by application of eqn. (4) and are designated
r' FEA Pcan be determined from these r'1, EA values as:

F k+6rEP,EA+k+7rEPQ, EAEA,P - TEA
where 0EA is the sum of the fluxes through all of the
terminal steps in this reduced isolated turnover initiating
with EA, which in this case will be:

CEA kk-lrEA, EA+ k-4rEAB, EA+k+7rEPQ, EA+k+frkEP EA

Similarly FEAB,P is given by:

FEAB,P -7k+6rEP EAB+k+rEPQ, EAB
aEAB

where

CEAB =
k-rrA, EAB ' +-4r'EAB, EAB+k+7rEPQ, EAB+k+6rEP, EAB
These partitioning factors are also directly applicable

to analysis of isotope-trapping experiments (see Rose,
1980) in which, for example, a low concentration of
labelled A is incubated with enzyme, chased with an
excess of unlabelled A, B and P, and the fraction of the
label resulting in A compared with P is determined. The
residence-time approach is formally analogous to that

k-2 0 0 [EA]
-o2-k_4 k_9 0 [EAB]
k+g -O3-k7 k_5[Q] [EPQ]
0 k+5 -o4-k+6 -[EP]

itself and all species between it and the irreversible step
in an isolated turnover starting from free E. The set of
n transit times is in effect a subset of the complete n x n
set of residence times with the transit times bering
derived from only one column of the R matrix.
With branched kinetic schemes, however, this simple

correspondence is no longer valid. For example with the
scheme:

A pB

.P. P,$

the relative residence times for C and D starting from A
will be shorter than the total transit times for species C
and D, as only part of the net flux will go through each
branch.
Net rate constants are assigned by inspection in the

method of Cleland (1975), which requires special rules
for branched schemes and opens the possibility that
errors can occur when complex assignments are
required. In contrast, the linear method presented here
for determination of residence times only requires
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assignment of the rate constants to a simple square
matrix by clear and unambigious rules. In effect the
assignment of the terms of the matrix B is merely a
restatement of the particular kinetic model that is
desired. The calculation of residence times following this
assignment only requires inversion of the matrix - B,
which again is a simple and direct procedure. Thus
residence times can be readily determined even for very
large and complex kinetic schemes.

Comparison of stochastic and differential approaches
In usual practice (see Huang, 1979), steady-state

parameters are obtained by solution of the set of linear
differential equations that results from setting to zero the
derivative with respect to time of the concentration of
each enzyme species. This can be expressed in matrix
notation for the minimal scheme of eqn. (1) as:

A-* = l (8)XS 0

where matrix A is similar to matrix B, but contains the
additional terms required for recycling of free E at steady
state (compare with eqn. 3). This set of simultaneous
equations in general has no unique solution, but solution
is possible with the additional constraint of the
conservation equation, either directly or by specialized
algorithms such as the King-Altman method (King &
Altman, 1956). In this classical differential approach the
steady-state concentrations are determined as the
solution of eqn. (8), whereas with the method presented
here the residence times are obtained from solution of
eqn. (4) or (6). The forms of the two solutions are similar
and both require solution of a set of n simultaneous
linear equations in order to obtain steady-state para-
meters. The residence-time analysis has the advantage,
however, that the complete set of n x n residence times
can be obtained by calculation of the inverse of the - B
matrix. The isotope-partitioning treatment presented
here is an example of the usefulness of these ri,j terms
beyond mere calculation of steady-state parameters.

The major conceptual difference between the two
approaches lies in the way steady state is defined. In the
differential approach, the net rate will initially be zero on
mixing free E plus S and P, but will increase after a lag
phase to its steady-state value. This initial transient phase
is viewed as the time required for the intermediates to
reach their steady-state concentrations and for the
steady-state approximation of d[Ei]/dt = 0 to become
valid. This assumption is more properly stated as
d[Ei]/dt < d[P]/dt and can be a source of confusion, but
is avoided in the stochastic approach. From the
stochastic view, all the enzyme molecules are initially in
phase and begin their first isolated turnover at the same
time as free E, but this uniformity is lost as different
enzyme molecules complete their first and subsequent
turnovers at different times. Thus steady state in this
context is defined as the stage of the reaction that results
when this randomization process is complete and no
phase uniformity exists.
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APPENDIX
Linear determination of residence times

A general solution for mean first-passage times is well known (see Weiss, 1967) and reduces to the matrix-inversion
method for residence times in first-order kinetic schemes. The following is a simplified derivation specific to such cases
that illustrates the validity of eqn. (4) of the main paper.
For the scheme of eqn. (1) of the main paper, the residence times in Tr are equal to the integrated areas under the

curves for E and EX, which can be calculated numerically as:
('00 ~~~~~~00

TrJ Xt*dt =lim At OX XiAt *At (Al)

Now each Xt+At is related to each Xt by:

[E] 1-At-k 0 [E]
|[EX] t+AXt At-k I-At-k' [lEX]lt

or

Xt+At = [I+ At * B] - Xt
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where I is a 2 x 2 identity matrix. At any time point that is a multiple of At, XiAt can be defined in terms of the initial
distribution XO by:

XAt = [I+ At * B] * Xo
X2At = [I+At-B]XAt = [I+At-B]2.X0

XiAt = [I+ At * B]i*XO (A2)
Thus combination of eqns. (Al) and (A2) yields:

00

Tr =limAt ,oAt E [I+At B]i *10
It can be verified by expansion that:

[I+M+M2+2V+. . .][I-M] =I

for any square matrixM for which the terms ofMn vanish as n approaches infinity. Multiplying both sides by the inverse
of [I-M] gives:

[I+M+M2+M3+. . .1= [I-Ml-
[This is the matrix equivalent of the result:

00

Eai =(-a)-'
i-1

for a real number whose absolute value is less than 1.]
Now this relationship applies to the matrix [I+ At * B], since the terms ofX must approach zero at infinite time, and

substitution of [I+ At * B] for M yields:
00

, [I+ At * B]i = (I- [I+ At * B])-1 -At B)-1
i-O

and thus:

Tr = limAt OAt(-At*B)-1*XO =-B- XO = R *XO
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