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Abstract: Relaxation time and frequency spectra are not directly available by measurement. To
determine them, an ill-posed inverse problem must be solved based on relaxation stress or oscillatory
shear relaxation data. Therefore, the quality of spectra models has only been assessed indirectly
by examining the fit of the experiment data to the relaxation modulus or dynamic moduli models.
As the measures of data fitting, the mean sum of the moduli square errors were usually used, the
minimization of which was an essential step of the identification algorithms. The aim of this paper
was to determine a relaxation spectrum model that best approximates the real unknown spectrum in
a direct manner. It was assumed that discrete-time noise-corrupted measurements of a relaxation
modulus obtained in the stress relaxation experiment are available for identification. A modified
relaxation frequency spectrum was defined as a quotient of the real relaxation spectrum and relaxation
frequency and expanded into a series of linearly independent exponential functions that are known
to constitute a basis of the space of square-integrable functions. The spectrum model, given by a finite
series of these basis functions, was assumed. An integral-square error between the real unknown
modified spectrum and the spectrum model was taken as a measure of the model quality. This index
was proved to be expressed in terms of the measurable relaxation modulus at uniquely defined
sampling instants. Next, an empirical identification index was introduced in which the values of
the real relaxation modulus are replaced by their noisy measurements. The identification consists
of determining the spectrum model that minimizes this empirical index. Tikhonov regularization
was applied to guarantee model smoothness and noise robustness. A simple analytical formula was
derived to calculate the optimal model parameters and expressed in terms of the singular value
decomposition. A complete identification algorithm was developed. The analysis of the model
smoothness and model accuracy for noisy measurements was carried out. The equivalence of the
direct identification of the relaxation frequency and time spectra has been demonstrated when the
time spectrum is modeled by a series of functions given by the product of the relaxation frequency
and its exponential function. The direct identification concept can be applied to both viscoelastic
fluids and solids; however, some limitations to its applicability have been pointed out. Numerical
studies have shown that the proposed identification algorithm can be successfully used to identify
Gaussian-like and Kohlrausch–Williams–Watt relaxation spectra. The applicability of this approach
to determining other commonly used classes of relaxation spectra was also examined.

Keywords: viscoelasticity; relaxation spectra; linear relaxation modulus; direct spectrum approximation;
identification algorithm; model integral square error; noise robustness

1. Introduction

Although the first papers concerning relaxation time and frequency spectra determi-
nation come from the late 1940s of the 20th century [1,2], the recovery of the relaxation
spectrum from the measurement data is still an active area of research in rheology and the
identification of time-variable viscoelastic mechanical characteristics [3–10]. Relaxation
time and frequency spectra, with no direct accessible measurements, are recovered from the
stress relaxation or oscillatory shear data by applying appropriate identification methods
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intended for determination of the spectra. The relaxation spectrum identification task is the
problem of numerically solving a system of Fredholm integral equations of the first kind
obtained for discrete measurements of the relaxation modulus or storage and loss modulus
data. These problems are well-known to be the ill-posed inverse problems, the solutions to
which, if any, are very sensitive to even small changes in the experiment data leading to
arbitrarily large changes in the determined relaxation spectrum. Therefore, special stable
algorithms are requisite to determine noise-robust relaxation spectrum models.

Over the last 80 years, different analytical and numerical tools have been applied
to identify the relaxation spectrum. Numerous classes of algorithms were developed to
determine continuous and discrete relaxation spectra models. Many theoretical papers
have been devoted to the methods and algorithms for relaxation spectra determination,
e.g., see [3,6,9,11–14]. In addition, experimental studies conducted for various viscoelastic
materials motivated relaxation spectra models and appropriate identification algorithms,
for example as seen in [4,15–18]. Reviews of these methods and algorithms can be found in
many papers, for example [5,19,20] and, most recently, in [10,18].

After a few models and algorithms were derived from an application of the Post–
Widder differential formula [21–23], many more intricate methods and models have been
obtained based on the usage of the least-squares identification applied both to the re-
laxation modulus measurements obtained in the stress relaxation test [7,10,24–28] and
to the measurements of the storage and loss moduli resulted from the oscillatory shear
experiment [3–6,8,11,12,14–18]. For example, in [26–28], different identification algorithms
were derived for the optimal regularized least-squares identification of relaxation time
and frequency spectra in the classes of models defined by a finite series of different ba-
sis functions. In consequence, the quality of the spectra models was estimated by the
mean sum of relaxation modulus or dynamic moduli square errors used as a measure,
the minimization of which, with or without regularization, was an essential step of the
identification algorithm. In some papers, e.g., [4,7,29], the pure least-squares identification
was applied, while for example in [3,5,11,26–28] the regularized least-squares were used
with various rules applied for the choice of regularization parameters to ensure the stabil-
ity of the scheme and model smoothness. Recently, in [10], the best smoothed spectrum
model—which reproduces the relaxation modulus measurements with a small error of the
relaxation modulus model by minimizing the integral square norm of the spectrum—was
found; however, here, the identification criterion is related only to the spectrum model
and not to the unknown real spectrum, and the model error is assessed in terms of the
measurement-available relaxation modulus.

In this paper, a new approach is proposed based on direct approximation of the real
unknown relaxation time spectrum by a series of appropriately selected basis functions. It
was assumed that discrete-time noise-corrupted measurements of a relaxation modulus
obtained in the stress relaxation experiment are available for identification. First, a modified
relaxation frequency spectrum was defined as a quotient of the real relaxation spectrum
and relaxation frequency. This spectrum was expanded into a series of exponential func-
tions forming a basis of the space of square-integrable functions [30]. Such expansion is
equivalent to the expansion of the relaxation time spectrum into a series of basis functions,
these being the products of the relaxation frequency and the exponential function of it. The
spectra models, given by the finite series of these basis functions, were assumed. An inte-
gral square error between the real unknown spectrum and the spectrum model was taken
as a measure of the model quality index. The equivalence of such defined indices for the
relaxation time spectrum and the modified frequency spectrum was proved, which means
an equivalence between the respective spectra approximation tasks. Next, an empirical
identification index was introduced by replacing the real relaxation modulus by their noise
measurements. The resulting identification problem is a linear-quadratic optimization
task in which Tikhonov regularization is applied to ensure its well-posedness. Simple
analytical formula for determining the optimal model parameters was derived; the singular
value decomposition can be used for algebraic computations. A complete identification
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algorithm for determining the optimal models of the relaxation spectra has been developed.
Model smoothness and noise robustness were analyzed. The results of simulation studies
conducted for uni- and double-mode Gaussian-like and Kohlrausch–Williams–Watts relax-
ation spectra are presented. Finally, based on the congruence of the boundary conditions of
the real spectra and the model basis functions, a short analysis of the applicability of the
proposed approach is outlined for different classes of the real spectra, and its limitations are
pointed out. It is demonstrated that the concept of direct relaxation spectrum identification
can be applied both for viscoelastic fluids and viscoelastic solids. In Appendix A, the proofs
and derivations of some mathematical formulas and results are given.

The idea of using a series expansion of the spectrum model has been previously ap-
plied both in the time [26–28] and frequency [8] domains; however, in these papers, the
identification indices, being minimized, were related to the models of the relaxation or
dynamic moduli and not to the unknown spectrum model. Here, the use of appropriately
selected basis functions of the relaxation spectrum model allowed for linking the model
quality index, related directly to the unknown spectrum, with the relaxation modulus mea-
surements. This means that the identification index being minimized, although expressed
in terms of the relaxation modulus measurements, refers directly to the unknown relaxation
spectrum, not to the measured relaxation modulus. This new approach is proposed and
used in this paper for the first time.

2. Materials and Methods
2.1. Relaxation Spectra

It is widely assumed in rheology [31–33] that the linear relaxation modulus G(t) (i.e.,
the stress per unit strain) has a relaxation spectrum representation of the form

G(t) =
∫ ∞

0

H(τ)

τ
e−t/τdτ, (1)

or equivalently by

G(t) =
∫ ∞

0

H(v)
v

e−tvdv, (2)

where the relaxation time H(τ) and frequency H(v) spectra, related by

H(v) = H
(

1
v

)
, H(τ) = H

(
1
τ

)
, (3)

characterize the distributions of relaxation times τ and frequencies v. They are generaliza-
tions of discrete Maxwell spectra [31,32] to continuous functions of τ and v. Although other
definitions of the relaxation spectrum are used in the literature, for example, in [34–36], the
definition introduced by Equations (1) and (2) dominates.

2.2. Models

Following [26], the modified spectrum is introduced

HM(v) =
H(v)

v
, (4)

where the upper index of HM(v) means “modified”. Model transformation defined by (4)
is a bijection. Equation (2) can be rewritten as follows:

G(t) =
∫ ∞

0
HM(v)e−tvdv, (5)

i.e., the modulus G(t) is directly the Laplace integral of the spectrum HM(v).
Assume that HM(v) ∈ L2(0, ∞), where L2(0, ∞) is the space of real-valued square-

integrable functions on the interval (0, ∞). The respective sufficient conditions are given
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by Theorem 3 in [37]. The set of the linearly independent exponential functions
{

e−αkv
}

,
k = 0, 1, . . ., where α > 0, i.e., the kernel of the Laplace transformation, form a basis of the
space L2(0, ∞) [30]. Thus, the modified relaxation spectrum can be expressed as:

HM(v) = ∑∞
k=0 gkhk(v), (6)

with basis functions defined as follows

hk(v) = e−αkv, (7)

where parameter α > 0 is a time-scaling factor expressed in seconds, while gk are constant
model parameters.

By (4) and (6), for the real relaxation spectrum of the material we have:

H(v) = ∑∞
k=0 gkhk(v)v. (8)

The modified spectrum HM(v) ∈ L2(0, ∞), then, HM(v) → 0 as v → ∞ and the first
basis function can be neglected. For practical reasons, it is convenient to replace the infinite
summation in the above equation with a finite one of K first terms, i.e., to approximate the
relaxation spectrum HM(v) (4) by a model of the form

HM
K (v) = ∑K

k=1 gkhk(v), (9)

where the lower index of HM
K (v) is the number of model summands. Spectrum HM(v) (4)

is expressed in Pa·s, so also Pa·s is a unit of the model’s parameters gk. The model of the
original spectrum H(v) related to (9) takes the form

HK(v) = vHM
K (v) = ∑K

k=1 gkhk(v)v. (10)

The related relaxation modulus model, by (5) and (9) is described by the following:

GK(t) =
∫ ∞

0
HM

K (v)e−tvdv = ∑K
k=1 gk

1
t + αk

= ∑K
k=1 gkϕk(t), (11)

where the basis functions, expressed in s−1, are as follows

ϕk(t) =
1

t + αk
. (12)

By the second equality in (3), (8), and (7), we obtain the following series representation
of the relaxation time spectrum

H(τ) = ∑∞
k=0 gke

−
αk
τ

1
τ

, (13)

Omitting, as above, the first component and considering the K next terms of the
series (13), the relaxation spectrum H(τ) can be approximated by a model of the form

HK(τ) = ∑K
k=1 gk𝒽k(τ), (14)

where the basis functions

𝒽k(τ) = e
−

αk
τ

1
τ

(15)

and the model parameters gk, expressed in Pa·s, are identical to that of model (9). By (1)
and (14), the relaxation modulus model is as follows:
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GK(t) =
∫ ∞

0

HK(τ)

τ
e−t/τdτ = ∑K

k=1 gk

∫ ∞

0

1
τ2 e

−
t + αk

τ dτ = ∑K
k=1 gkϕk(t),

where the basis functions are given by (12), i.e., it is identical to the model described by (11).

2.3. Properties of the Basis Functions

A few basis functions hk(v) (7) of the model HM
K (v) (9) are shown in Figure 1 for two

different values of the time-scale factor α, while in Figure 2, the basis functions hk(v)v of
the model HK(v) (10) are given. In Figure 3, the basis functions 𝒽k(τ) (15) of the relaxation
time spectrum model HK(τ) (14) are demonstrated.

Materials 2024, 17, x FOR PEER REVIEW 5 of 33 
 

 

2.3. Properties of the Basis Functions 

A few basis functions ℎ"��� (7) of the model �0���� (9) are shown in Figure 1 for 
two different values of the time-scale factor ', while in Figure 2, the basis functions ℎ"���� of the model �0��� (10) are given. In Figure 3, the basis functions :"��� (15) of 
the relaxation time spectrum model ℋ0��� (14) are demonstrated. 

  
(a) (b) 

Figure 1. Basis functions ℎ"��� = ��!"� (7) of the relaxation spectrum model �0���� (9) for two 
time-scaling factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 5, 10, 20, 100, 500. 

  
(a) (b) 

Figure 2. Basis functions ℎ"���� of the relaxation spectrum model �0��� (10) for two time-scaling 
factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 2, 5, 10, 100, 500. 

  
(a) (b) 

Figure 3. Basis functions :��� = ��789 �D  (15) of the relaxation time spectrum model ℋ0��� (14) for 
two time-scaling factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 5, 10, 20, 100, 500. 

Figure 4 shows the hyperbolic basis functions 6"��� (12) of the relaxation modulus 
model �0��� (11). Functions 6"��� are almost constant in time and near zero (in the 

Figure 1. Basis functions hk(v) = e−αkv (7) of the relaxation spectrum model HM
K (v) (9) for two

time-scaling factors, α: (a) α = 0.001 [s]; (b) α = 0.1 [s]; k = 1, 5, 10, 20, 100, 500.

Materials 2024, 17, x FOR PEER REVIEW 5 of 33 
 

 

2.3. Properties of the Basis Functions 

A few basis functions ℎ"��� (7) of the model �0���� (9) are shown in Figure 1 for 
two different values of the time-scale factor ', while in Figure 2, the basis functions ℎ"���� of the model �0��� (10) are given. In Figure 3, the basis functions :"��� (15) of 
the relaxation time spectrum model ℋ0��� (14) are demonstrated. 

  
(a) (b) 

Figure 1. Basis functions ℎ"��� = ��!"� (7) of the relaxation spectrum model �0���� (9) for two 
time-scaling factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 5, 10, 20, 100, 500. 

  
(a) (b) 

Figure 2. Basis functions ℎ"���� of the relaxation spectrum model �0��� (10) for two time-scaling 
factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 2, 5, 10, 100, 500. 

  
(a) (b) 

Figure 3. Basis functions :��� = ��789 �D  (15) of the relaxation time spectrum model ℋ0��� (14) for 
two time-scaling factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 5, 10, 20, 100, 500. 

Figure 4 shows the hyperbolic basis functions 6"��� (12) of the relaxation modulus 
model �0��� (11). Functions 6"��� are almost constant in time and near zero (in the 

Figure 2. Basis functions hk(v)v of the relaxation spectrum model HK(v) (10) for two time-scaling
factors, α: (a) α = 0.001 [s]; (b) α = 0.1 [s]; k = 1, 2, 5, 10, 100, 500.

Materials 2024, 17, x FOR PEER REVIEW 5 of 33 
 

 

2.3. Properties of the Basis Functions 

A few basis functions ℎ"��� (7) of the model �0���� (9) are shown in Figure 1 for 
two different values of the time-scale factor ', while in Figure 2, the basis functions ℎ"���� of the model �0��� (10) are given. In Figure 3, the basis functions :"��� (15) of 
the relaxation time spectrum model ℋ0��� (14) are demonstrated. 

  
(a) (b) 

Figure 1. Basis functions ℎ"��� = ��!"� (7) of the relaxation spectrum model �0���� (9) for two 
time-scaling factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 5, 10, 20, 100, 500. 

  
(a) (b) 

Figure 2. Basis functions ℎ"���� of the relaxation spectrum model �0��� (10) for two time-scaling 
factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 2, 5, 10, 100, 500. 

  
(a) (b) 

Figure 3. Basis functions :��� = ��789 �D  (15) of the relaxation time spectrum model ℋ0��� (14) for 
two time-scaling factors, ': (a) ' = 0.001 [4]; (b) ' = 0.1 [4]; $ = 1, 5, 10, 20, 100, 500. 

Figure 4 shows the hyperbolic basis functions 6"��� (12) of the relaxation modulus 
model �0��� (11). Functions 6"��� are almost constant in time and near zero (in the 

Figure 3. Basis functions 𝒽(τ) = e
−

αk
τ /τ (15) of the relaxation time spectrum model HK(τ) (14) for

two time-scaling factors, α: (a) α = 0.001 [s]; (b) α = 0.1 [s]; k = 1, 5, 10, 20, 100, 500.



Materials 2024, 17, 4870 6 of 35

Figure 4 shows the hyperbolic basis functions ϕk(t) (12) of the relaxation modulus
model GK(t) (11). Functions ϕk(t) are almost constant in time and near zero (in the consid-
ered time intervals) for k = 100 and k = 1000. However, for smaller indices k, they are in
good agreement with the real relaxation modulus obtained in the stress relaxation test.
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The basis functions of the models HM
K (v), HK(v), and GK(t) are positive definite.

Functions hk(v) (7) are monotonically decreasing, while basis functions hk(v)v of the model
HK(v) (10) have global maxima equal to 1/(αke) for the relaxation frequencies v = 1/(αk).
In addition, basis functions 𝒽k(τ) (15) have unique maxima equal to 1/(αke) at the re-
laxation times τ = αk. Relaxation modulus basis functions ϕk(t) (12) are monotonically
decreasing. For large v, and in particular for v → ∞ , the basis functions hk(v) and hk(v)v
decrease exponentially to zero. Similarly, for τ → ∞ functions 𝒽k(τ) → 0 , faster than the
exponential function. Functions ϕk(t) tends to zero hyperbolically as t → ∞ .

3. Results

In this section, the problem of optimal spectrum approximation in the class of models
defined by a finite series of the introduced basis functions is formulated and solved. First,
it is demonstrated that the problem of the optimal—in the sense of an integral square
error—approximation of the modified relaxation frequency spectrum is equivalent to the
problem of the optimal approximation of the relaxation time spectrum. It is also proved
that, due to the choice of exponential basis functions, the integral square model error can be
expressed in terms of the relaxation modulus in the sampling points uniquely determined
by the basis functions of the spectrum model. Next, an empirical identification index
is introduced in which the values of the real relaxation modulus are replaced by their
noisy, in general, measurements. The optimal models of the relaxation time and frequency
spectra are determined by solving the linear-quadratic identification task. However, this
problem turned out to be ill-conditioned. Therefore, Tikhonov regularization is applied
resulting in the stable, noise-robust and simple identification rule. Next, the equations and
functions essential for the proposed identification scheme are described in terms of the
singular value decomposition of the basic matrix of this identification problem. Model
smoothness is estimated, error of the relaxation modulus is evaluated, noise robustness and
convergence analysis is conducted. The complete identification algorithm is presented. The
results of simulation studies for Gaussian-like and Kohlrausch–Williams–Watts relaxation
spectra describing many real materials are presented. Finally, based on the congruence of
the boundary conditions of the real spectra and the basis functions, a rough applicability
analysis of the proposed approach is outlined for different classes of the real spectra.
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3.1. Spectrum Approximation

Model HM
K (v) (9) approximates the modified spectrum HM(v) (4). As a measure of

the model (9) accuracy the integral square index is taken

J (gK) =
∫ ∞

0

[
HM(v)− HM

K (v)
]2

dv, (16)

where gK =
[
g1 · · · gK

]T is an K—element vector of the model (9) parameters; super-
script “T” indicates transpose. In view of the additive form of the model (9), index J (gK)
can be expressed as follows:

J (gK) =
∫ ∞

0
HM(v)

2
dv − 2∑K

k=1 gk

∫ ∞

0
HM(v)hk(v)dv + ∑K

k=1 ∑K
m=1 gkgm φkm, (17)

where, by (7), the coefficients

φkm =
∫ ∞

0
hk(v)hm(v)dv =

∫ ∞

0
e−α(k+m)vdv =

1
α(k + m)

. (18)

Since, in view of (5) and (7), we have:∫ ∞

0
HM(v)hk(v)dv =

∫ ∞

0
HMe−αkvdv = G(αk),

the above index takes the form

J (gK) =
∫ ∞

0
HM(v)

2
dv − 2∑K

k=1 gkG(αk) + ∑K
k=1 ∑K

m=1 gkgm φkm. (19)

Model HK(τ) (14) approximates the real spectrum H(τ). As a measure of the model
(14) accuracy the square index, analogous to (16), is taken

J (gK) =
∫ ∞

0
[H(τ)−HK(τ)]

2dτ, (20)

where gK is a vector of the model (14) parameters. In view of (14) and (15), the above index
can be expressed as follows:

J (gK) =
∫ ∞

0 H2(τ)dτ−2∑K
k=1 gk

∫ ∞
0 H(τ)𝒽k(τ)dτ+

∑K
k=1 ∑K

m=1 gkgm
∫ ∞

0 𝒽k(τ)𝒽m(τ)dτ,
(21)

where, by (15) and (1)

∫ ∞

0
H(τ)𝒽k(τ)dτ =

∫ ∞

0
H(τ)e

−
αk
τ

1
τ

dτ = G(αk),

while the integrals

∫ ∞

0
𝒽k(τ)𝒽m(τ)dτ =

∫ ∞

0

1
τ2 e

−
α(k + m)

τ dτ =
1

α(k + m)
= φkm, (22)

are identical to that given by (18). Combining the above with (21) yields

J (gK) =
∫ ∞

0
H2(τ)dτ − 2∑K

k=1 gkG(αk) + ∑K
k=1 ∑K

m=1 gkgm φkm.
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For the material relaxation spectra H(τ) and HM(v), by (4) and simple substitution
based on (3), we have the following:

∫ ∞

0
HM(v)

2
dv =

∫ ∞

0

H(v)2

v2 dv =
∫ ∞

0
H
(

1
v

)2 1
v2 dv =

∫ ∞

0
H(τ)2dτ, (23)

that is, the integral square index defined by (20) is identical to that defined by (16); therefore,
the same notation was used.

3.2. Identification Problem

Suppose that a certain identification experiment (stress relaxation test [1,33,38]) per-
formed on the specimen of the material under investigation resulted in a set of measure-
ments of the relaxation modulus

{
Ḡ(tk) = G(tk) + z(tk)

}
at the sampling instants tk = αk,

k = 1, . . . , K; where z(tk) is additive measurement noise. Generally, identification consists
of selecting within the given class of models, which ensures the best fit to the measurement
results. Classically, the mean square identification index related to the measurements of the
relaxation modulus Ḡ(tk) is used; compare [7,24,26–28]. This means that the model quality
index is not related directly to the unknown relaxation spectrum, which is inaccessible by
measurement, but to the measurement-available relaxation modulus. Such an approach is
typical in the context of the inverse problem.

Here, as a measure of the model (9), equivalently (14), the accuracy of the index J (gK)
of the form (16) is applied. Note, that the first component of J (gK) given by the right-hand
side of (19) depends on the unknown relaxation spectrum; the second term is determined
by model parameters gk and the values of the measurable relaxation modulus at the time
instant tk = αk; and the last component is affected only by the model parameters and the
times tk. Replacing in (19) the relaxation modulus G(tk) = G(αk) by their measurements
Ḡ(tk), we obtain the following integral-empirical index

J̄K(gK) =
∫ ∞

0
HM(v)

2
dv − 2∑K

k=1 gkḠ(αk) + ∑K
k=1 ∑K

m=1 gkgm φkm. (24)

Let us introduce the vector-matrix notation

ΦK =


1
2

· · · 1
K + 1

...
. . .

...
1

K + 1
· · · 1

2K

, GK =

 Ḡ(t1)
...

Ḡ(tK)

. (25)

Note that element (k, m) of the matrix ΦK, i.e., the entry in the k-th row and m-th
column of ΦK, is equal to αφkm and is dimensionless. Therefore, the algebraic properties
of the matrix ΦK do not depend on the time-scale factor α. Using the above notation and
bearing in mind (18), the identification index (24) can be expressed in compact form as
follows:

J̄K(gK) =
∫ ∞

0
HM(v)

2
dv − 2GT

KgK +
1
α

gT
KΦKgK. (26)

Thus, the optimal identification of the relaxation spectrum in the class of models
(9), equivalently (14), consists of solving—with respect to the model parameter gK—the
linear-quadratic problem

min
gK∈RK

J̄K(gK), (27)

the system of normal equations of which is as follows:

ΦKgK = αGK. (28)
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The existence and properties of the solution to (28) depend on the properties of square
symmetric matrix ΦK (25) specified by the following result, which is the simple consequence
of the independence of the basis functions hk(v) (7), as proved in Appendix A.1.

Lemma 1. The matrix ΦK, Equation (25), is positive definite for an arbitrary K ≥ 1.

By the above lemma, the unique solution of the minimization task (27) is as follows:

gK = αΦ−1
K GK. (29)

The matrix ΦK, although of full-rank, is extremely ill-conditioned and must be used
with care. Namely, the problem of the matrix ΦK inversion is ill-conditioned, therefore
small perturbations in ΦK may produce large changes in Φ−1

K . The spectral condition
number ([39] Equation (2.6.3))

κ(ΦK) =
∥∥∥Φ−1

K

∥∥∥
2
·∥ΦK∥2, (30)

where ∥·∥2 is the spectral norm of matrices, and equal, in fact, to the ratio of the largest
singular value of ΦK to the smallest, measures the sensitivity of the answer to small
perturbation of the data. From the first row values in Table 1, where κ(ΦK) is given for a
few values of K, we see that index κ(ΦK) exceeds the value of 105 already for K = 5, the
value of 1010 as early as K = 8 and tends to infinity with growing K. Thus, positive definite
ΦK is suspected to be very ill-conditioned, even for not very large K ≥ 5, and numerical
solution of (28) results in fluctuations of the parameters vector gK, which are the greater,
the greater is the value of the condition number κ(ΦK).

Table 1. Spectral condition numbers κ(ΦK) and κ(ΦK + αλIK,K) defined according to (30).

αλ K = 2 K = 3 K = 4 K = 5 K = 8 K = 10 K = 15 K = 20 K = 100 K = 1000 K = 10,000

0 38.474 1.35 × 103 4.59 × 104 1.54 × 106 5.64 ×
1010

6.23 ×
1013

2.61 ×
1017

6.45 ×
1018

1.20 ×
1019

9.59 ×
1020 1.0 × 1022

10 1.071 1.087 1.098 1.106 1.122 1.129 1.14129 1.1496 1.18809 1.225 1.248
1 1.699 1.874 1.977 2.056 2.215 2.288 2.412 2.495 2.880 3.247 3.479

0.1 6.983 9.688 10.773 11.559 13.154 13.877 15.123 15.953 19.800 23.469 25.798
0.01 25.552 83.135 98.55 106.59 122.542 129.766 142.232 150.535 189.001 225.687 248.977

1 × 10−3 36.600 532.056 958.14 1.06 × 103 1.22 × 103 1.29 × 103 1.41 × 103 1.49 × 103 1.88 × 103 2.25 × 103 2.48 × 103

1 × 10−4 38.278 1.17 × 103 8.06 × 103 1.05 × 104 1.22 × 104 1.29 × 104 1.41 × 104 1.49 × 104 1.88 × 104 2.25 × 104 2.48 × 104

1 × 10−5 38.454 1.33× 103 3.12 × 104 9.88 × 104 1.22 × 105 1.29 × 105 1.41 × 105 1.49 × 105 1.88 × 105 2.25 × 105 2.48 × 105

Summarizing, the linear-quadratic identification task (27) is ill-conditioned [40] and
when the data are noisy even small changes in GK would lead to an arbitrarily large artefact
in gK given by (29). Therefore, the numerical solution of the finite-dimensional problem
(27) is fraught with the same difficulties that the original continuous ill-posed problems of
numerical solution of the Fredholm Equations (2) or (5).

3.3. Regularization

To deal with the ill-conditioning, we use Tikhonov regularization [41], which is classi-
cal and because of its simplicity, probably the most common method for solving ill-posed
linear-quadratic problems. For the linear-quadratic task (27), Tikhonov regularization
strives in minimizing a modified square functional of the form

J̄K(gK) + λgT
KgK, (31)
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where λ > 0 is a regularization parameter. The unit of λ must be s−1 to ensure dimensional
consistency of the above index. For J̄K(gK) given by (26), the regularized task results in
the linear-quadratic optimization task

min
gK∈RK

1
α

gT
KΦKgK − 2GT

KgK + λgT
KgK; (32)

the first summand of (26), being independent on gK, does not have to be taken into account
here, just as it did not affect the minimization result in the original problem (27). The set of
normal equations is now as follows

(ΦK + αλIK)gK = αGK, (33)

where IK is K × K identity matrix.
The existence and properties of the solution of (33) depend on the properties of the

symmetric matrix (ΦK + αλIK). Based on Lemma 1, (ΦK + αλIK) is non-singular and
positive definite for any λ ≥ 0. In successive rows of Table 1, the spectral conditional
numbers κ(ΦK + αλIK) are given for a few values of the dimensionless product αλ, which
determines the value of κ(ΦK + αλIK) for given K. The numerical studies indicate that
κ(ΦK + αλIK) is not greater than the numerically acceptable value 105 [42] for K ≤ 50,
whenever the parameters product αλ ≥ 1.7 × 10−5, for K ≤ 100 if αλ ≥ 1.89 × 10−5, and
for αλ ≥ 2.16 × 10−5, assuming measurement points K ≤ 500.

Therefore, the problem (32) is well-posed, that is the solution exists, is unique, and
continuously depends on both the matrix ΦK and the measurements GK. By (33), the
optimal regularized vector is given by the following formula:

ḡK(λ) = α(ΦK + αλIK)
−1GK. (34)

Elegant and compact Formula (34) is, however, unsuitable for computational purposes,
for which the singular decomposition technique [39] will be used.

3.4. Algebraic Background

Let the singular value decomposition (SVD) of the matrix ΦK (25) take the form [39]

ΦK = UKΣKUT
K, (35)

where the diagonal K × K matrix

ΣK = diag(σ1, . . . , σK), (36)

is composed of the non-zero singular values σ1 ≥ . . . ≥ σk ≥ . . . ≥ σK of the matrix ΦK;
matrix UK ∈ RK,K is orthogonal. The SVD (35) is uniquely determined. The singular values
σk of ΦK do not depend on the time-scale factor α. Therefore, for given K, the SVD must
be computed only once even if the sampling instants tk = αk dependent on the parameter
α are changed in the experiment. Taking advantage of the diagonal structure of ΣK and
orthogonality of the matrix UK, we have:

(ΦK + αλIK)
−1 = UK(ΣK + αλIK)

−1UT
K = UKΩKUT

K
T

, (37)

where diagonal K × K matrix

ΩK = (ΣK + αλIK)
−1 = diag

(
1

σ1 + αλ
, . . . ,

1
σK + αλ

)
. (38)
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In view of (37), (34), and (38), the optimal regularized vector ḡK(λ) is expressed as
follows:

ḡK(λ) = αUK(ΣK + αλIK)
−1YK = αUKΩKYK, (39)

where the K dimensional vector
YK = UT

KGK. (40)

According to (9), (10), and (14), the resulting best relaxation spectra models are as
follows

HM
K (v) = ∑K

k=1 ḡk(λ)hk(v), (41)

HK(v) = ∑K
k=1 ḡk(λ)hk(v)v, (42)

and
HK(τ) = ∑K

k=1 ḡk(λ)𝒽k(τ), (43)

where ḡk(λ) are elements of the vector ḡK(λ) (34), or equivalent (39).

3.5. Analysis

The model smoothing and its accuracy in the case of noisy measurements of the
relaxation modulus will be now analyzed. Contrary to the previous papers [26–28]—in
which the model quality index refers to the relaxation modulus but not directly to the un-
known relaxation spectrum—here we can estimate the spectra errors

∥∥HM(v)− H̄M
K (v)

∥∥
2,∥∥∥∥H̄K(v)−

∼
HK(v)

∥∥∥∥
2
, and

∥∥H(τ)− H̄K(τ)
∥∥

2 directly, where ∥·∥2 denotes the square norm

in the space L2(0, ∞).

3.5.1. Model Smoothness

The purpose of the regularization applied in (31) relies on stabilization of the vector of
model parameters ḡK(λ) (34). The norms

∥∥H̄M
K (v)

∥∥
2, ∥H̄K(v)∥2, and

∥∥H̄K(τ)
∥∥

2 are natural
measures of the spectra models’ (41)–(43) smoothness. In Appendix A.2, the following
result is derived.

Proposition 1. Let the time-scale factor α > 0 and the regularization parameter λ > 0. Then,
for the optimal relaxation spectra models H̄M

K (v) (41), H̄K(v) (42), and H̄K(τ) (43) we have
the following

1
α

σKḡT
K(λ)ḡK(λ) ≤

∥∥∥H̄M
K (v)

∥∥∥2

2
=
∥∥H̄K(τ)

∥∥2
2 =

1
α

ḡT
K(λ)ΦKḡK(λ) ≤

1
α

σ1ḡT
K(λ)ḡK(λ), (44)

where the vector ḡK(λ) is given by (39) and

2
α3 ςKḡT

K(λ)ḡK(λ) ≤ ∥H̄K(v)∥2
2 =

2
α3 ḡT

K(λ)ΘKḡK(λ) ≤
2
α3 ς1ḡT

K(λ)ḡK(λ), (45)

where σK and σ1 are the minimal and maximal singular values of the matrix ΦK (25), while ςK and
ς1 are the minimal and maximal singular values of the positive definite matrix

ΘK =


1
23 · · · 1

(K + 1)3

...
. . .

...
1

(K + 1)3 · · · 1

(2K)3

. (46)

The values of square roots of the smallest and largest singular values σK, σ1, ςK, and
ς1 for some model summands K are summarized in Table 2. Due to the ill-conditioning of
matrices ΦK and ΘK, the lower bounds in (44) and (45) are not too useful. Since

√
σ1 and
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√
ς1 grows with K, from the analysis of Table 2 data and the right inequalities in (44) and

(45), the next result follows immediately.

Table 2. The square roots of the largest σ1, ς1 and minimal σK , ςK singular value of the matrices ΦK

(25) and ΘK (46) for K model summands.

K 10 50 100 500 1000 5000 10,000
√

σ1 1.1348 1.3153 1.3711 1.4677 1.4989 1.5556 1.5747
√

σK 1.437 × 10−7 1.919 × 10−10 3.955 × 10−10 1.923 × 10−10 4.838 × 10−11 2.323 × 10−11 1.573 × 10−11

√
ς1 0.3737 0.3737 0.3737 0.3737 0.3737 0.3737 0.3737

√
ςK 6.829 × 10−8 1.151 × 10−11 1.847 × 10−12 1.017 × 10−13 2.455 × 10−14 2.769 × 10−15 6.473 × 10−15

Proposition 2. Let the time-scale factor α > 0 and the regularization parameter λ > 0. If the
number of relaxation modulus measurements K ≤ 104, then the optimal relaxation spectra models
H̄M

K (v) (41), H̄K(v) (42), and H̄K(τ) (43) are such that∥∥∥H̄M
K (v)

∥∥∥
2
=
∥∥H̄K(τ)

∥∥
2 ≤ 1.5747√

α
∥ḡK(λ)∥2, (47)

∥H̄K(v)∥2 ≤ 0.5285
α
√

α
∥ḡK(λ)∥2, (48)

where the vector ḡK(λ) (39) and ∥·∥2 denotes here the square norm in Euclidean space RK.

Since, by the right equality in (39) and the orthogonality of UK, we obtain:

ḡT
K(λ)ḡK(λ) = α2YT

KΩKUT
KUKΩKYT

K = α2YT
KΩ2

KYT
K,

bearing in mind the diagonal structure of ΩK (38) we have the formula:

∥ḡK(λ)∥
2
2 = ḡ

T
K(λ)ḡK(λ) = α2∑K

k=1

y2
k

(σk + αλ)2 , (49)

where yk are the elements of the vector YK (40), which directly illustrates the mechanism of
the regularization. The following rule holds: the greater the regularization parameter λ is,
the more highly bounded the fluctuations of the vector ḡK(λ) are.

Summarizing, the smoothness of the optimal vector ḡK(λ) of the model’s parameters
guarantees that the fluctuations of the resulting relaxation spectra models H̄M

K (v), H̄K(τ),
and H̄K(v) are also bounded. Both time-scale factor α and the regularization parameter λ
affect the smoothness of the spectrum models. However, it should be remembered that the
inequalities (47) and (48) give only the upper bounds of the respective norms.

3.5.2. Noise Robustness and Convergence

The model of the modified spectrum that we would obtain for the same time-scale
factor α and regularization parameter λ on the basis of ideal (noise-free) relaxation modu-
lus measurements:

∼
H

M

K (v) = ∑K
k=1

∼
gk(λ)hk(v), (50)

where
∼
gK(λ) is the vector model parameters given by the following (compare (39) and (40)):

∼
gK(λ) = αUKΩKUT

KGK (51)
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for the noise-free relaxation modulus GK =
[
G(t1) · · · G(tK)

]T , which will be consid-
ered as a reference point for the model H̄M

K (v) (41). The respective noise-free optimal
regularized models of the relaxation frequency and time spectra are as follows

∼
HK(v) = ∑K

k=1
∼
gk(λ)hk(v)v, (52)

and ∼
HK(τ) = ∑K

k=1
∼
gk(λ)𝒽k(τ). (53)

In Appendix A.3, the following estimations are derived.

Proposition 3. For an arbitrary time-scale factor α and arbitrary regularization parameter λ,
the errors between the relaxation spectra models H̄M

K (v) (41), H̄K(v) (42), and H̄K(τ) (43) and

related noise-free models
∼
H

M

K (v) (50),
∼
HK(v) (52), and

∼
HK(τ) (53) are estimated by the following

inequalities: ∥∥∥∥H̄M
K (v)−

∼
H

M

K (v)
∥∥∥∥

2
=

∥∥∥∥H̄K(τ)−
∼
HK(τ)

∥∥∥∥
2
≤

√
αγ∥zN∥2, (54)

where parameter

γ = max
1≤k≤K

√
σk

σk + αλ
, (55)

and ∥∥∥∥H̄K(v)−
∼
HK(v)

∥∥∥∥
2
≤

√
2 ς1√

α(σK + αλ)
∥zN∥2, (56)

where ς1 is the maximal singular value of ΘK (46); zN =
[
z(t1) · · · z(tN)

]T is the vector of
measurement noises.

According to inequalities (54) and (56), the accuracy of the noise-free optimal spectra
approximation depends on the measurement noises, the regularization parameter, the
time-scale factor, and on the singular values of the matrices ΦK (25) and ΘK (46), this being
dependent on the number of measurements. By (54) and (56), having in mind the continuity
of all the spectra considered here, we conclude that the spectra H̄M

K (v) (41), H̄K(v) (42),
and H̄K(τ) (43) tend to their noise-free counterparts for each v > 0 and τ > 0 linearly
with respect to the norm ∥zN∥2, as ∥zN∥2 → 0 , and the faster the larger the regularization
parameter λ.

3.5.3. Error of the Relaxation Modulus Model

The approximation of the material spectrum H(v) by series of functions HM
K (v) (9)

results in the relaxation modulus G(t) approximation by the series GK(t) (11) of basis func-
tions ϕk(t) (12). Therefore, the relaxation modulus model corresponding to the relaxation
spectra models (41)–(43) is described by the following equation:

ḠK(t) = ∑K
k=1 ḡk(λ)ϕk(t). (57)

The mean square error of the relaxation modulus model is as follows

QK(ḡK(λ)) =
1
K ∑K

k=1[Ḡ(tk)− ḠK(tk)]
2. (58)

In Appendix A.4, the following result is derived.

Proposition 4. For an arbitrary time-scale factor α and arbitrary regularization parameter λ,
the square error of the relaxation modulus model ḠK(t) (57) defined by (58) for the optimal model
parameter ḡK(λ) (39) is given by the following formula:
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QK(ḡK(λ)) =
1
K

[
GK − 1

α
ΦKḡK(λ)

]T[
GK − 1

α
ΦKḡK(λ)

]
= ∑K

k=1

y2
k( σk

αλ
+ 1
)2 , (59)

where σk, k = 1, . . . , K, are the singular values of the matrix; ΦK (25) and yk are the elements of
the vector YK (40).

The equality (59) yields that the accuracy of the relaxation modulus approximation
depends on the following: the real relaxation modulus GK and measurement noises zK
affecting the value of YK = UT

KGK +UT
KzK; the scaling factor α; the regularization parameter

λ; and singular values of the matrix ΦK (25). These, in turn, depend on the number of
measurements. Note also that only the product αλ, not α and λ independently, affects the
index QK(ḡK(λ)). Since the first derivative

∂QK(ḡK(λ))

∂(αλ)
= 2∑K

k=1

y2
kσkαλ

(σk + αλ)3 ,

is positive for any αλ > 0, the error of the relaxation modulus model grows with increasing
regularization parameter λ, slow for very small and very large αλ.

3.6. Identification Algorithm

Allowing the above, the calculation of the relaxation spectra models involves the
following steps.

1. For the studied material, perform the preliminary experiment (stress relaxation
test [1,33,38]) and record the measurements Ḡ(ti), i = 1, . . . , N, of the relaxation
modulus for pre-selected time instants (e.g., sampled with the constant period in the
time interval [0, T], T < ∞);

2. Choose the time-scaling factor α and the number K of model components comparing,
for different values of α, a few functions from the sequence {ϕk(t)} given by (12), and
creating relaxation modulus model GK(t) (11) with the experiment results

{
Ḡ(ti)

}
;

3. Perform the experiment and record the measurements Ḡ(tk) of the relaxation modulus
at times tk = α·k, k = 1, . . . , K;

4. Compute the matrix ΦK (25), and next, determine the SVD (35) with the singular
values σ1, . . . , σk, . . . σK of ΦK;

5. Select the regularization parameter λ such that for assumed α and K the spectral
condition number is such that

κ(ΦK + αλIK,K) =
σ1 + αλ

σK + αλ
≤ 105; (60)

6. For chosen λ, compute the regularized solution ḡK(λ) according to (39);
7. Determine the modified spectrum of relaxation frequencies H̄M

K (v) according to (41);
8. Determined the spectra of relaxation time H̄K(τ) and frequency H̄K(v) according to

(43) and (42), respectively, as the linear combinations of the respective basis functions.

The matrix ΦK (25) and, in particular, the singular values σk of ΦK depend only on
the number of measurements and do not depend even on the time-scale factor α and on
the sampling points tk. Therefore, for the fixed K matrix ΦK and the SVD of ΦK—being
the most space- and time-consuming task of the scheme of computational complexity
O
(

NK2) [39]—these must be determined only once when the identification scheme is
applied for successive samples of the same material (step 4). The SVD is accessible in the
form of optimized numerical procedures in most computational packets.

The condition (60) from step 5 means that the condition number does not exceed the
numerically acceptable value 105 [42]; data from Table 1 may be useful here.
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3.7. Simulational Studies

This section presents the results of the approach with proposed numerical studies for
three simulated materials whose viscoelastic properties are described by the Gauss-like and
Kohlrausch–Williams–Watts (KWW) models. Gauss distributions of the relaxation spectra
are examined while developing new identification methods; the best examples are as fol-
lows: ([5] (Figure 2)), ([14] (Figures 9, 11 and 17)) and ([43] (Figures 2, 3, 6–11 and 14)). The
Gaussian-like distributions of the relaxation spectra were used to describe the viscoelastic
properties of a lot of real materials, mainly polymers, for example, poly(methyl methacry-
late) [44], polyacrylamide gels ([45] (Figure A4)), polyethylene [46] and carboxymethylcel-
lulose (CMC) [47]. Gaussian nature has also the spectra of many biopolymers, e.g., fresh
egg white-hydrocolloids [47], cold gel-like emulsions stabilized with bovine gelatin [48],
xanthan gum water solution [47], some (potato, corn, wheat, and banana) native starch
gels [49], and wood [24,50]. Recently, Gaussian-type relaxation spectra have also been
determined for the modified asphalt binder blends ([51] (Figures 3a,c and 5a,c,e)).

The KWW model of the stretched exponential relaxation has been found by many
researchers to be more appropriate than standard exponentials to describe viscoelastic
processes of many materials, for example, polymer melts [52], the segmental dynamics
and the glass transition behavior of poly(2-vinylpyridine) [53], relaxation of bone and bone
collagen [54], and alginate films while considering glycerol concentration [55]. The KWW
model, initially introduced to describe the viscoelastic relaxation processes [56,57], has also
been used to model other relaxation processes occurring in materials, for example, enthalpy
relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses [58], isothermal
enthalpy relaxation and density relaxation investigated for bulk Pd42.5Cu30Ni7.5P20 and
Pd40Ni40P20 metallic glasses [59], and structural relaxation of a Hf-microalloyed Co-based
glassy alloy [60].

Applying the proposed identification algorithm, the best spectra models H̄M
K (v) (41),

H̄K(v) (42), and H̄K(τ) (43) were determined for a few numbers of measurements. The
smoothness of the models is estimated by their integral square norms described in Proposi-
tion 1. For the spectra H̄M

K (v) and H̄K(τ), these norms are equal and uniquely characterized
by the middle equality in (44), which yields the following:∥∥∥H̄M

K (v)
∥∥∥

2
=
∥∥H̄K(τ)

∥∥
2 =

1√
α

√
ḡT

K(λ)ΦKḡK(λ). (61)

By (23), for arbitrary relaxation spectra H(τ) and HM(v) of the real material, the
analogous equality of the norms holds, i.e.,

∥∥HM(v)
∥∥

2 = ∥H(τ)∥2. The formula describing
the square norm of H̄K(v) (42) directly results from the equality in (45), from which the
following can be obtained:

∥H̄K(v)∥2 =

√
2

α
√

α

√
ḡT

K(λ)ΘKḡK(λ), (62)

with the matrix ΘK defined by (46).
The errors of the relaxation modulus models are estimated using index QK(ḡK(λ))

(58) and expressed for the optimal models H̄M
K (v) (41), H̄K(v) (42), and H̄K(τ) (43) by

Formula (59) from Proposition 4.
The errors of the relaxation spectra models are measured directly by the integral J (gK),

introduced by Equation (16) for model HM
K (v) and by Equation (20) for the relaxation time

spectrum model. By (19), having in mind the notation (25), this index for the optimal model
H̄M

K (v) (41) can be expressed as follows (compare to (26)):

J (ḡK(λ)) =
∫ ∞

0
HM(v)

2
dv − 2GT

KḡK(λ) +
1
α

ḡT
K(λ)ΦKḡK(λ), (63)
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where GK is the vector of noise-free values of relaxation modulus defined below Equation (51).
The error J (ḡK(λ)) for the model H̄K(τ) (43) is obviously identical due to the identity of
indices (16) and (20) proved above.

The error J (ḡK(λ)) related to square of the norm of real spectra
∥∥HM(v)

∥∥2
2 = ∥H(τ)∥2

2
is measured by the relative index

Jrel(ḡK(λ)) =
J (ḡK(λ))

∥H(τ)∥2
2

. (64)

The “real” materials and the optimal models were simulated in Matlab R2023b, The
Mathworks, Inc., Natick, MA, USA. For the singular value decomposition procedure, svd
was applied.

3.8. Identification of Uni-Mode Gauss-like Spectrum

Consider material whose rheological properties are characterized by the uni-modal
Gauss-like distribution [10,61]:

H(τ) = ϑe
−(

1
τ
−m)

2

/q
/τ, (65)

where the parameters are as follows [10,27,61]: ϑ = 31.52 kPa·s, m = 0.0912 s−1, and
q = 3.25 × 10−3 s−2. The relaxation modulus is displayed below [10]:

G(t) =
√

πq
2

ϑ e
1
4

t2q−mt
er f c

 1
2

tq − m
√

q

, (66)

where the complementary error function er f c(x) is defined as follows ([62] Equation
(8.250.4)):

er f c(x) =
2√
π

∫ ∞

x
e−z2

dz. (67)

By the first equality in (3), the following spectrum of relaxation frequencies corre-
sponds to (65)

H(v) = ϑve−(v−m)2/q, (68)

whence, in view of (4), the modified spectrum is described as outlined below:

HM(v) = ϑe−(v−m)2/q. (69)

In Appendix A.5, the analytical Formulas (A10) and (A13) are derived describing the
norms of the spectra H(τ) (65), H(v) (68), and HM(v) (69). These norms are as follows:∥∥HM(v)

∥∥
2 = ∥H(τ)∥2 = 8.422432kPa·s1/2 and ∥H(v)∥2 = 0.805043kPa·s−1/2.

The preliminary relaxation test experiment was performed (step 1) and the mea-
surements of the relaxation modulus G(t) (66) were recorded for 200 s, selected follow-
ing [10,27,61]. Then, the time scale factors α have been selected by comparison of the
courses of experiment results

{
Ḡ(ti)

}
and basis functions ϕk(t) (12) for a few k. Next, to

simulate the experiment, K sampling instants tk = αk were generated with the constant
period α for K = 20, 50, 100, 150, 200 measurements. Additive measurement noises z(tk)
were selected independently by random choice with uniform distribution on the interval
[−10, 10] Pa, i.e., double stronger than noises assumed in the previous papers [10,61]. The
measurements Ḡ(tk) were recorded. For successive K, the matrix ΦK (25) and SVD (35) were
determined. Next, the regularization parameters λ were selected according to the spectral
condition number rule (60); their values are given in Table 3. The optimal model parameters
ḡK(λ) (39) and the models H̄M

K (v) (41), H̄K(v) (42), and H̄K(τ) (43) were determined. The
best models are depicted in Figures 5–7 together with the real spectra (65), (68), and (69)
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marked by red lines. Small subfigures show fitting near the maximum of the real spectrum.
The respective relaxation modulus models ḠK(t) (57) are plotted in Figure 8 for K = 20
and 200, where the measurements Ḡ(tk) of the real modulus G(t) (66) are also marked; the
small subfigures confirm the excellent model fit. For K = 200, logarithmic time scale is
used. In Table 3, the norms

∥∥H̄M
K (v)

∥∥
2 =

∥∥H̄K(τ)
∥∥

2 (61), ∥H̄K(v)∥2 (62), and the norms
∥ḡK(λ)∥2—expressed in (49)—of the optimal model parameters are given. In addition,
the integral square approximation index J (ḡK(λ)) (63) together with the relative index
Jrel(ḡK(λ)) (64) and the mean square approximation index QK(ḡK(λ)) (58) are provided in
Table 3.

Table 3. For the uni-mode Gauss-like spectrum, H(τ) (65), and the models H̄M
K (v) (41), H̄K(v) (42),

and H̄K(τ) (43): time-scale factors α; numbers of model summands K; regularization parameters λ;
the model’s smoothness indices

∥∥H̄M
K (v)

∥∥
2 =

∥∥H̄K(τ)
∥∥

2 (61) and ∥H̄K(v)∥2 (62); the mean square re-
laxation modulus approximation index QK(ḡK(λ)) (58); norms ∥ḡK(λ)∥2 (49) of the model parameter
vectors; the integral square approximation indices J (ḡK(λ)) (63); and relative index Jrel(ḡK(λ)) (64).

K α[s] λ[s−1]

∥∥∥∥¯
HK(τ)

∥∥∥∥
2

[kPa·s1/2]

∥∥∥∥¯
HK(v)

∥∥∥∥
2[

kPa·s−1/2] QK

(
¯
gK(λ)

)
[
kPa2

]
∥∥∥∥¯gK(λ)

∥∥∥∥
2

[kPa·s]

J
(

¯
gK(λ)

)
[
kPa2·s

] J rel

(
¯
gK(λ)

)
20 4.90 3.1 × 10−6 8.194688 1.000985 3.681218 × 10−5 8.752841 × 103 3.548595 0.0500
50 3.75 9.0 × 10−6 8.167268 0.847115 3.486716 × 10−5 4.639282 × 103 2.461727 0.0347
100 3.98 7.8 × 10−6 8.193556 0.861458 3.272773 × 10−5 7.334379 × 103 2.439776 0.0344
150 3.75 5.5 × 10−6 8.248417 0.865259 3.310334 × 10−5 1.281206 × 104 2.625005 0.0370
200 4.08 9.5 × 10−6 8.173553 0.869989 3.299329 × 10−5 8.550751 × 103 2.875342 0.0405
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(a) (b) 

Figure 5. Uni-mode Gauss-like time relaxation spectrum H(τ) (65) (solid red line) and the corre-
sponding models H̄K(τ) (43) for K measurements of the relaxation modulus corrupted by additive
independent noises uniformly distributed over the interval [−10, 10] Pa: (a) K = 20, 50, 100;
(b) K = 100, 150, 200.
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Figure 7. Uni-mode Gauss-like time relaxation frequency spectrum ���� (68) (solid red line) and 
the corresponding models �X0��� (42) for / measurements of the relaxation modulus corrupted 
by additive independent noises uniformly distributed over the interval [−10, 10] Pa: (a) / =20, 50, 100; (b) / = 100, 150, 200. 
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Figure 8. The measurements �̅��"� of uni-mode Gauss-like time relaxation modulus ���� (66) 
corrupted by additive independent noises uniformly distributed over the interval [−10, 10] Pa 
(red points) and the corresponding relaxation modulus models �̅0��� (57) for / measurements of 
the relaxation modulus: (a) / = 20; (b) / = 200. 

  

Figure 6. Modified uni-mode Gauss-like time relaxation spectrum HM(v) (69) (solid red line) and
the corresponding models H̄M

K (v) (41) for K measurements of the relaxation modulus corrupted by
additive independent noises uniformly distributed over the interval [−10, 10] Pa: (a) K = 20, 50, 100;
(b) K = 100, 150, 200.
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Figure 7. Uni-mode Gauss-like time relaxation frequency spectrum H(v) (68) (solid red line) and
the corresponding models H̄K(v) (42) for K measurements of the relaxation modulus corrupted by
additive independent noises uniformly distributed over the interval [−10, 10] Pa: (a) K = 20, 50, 100;
(b) K = 100, 150, 200.
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Figure 8. The measurements Ḡ(tk) of uni-mode Gauss-like time relaxation modulus G(t) (66)
corrupted by additive independent noises uniformly distributed over the interval [−10, 10] Pa
(red points) and the corresponding relaxation modulus models ḠK(t) (57) for K measurements of the
relaxation modulus: (a) K = 20; (b) K = 200.

The relative spectrum approximation index Jrel(ḡK(λ)) (64) does not exceed 5%; addi-
tionally, the values of the relaxation modulus approximation index QK(ḡK(λ)) (58) indicate
the excellent model fit; models ḠK(t) (57) practically coincide with the measurement points
Ḡ(tk), see Figure 8. An inspection of Figures 5–7 shows that for the number of K ≥ 50
measurements, satisfactory approximation of the relaxation spectra was obtained while
maintaining the consistency of the maxima of real spectra and their models.

3.9. Identification of Double-Mode Gauss-like Spectrum

Consider now the viscoelastic material of the relaxation spectrum described by the
double-mode Gauss-like distribution considered in [10,27,28,46]:

H(τ) =

ϑ1e
−(

1
τ
−m1)

2

/q1
+ ϑ2e

−(
1
τ
−m2)

2

/q2

/τ, (70)

where the parameters are as follows [27,28]: ϑ1 = 467 Pa·s, m1 = 0.0037 s−1, q1 =
1.124261 × 10−6 s−2, ϑ2 = 39 Pa·s, m2 = 0.045 s−1, and q2 = 1.173 × 10−3 s−2. There-
fore, the corresponding spectrum of relaxation frequencies is as follows

H(v) = ϑ1ve−(v−m1)
2/q1 + ϑ2ve−(v−m2)

2/q2 , (71)
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and, in view of (4), the modified spectrum is described by HM(v) = H(v)/v. By (66), the
related real relaxation modulus is outlined below:

G(t) =
√

π

2

ϑ1
√

q1 e
1
4

t2q1−m1t
er f c

 1
2

tq1 − m1
√

q1

+ ϑ2
√

q2 e
1
4

t2q2−m2t
er f c

 1
2

tq2 − m2
√

q2


. (72)

In Appendix A.6, the analytical Formulas (A17) and (A19) are derived to describe the
square norms of the “real” spectra H(v) (71), H(τ) (70), and HM(v), which are as follows:∥∥HM(v)

∥∥
2 = ∥H(τ)∥2 = 19.257051 Pa·s1/2 and ∥H(v)∥2 = 0.394490Pa·s−1/2.

Based on the course of the modulus G(t) (72), in the preliminary experiment, N = 5000
sampling instants were generated with the constant period in the time interval T = [0, 1550]
s, c.f., [27,28]. Following [27,28], additive measurement noises z(ti) were selected indepen-
dently by random choice with uniform distribution on the interval [−0.005, 0.005] Pa. The
same as before, several K relaxation spectra models were determined using the proposed
identification algorithm. The values of selected regularization parameters λ, the norms∥∥H̄M

K (v)
∥∥

2 =
∥∥H̄K(τ)

∥∥
2, ∥H̄K(v)∥2, and ∥ḡK(λ)∥2 and the indices J (ḡK(λ)), Jrel(ḡK(λ)),

and QK(ḡK(λ)) (58) are presented in Table 4. The optimal models H̄M
K (v) (41), H̄K(v) (42),

and H̄K(τ) (43) are depicted in Figures 9–11 together with the real spectra plotted by red
lines. The respective relaxation modulus models ḠK(t) (57) are plotted in Figure 12 with
the modulus G(t) (72) measurements.

Table 4. For the double-mode Gauss-like spectrum H(τ) (70) and the models H̄M
K (v) (41), H̄K(v) (42)

and H̄K(τ) (43): time-scale factors α; numbers of model summands K; regularization parameters λ;
the model’s smoothness indices

∥∥H̄M
K (v)

∥∥
2 =

∥∥H̄K(τ)
∥∥

2 and ∥H̄K(v)∥2; the mean square relaxation
modulus approximation index QK(ḡK(λ)) (58); norms ∥ḡK(λ)∥2 (49) of the model parameter vectors;
the integral square approximation indices J (ḡK(λ)) (63); and relative index Jrel(ḡK(λ)) (64).

K α[s] λ[s−1]

∥∥∥∥¯
HK(τ)

∥∥∥∥
2

[Pa·s1/2]

∥∥∥∥¯
HK(v)

∥∥∥∥
2[

Pa·s−1/2] QK

(
¯
gK(λ)

)
[
Pa2]

∥∥∥∥¯gK(λ)

∥∥∥∥
2

[Pa·s]

J
(

¯
gK(λ)

)
[
Pa2·s

] J rel

(
¯
gK(λ)

)
50 22.5 8 × 10−7 17.008811 0.377417 8.91256 × 10−6 2.63874 × 104 83.212916 0.224394
100 16.3 1.2 × 10−6 16.749729 0.415414 8.20297 × 10−6 2.38674 × 104 89.54064 0.241457
150 9.35 2.1 × 10−6 16.145506 0.440330 8.33036 × 10−6 1.68329 × 104 90.59845 0.244309
200 6.5 3.1 × 10−6 16.447062 0.404095 8.38748 × 10−6 1.321209 × 104 85.71129 0.2311311
300 5.2 4 × 10−6 16.650568 0.401779 8.04576 × 10−6 1.228249 × 104 87.92225 0.237093
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Figure 10. Modified double-mode Gauss-like time relaxation spectrum ����� related to ���� 
(71) (solid red line) and the corresponding models �X0���� (41) for / measurements of the relaxa-
tion modulus corrupted by additive independent noises uniformly distributed over the interval [−0.005, 0.005] Pa: (a) / = 50, 100, 150; (b) / = 150, 200, 300. 
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Figure 11. Double-mode Gauss-like time relaxation frequency spectrum ���� (71) (solid red line) 
and the corresponding models �X0��� (42) for / measurements of the relaxation modulus cor-
rupted by additive independent noises uniformly distributed over the interval [−0.005, 0.005] Pa: 
(a) / = 50, 100, 150; (b) / = 150, 200, 300. 

Figure 9. Double-mode Gauss-like time relaxation spectrum H(τ) (70) (solid red line) and the corre-
sponding models H̄K(τ) (43) for K measurements of the relaxation modulus corrupted by additive
independent noises uniformly distributed over the interval [−0.005, 0.005] Pa: (a) K = 50, 100, 150;
(b) K = 150, 200, 300.
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Figure 11. Double-mode Gauss-like time relaxation frequency spectrum ���� (71) (solid red line) 
and the corresponding models �X0��� (42) for / measurements of the relaxation modulus cor-
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Figure 10. Modified double-mode Gauss-like time relaxation spectrum HM(v) related to H(v)
(71) (solid red line) and the corresponding models H̄M

K (v) (41) for K measurements of the relax-
ation modulus corrupted by additive independent noises uniformly distributed over the interval
[−0.005, 0.005] Pa: (a) K = 50, 100, 150; (b) K = 150, 200, 300.
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Figure 11. Double-mode Gauss-like time relaxation frequency spectrum ���� (71) (solid red line) 
and the corresponding models �X0��� (42) for / measurements of the relaxation modulus cor-
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Figure 11. Double-mode Gauss-like time relaxation frequency spectrum H(v) (71) (solid red line)
and the corresponding models H̄K(v) (42) for K measurements of the relaxation modulus cor-
rupted by additive independent noises uniformly distributed over the interval [−0.005, 0.005] Pa:
(a) K = 50, 100, 150; (b) K = 150, 200, 300.
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perature JÑ = 200 K; however, the related relaxation time �� is not reported in [63]. In 
1993, Böhmer et al. [64], based on the literature and also private communications, have 
presented data concerning stretched exponential relaxation from about 70 amorphous 
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have been found for toluene (25%) (É = 0.52), BCDE (É = 0.51), polyisobutylene (É =0.55), and several other forms of glass. However, this paper also does not contain data on 
the related relaxation times. Recently, Chen et al. [65] applied the KWW model to de-
scribe the viscoelastic properties of the cross-linked polystyrene estimating the following 
parameters of the model (73) at temperature 110Ó C: �
 = 0.78 MPa, É = 0.59, and �� =1.08 s ([65] (Table 4)). For the purpose of numerical tests of the algorithm, É = 0.59 was 
replaced here by É = 0.5. The discrepancy between the relaxation modulus ���� (73) for É = 0.5 and É = 0.59 is illustrated in Figure 13; the mean least-squares error for 500 
equidistant sampling points between these modulus is equal to 1.2853 × 10−4 MPa2. 

Figure 12. The measurements Ḡ(tk) of double-mode Gauss-like time relaxation modulus G(t) (72)
corrupted by additive independent noises uniformly distributed over the interval [−0.005, 0.005] Pa
(red points) and the corresponding relaxation modulus models ḠK(t) (57) for K measurements of the
relaxation modulus: (a) K = 50; (b) K = 300.

However, for double-mode spectrum, the relative spectrum approximation index
Jrel(ḡK(λ)) is as much as 25%, an inspection of Figures 9–11 indicates a satisfactory approx-
imation of the real spectra while maintaining the locations of both their maxima. Excellent
models ḠK(t) fit is confirmed by the values QK(ḡK(λ)) and Figure 12.



Materials 2024, 17, 4870 21 of 35

3.10. Identification of KWW Relaxation Spectrum

The relaxation spectrum of the KWW model of the stretched exponential relaxation is
described by the following [56]:

G(t) = G0e
−(

t
τr

)

β

, (73)

where the stretching exponent 0 < β < 1, τr is the relaxation time, and G0 is the initial
shear modulus, which has a unimodal [57] relaxation spectrum described by the infinite
series [56,57]:

H(τ) =
G0

π ∑∞
k=1

(−1)k+1

k!
sin(πβk) Γ(βk + 1)

(
τ

τr

)βk
, (74)

where Γ(n) is Euler’s gamma function ([62] Equation (8.310.1)). However, for the stretching
exponent β = 0.5, spectrum H(τ) has simple analytical form [57]:

H(τ) =
G0

2
√

π

√
τ

τr
e
−

τ

4τr . (75)

The stretching exponent 0.5 is assumed, for which the relaxation spectrum is given
by the analytical formula because the effectiveness of the identification method can only
be verified when the assumed spectrum is exactly known. The exponent β = 0.5 has been
reported by Plazek and Ngai [63] for poly(methylphenylsiloxane) at the glass temperature
Tg = 200 K; however, the related relaxation time τr is not reported in [63]. In 1993, Böhmer
et al. [64], based on the literature and also private communications, have presented data
concerning stretched exponential relaxation from about 70 amorphous polymeric glass
formers (supercooled liquids and disordered crystals). The exponent β = 0.5 has been
experimentally obtained for sorbitol, dehydroabietic acid, BBKDE, 1,4-cis-polyisoprene,
and silicate flint glass ([64] (Table I)). The coefficients β near 0.5 have been found for toluene
(25%) (β = 0.52), BCDE (β = 0.51), polyisobutylene (β = 0.55), and several other forms
of glass. However, this paper also does not contain data on the related relaxation times.
Recently, Chen et al. [65] applied the KWW model to describe the viscoelastic properties
of the cross-linked polystyrene estimating the following parameters of the model (73)
at temperature 110 ◦C: G0 = 0.78 MPa, β = 0.59, and τr = 1.08 s ([65] (Table 4)). For
the purpose of numerical tests of the algorithm, β = 0.59 was replaced here by β = 0.5.
The discrepancy between the relaxation modulus G(t) (73) for β = 0.5 and β = 0.59 is
illustrated in Figure 13; the mean least-squares error for 500 equidistant sampling points
between these modulus is equal to 1.2853 × 10−4 MPa2.
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The relaxation frequency spectrum corresponding to (75) is as follows

H(v) =
G0

2
√

π

√
1

τr·v
e
−

1
4 τr·v , (76)

while the modified spectrum is described by the following:

HM(v) =
G0

2
√

π

√
1

τr·v3 e
−

1
4 τr·v . (77)

In the preliminary experiment, N = 500 sampling instants were generated with
the constant period in the time interval T = [0, 50] s, selected based on the course of
the modulus G(t) (73) in Figure 13. Additive measurement noises z(ti) were selected
independently by random choice with uniform distribution on the interval [−0.5, 0.5] kPa.
The values of the time scale factors α selected for a few values of K and the regularization
parameters λ selected according to the rule (60) are given in Table 5. The best models H̄M

K (v)
(41), H̄K(v) (42), and H̄K(τ) (43) are depicted in Figures 14–16 together with the real spectra
(red lines). The respective models ḠK(t) (57) are plotted in Figure 17, with the modulus
G(t) (73) measurements. In Table 5, the norms

∥∥H̄M
K (v)

∥∥
2 =

∥∥H̄K(τ)
∥∥

2, ∥H̄K(v)∥2, and the
norms ∥ḡK(λ)∥2 of the optimal parameters ḡK(λ) (39) are given. Since from (75) and (A3)
we have the following:

∥H(τ)∥2
2 =

G2
0

4π τr

∫ ∞

0
τe

−
τ

2τr dτ =
G2

0τr

π
,

the norm ∥H(τ)∥2 =
∥∥HM(v)

∥∥
2 = G0

√
τr/π = 0.457331 MPa·s1/2. In turn, the norm of

the relaxation frequency spectrum (76) is infinite; however, in Table 5, the model’s norms
∥H̄K(v)∥2 are given. The integral indices J (ḡK(λ)) (63), the relative index Jrel(ḡK(λ)), (64)
and the mean square relaxation modulus approximation index QK(ḡK(λ)) (58) are also
presented in Table 5.

Table 5. For the KWW spectrum H(τ) (75) and the models H̄M
K (v) (41), H̄K(v) (42), and H̄K(τ)

(43): time-scale factors α; numbers of model summands K; regularization parameters λ; the model’s
smoothness indices

∥∥H̄M
K (v)

∥∥
2 =

∥∥H̄K(τ)
∥∥

2 and ∥H̄K(v)∥2; the mean square relaxation modulus
approximation index QK(ḡK(λ)) (58); norms ∥ḡK(λ)∥2 (49) of the model parameter vectors; the
integral square approximation indices J (ḡK(λ)) (63); and relative index Jrel(ḡK(λ)) (64).

K α[s] λ[s−1]

∥∥∥∥¯
HK(τ)

∥∥∥∥
2

[MPa·s1/2]

∥∥∥∥¯
HK(v)

∥∥∥∥
2[

MPa·s−1/2] QK

(
¯
gK(λ)

)
[
MPa2]

∥∥∥∥¯gK(λ)

∥∥∥∥
2

[MPa·s]

J
(

¯
gK(λ)

)
[
MPa2·s

] J rel

(
¯
gK(λ)

)
25 0.8 2 × 10−5 0.454723 0.267896 9.46218 × 10−8 76.901664 1.83447 × 10−3 8.77098 × 10−3

50 0.65 7 × 10−5 0.456956 0.284479 8.70335 × 10−8 29.800961 9.82909 × 10−4 4.69948 × 10−3

75 0.6 7.5 × 10−5 0.4571396 0.289756 8.52022 × 10−8 33.705039 8.50259 × 10−4 4.06526 × 10−3

100 0.65 8.5 × 10−5 0.456765 0.284243 8.18454 × 10−8 33.6572199 8.26024 × 10−4 3.94938 × 10−3

150 0.6 1 × 10−4 0.457356 0.289670 8.28962 × 10−8 35.262493 8.41199 × 10−4 4.02194 × 10−3

200 0.6 1.5 × 10−4 0.456657 0.289207 8.25479 × 10−8 27.087999 7.34565 × 10−4 3.51210 × 10−3

300 0.55 1.6 × 10−4 0.456875 0.294931 7.97708 × 10−8 30.574734 7.12159 × 10−4 3.40497 × 10−3

400 0.55 1.6 × 10−4 0.456791 0.294901 8.10268 × 10−8 35.581507 7.12571 × 10−4 3.40694 × 10−3

The relative integral square index of the spectra approximation Jrel(ḡK(λ)) does
not exceed 0.5% for K ≥ 50 measurements, which means a better approximation of the
assumed relaxation spectrum in the whole range of time/frequency relaxation variation,
i.e., from zero to infinity, than in the case of Gaussian spectra. Also related to the relaxation
modulus index, QK(ḡK(λ)), not exceeding 10−7, confirms the perfect approximation of
the relaxation modulus measurements. In the case of this unimodal spectrum, increasing
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the number of measurements, i.e., the components of the series that create the models,
does not significantly affect the quality of these models, which, in addition to the indices
in Table 5, is also confirmed by a review of Figures 14–16. For K ≥ 100, the courses of
the spectra models for increasing K remain practically almost identical, although a slight
improvement in the fit to the real spectra can be seen in the values of the indices J (ḡK(λ))
and Jrel(ḡK(λ)). The relative index of the spectrum H(τ) approximation for K ≥ 100 falls
below 0.41%.
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Figure 14. The KWW spectrum ℋ��� (75) (solid red line) and the corresponding models ℋX0��� 
(43) for / measurements of the relaxation modulus corrupted by additive independent noises 
uniformly distributed over the interval [−0.5, 0.5] kPa: (a) / = 25, 50, 75; (b) / = 100, 150, 200. 
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Figure 15. Modified KWW spectrum ����� (77) (solid red line) and the corresponding models �X0���� (41) for / measurements of the relaxation modulus corrupted by additive independent 
noises uniformly distributed over the interval [−0.5, 0.5] kPa : (a) / = 25, 50, 75 ; (b) / =100, 150, 200. 

Figure 14. The KWW spectrum H(τ) (75) (solid red line) and the corresponding models H̄K(τ) (43)
for K measurements of the relaxation modulus corrupted by additive independent noises uniformly
distributed over the interval [−0.5, 0.5] kPa: (a) K = 25, 50, 75; (b) K = 100, 150, 200.
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Figure 14. The KWW spectrum ℋ��� (75) (solid red line) and the corresponding models ℋX0��� 
(43) for / measurements of the relaxation modulus corrupted by additive independent noises 
uniformly distributed over the interval [−0.5, 0.5] kPa: (a) / = 25, 50, 75; (b) / = 100, 150, 200. 
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Figure 15. Modified KWW spectrum ����� (77) (solid red line) and the corresponding models �X0���� (41) for / measurements of the relaxation modulus corrupted by additive independent 
noises uniformly distributed over the interval [−0.5, 0.5] kPa : (a) / = 25, 50, 75 ; (b) / =100, 150, 200. 

Figure 15. Modified KWW spectrum HM(v) (77) (solid red line) and the corresponding models
H̄M

K (v) (41) for K measurements of the relaxation modulus corrupted by additive independent noises
uniformly distributed over the interval [−0.5, 0.5] kPa: (a) K = 25, 50, 75; (b) K = 100, 150, 200.
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The real relaxation time and frequency spectra and the known spectra models tend 
to zero as the relaxation time � and the relaxation frequency � tend to infinity. There-
fore, the properties of the spectra for � → 05 and � → 05 are essential here.  

The examples presented above showed that the approach proposed can be applied 
for Gauss-like relaxation spectra, both uni- and double mode, and for the KWW spectrum 
of the stretching exponent É = 0.5. However, it is easy to check that for the relaxation 
spectrum ℋ��� (74) both zero boundary conditions are satisfied. Therefore, the pro-
posed identification method can be applied to determine the spectrum of materials 
whose relaxation processes have KWW stretched exponential nature. This is also im-

Figure 16. The KWW spectrum relaxation frequency spectrum H(v) (76) (solid red line) and the
corresponding models H̄K(v) (42) for K measurements of the relaxation modulus corrupted by addi-
tive independent noises uniformly distributed over the interval [−0.5, 0.5] kPa: (a) K = 25, 50, 75;
(b) K = 100, 150, 200.
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Figure 17. The measurements �̅��"� of the KWW relaxation modulus ���� (73) corrupted by ad-
ditive independent noises uniformly distributed over the interval [−0.5, 0.5] kPa (red points) and 
the corresponding relaxation modulus models �̅0��� (57) for / measurements of the relaxation 
modulus: (a) / = 25; (b) / = 400. 

3.11. Applicability of the Approach for Identification of Relaxation Spectra of Different Types 

The rough condition of the approach’s successful applicability follows from the 
boundary properties of the optimal models ℋX0��� (43) and �X0��� (42), yielded by the 
properties of the basis functions :"��� (15) and ℎ"����, where ℎ"��� is given by (7). 
Since for � → 05 and � → ∞, the basis functions :"��� → 0, the best model ℋX0��� (43) 
also tends to zero as the relaxation time � tends to zero and to infinity, which limit the 
scope of applicability of this model to real relaxation time spectra that satisfy zero 
boundary conditions. For the relaxation frequencies � = 0 and � → ∞, the basis func-
tions ℎ"���� → 0, that is the basis functions ℎ"���� of the relaxation frequency model �X0��� (42) also have zero boundary conditions. Therefore, in terms of the relaxation 
frequency, the scope of applicability of the model and method to real relaxation fre-
quency spectra is confined to the spectra of zero boundary conditions, too.  

The real relaxation time and frequency spectra and the known spectra models tend 
to zero as the relaxation time � and the relaxation frequency � tend to infinity. There-
fore, the properties of the spectra for � → 05 and � → 05 are essential here.  

The examples presented above showed that the approach proposed can be applied 
for Gauss-like relaxation spectra, both uni- and double mode, and for the KWW spectrum 
of the stretching exponent É = 0.5. However, it is easy to check that for the relaxation 
spectrum ℋ��� (74) both zero boundary conditions are satisfied. Therefore, the pro-
posed identification method can be applied to determine the spectrum of materials 
whose relaxation processes have KWW stretched exponential nature. This is also im-

Figure 17. The measurements Ḡ(tk) of the KWW relaxation modulus G(t) (73) corrupted by additive
independent noises uniformly distributed over the interval [−0.5, 0.5] kPa (red points) and the
corresponding relaxation modulus models ḠK(t) (57) for K measurements of the relaxation modulus:
(a) K = 25; (b) K = 400.

3.11. Applicability of the Approach for Identification of Relaxation Spectra of Different Types

The rough condition of the approach’s successful applicability follows from the bound-
ary properties of the optimal models H̄K(τ) (43) and H̄K(v) (42), yielded by the properties
of the basis functions 𝒽k(τ) (15) and hk(v)v, where hk(v) is given by (7). Since for τ → 0+

and τ → ∞ , the basis functions 𝒽k(τ) → 0 , the best model H̄K(τ) (43) also tends to zero
as the relaxation time τ tends to zero and to infinity, which limit the scope of applicability
of this model to real relaxation time spectra that satisfy zero boundary conditions. For the
relaxation frequencies v = 0 and v → ∞ , the basis functions hk(v)v → 0 , that is the basis
functions hk(v)v of the relaxation frequency model H̄K(v) (42) also have zero boundary
conditions. Therefore, in terms of the relaxation frequency, the scope of applicability of the
model and method to real relaxation frequency spectra is confined to the spectra of zero
boundary conditions, too.

The real relaxation time and frequency spectra and the known spectra models tend to
zero as the relaxation time τ and the relaxation frequency v tend to infinity. Therefore, the
properties of the spectra for τ → 0+ and v → 0+ are essential here.

The examples presented above showed that the approach proposed can be applied
for Gauss-like relaxation spectra, both uni- and double mode, and for the KWW spectrum
of the stretching exponent β = 0.5. However, it is easy to check that for the relaxation
spectrum H(τ) (74) both zero boundary conditions are satisfied. Therefore, the proposed
identification method can be applied to determine the spectrum of materials whose relax-
ation processes have KWW stretched exponential nature. This is also important that the
optimal model H̄K(τ) (43), given by a finite series, may prove to be more useful than the
original KWW infinite series spectrum (74) for many applications.

A multiplicative model that combines the power law with the stretched exponential
relaxation described by Equation (8) in [66]:

H(τ) = nαGc

(
τ

τα

)nα

e
−(

τ

τα
)

β

, (78)

where τα is the longest relaxation time, Gc is the plateau modulus, the stretching parameter
0 < β ≤ 1, and the exponent 0 < nα < 1, was applied for modeling spectrum of bitumen
in the vicinity of the glass transition [66]. The unimodal spectrum (78), named by the
authors as the broadened power-law spectrum model [66], satisfies both zero boundary
conditions—compare to ([66] (Figure 11a))—and therefore, is also within the scope of the
proposed algorithm’s applicability.

However, the well-known Baumgaertel, Schausberger, and Winter (BSW) spectrum [15,67]
used to describe the viscoelasticity of polybutadiene (PBD) [68], polydisperse polymer
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melts [8], polymethylmethacrylate (PMMA) [68], and many other materials, is described by
the following model:

H(τ) =

{
β1

(
τ

τc

)ρ1

+ β2

(
τ

τc

)ρ2
}

e
−

τ

τmax ,

with positive coefficients β1, β2 and relaxation times τc, τmax, which tends to infinity for
τ → 0 whenever at least one of the parameters ρ1 and ρ2 is negative. Therefore, this is the
case for real material models, compare [8,15,67,68], when the optimal model H̄K(τ) (43)
cannot well-approximate this spectrum.

Likewise, the real relaxation spectra modeled by pure inverse power laws [69], for
example, a combined four-interval power model with fractional exponents describing a
solution-polymerized styrene butadiene rubber [70] or a power type spectrum with an
exponent of −1/2 describing the cross-linking polymers at their gel point [71], cannot
be successfully identified by the proposed approach. The relaxation time spectra of the
fractional Maxwell model and the elementary fractional Scott–Blair model also lose the
zero boundary condition at zero relaxation time, see [61] (Proposition 2, Equation (19)).

3.12. Direct Identification of the Relaxation Spectra of Viscoelastic Solid Materials

For isotropic viscoelastic solids [31]

lim
t→∞

G(t) = G∞ > 0,

where G∞ is the material equilibrium modulus. Then, Equation (1) takes the form presented
below [31]:

G(t) =
∫ ∞

0

H(τ)

τ
e−t/τdτ + G∞. (79)

Analogously, Equation (5)—basic for the direct approach and related to the modified
frequency spectrum HM(v)—can be rewritten as follows:

G(t) =
∫ ∞

0
HM(v)e−tvdv + G∞. (80)

The relaxation spectra models HM
K (v) (9), HK(v) (10), and HK(τ) (14) do not require

modification, while the related relaxation modulus model GK(t) (11) should be replaced by
the following:

GK(t) =
∫ ∞

0
HM

K (v)e−tvdv + G∞ = ∑K
k=1 gkϕk(t) + G∞,

which, however, does not affect the identification procedure itself.
The square integral index J (gK), given by Equation (16) for the model HM

K (v) and by
(20) for HK(τ), is defined as above. However, by (80) and (7) we have:∫ ∞

0
HM(v)hk(v)dv =

∫ ∞

0
HMe−αkvdv = G(αk)− G∞ = ∆G(αk). (81)

Therefore, by (17) and (81), the index J (gK) is given by the following expression
(compare to (19)):

J (gK) =
∫ ∞

0
HM(v)

2
dv − 2∑K

k=1 gk∆G(αk) + ∑K
k=1 ∑K

m=1 gkgm φkm.
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As above, from (79) and (20), the analogous formula results for the relaxation time
spectrum model. As a consequence, the integral-empirical index J̄K(gK) (24) is now
as follows

J̄K(gK) =
∫ ∞

0
HM(v)

2
dv − 2∑K

k=1 gk∆Ḡ(αk) + ∑K
k=1 ∑K

m=1 gkgm φkm,

where, compare ∆G(αk) (81), the relaxation modulus increment is defined as follows:

∆Ḡ(αk) = Ḡ(αk)− G∞. (82)

Since real materials may relax over a very long time, two cases can occur.

Case 1. If the duration of the relaxation test can be extended so as to experimentally record
a time-constant relaxation modulus (in practice, constant stress), then G∞ is experimentally
evaluated and the proposed identification algorithm can be simply applied by replacing
the measurements Ḡ(αk) with their increments ∆Ḡ(αk) (82) in relation to known G∞.
Case 2. For identification purposes, only time-varying relaxation modulus measurements
are available, i.e., the steady-state stress was not recorded during the experiment. In such a
situation, non-negative G∞ is an additional model parameter that should be extrapolated
beyond the experiment time horizon limited by the upper bound tK = αK. The linear-
quadratic problem (32) of optimal identification needs to be reformulated, re-regularized
and solved, which creates a new research problem.

However, for many materials, the equilibrium modulus is accessible by experiment;
then, the algorithm of direct relaxation spectra identification can be applied with the simple
modification as described above.

4. Conclusions

Summarizing, this paper addresses the relaxation spectrum identification problem in a
new original way. The novelty of the paper is that it directly takes into account the unknown
spectrum in the model quality index being minimized. The main result is based only on
the definition of the relaxation spectrum, which relates the spectrum to the measurable
relaxation modulus, and on the fact that the set of exponential functions, i.e., a kernel of
the Lagrange transform constitute a basis of the space of square-integrable functions. The
analytical and numerical studies demonstrated that by applying the proposed relaxation
spectra models and identification algorithm, it is possible to determine the spectra models
for a wide range of relaxation times and frequencies of real materials.

The concept of direct relaxation spectrum identification can be applied both for vis-
coelastic fluids and viscoelastic solids; however, for solid materials, a respective modifica-
tion of the algorithm may be required whenever the equilibrium relaxation modulus is not
available by measurement, the development of which will be the subject of further research.

It is generally accepted that the choice of respective regularization parameters is
important to identify the best model. The well-studied techniques for computing a good
regularization parameter such as the discrepancy principle, generalized cross-validation,
and the L-curve technique have been developed for classical least-squares task and hence
they cannot be directly applied here. Therefore, the regularized minimization problem
(32) should be reformulated to the classic form of the linear least-squares problem. Then,
the applicability of the known techniques can be verified. An alternative approach is to
develop a new method of selecting the regularization parameter, specifically addressing the
problem of direct spectrum identification. Although the numerical studies have shown that
the simple rule based on the condition number of the basic matrix for the linear-quadratic
identification problem is sufficient in many cases, the example of a two-mode Gaussian-like
spectrum motivates the search for a better rule for the regularization parameter selection,
dedicated for this specific identification task. This will be the subject of further research.

The impact of the molecular weight distributions (MWD) on the viscoelastic prop-
erties is intensively studied in polymer rheology. Generic analytical formulas describing
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the relationship between MWD and the relaxation time spectrum are known. Future
research directions may include the determination of the MWD, which can be obtained
from the relaxation time spectrum model and recovered from experimental results by the
proposed method.

Funding: The cost was partially incurred from funds financed by the IDUB University Development
Strategy for 2024–2026 in the discipline of Mechanical Engineering as part of the task “Stage: 1,
payment from funds: SUBB.RNN.24.019”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A.

Appendix A.1. Proof of Lemma 1

According to (6), (17) and (25), the quadratic form gT
KΦKgK is expressed as follows:

gT
KΦKgK = α∑K

k=1 ∑K
m=1gkgm

1
(k + m)α

= α
∫ ∞

0

[
∑K

k=1 gke−αkv
]2

dv.

Thus, gT
KΦKgK ≥ 0 for an arbitrary vector gK, and gT

KΦKgK = 0, if and only if
∑K

k=1 gke−αkv = 0 for almost all v > 0. Since the basis functions hk(v, α) = e−αkv are
independent, the last equality holds, if and only if gk = 0 for all k = 1, . . . , K, i.e., only if
the vector gK = 0, which yields the positive definiteness of ΦK. This finishes the proof. □

Appendix A.2. Proof of Proposition 1

For the model H̄M
K (v) (41) of the modified spectrum HM(v) (4), by (18), we have the

following:∥∥∥H̄M
K (v)

∥∥∥2

2
=
∫ ∞

0

[
H̄M

K (v)
]2

dv = ∑K
k=1 ∑K

m=1 ḡk(λ)gm φkm =
1
α

ḡT
K(λ)ΦKḡK(λ), (A1)

with the vector of model parameters ḡK(λ) (34). Similarly, (43) and (18), yield

∥∥H̄K(τ)
∥∥2

2 =
∫ ∞

0

[
H̄K(τ)

]2dτ = ∑K
k=1 ∑K

m=1 ḡk(λ)ḡm(λ)φkm =
1
α

ḡT
K(λ)ΦKḡK(λ). (A2)

By the following the integral formula ([62] Equation (3.351.3))∫ ∞

0
τne−βτdτ =

n!
βn+1 , (A3)

for the model H̄K(v) (42) of the real spectrum H(v) we have the following:

∥H̄K(v)∥2
2 =

∫ ∞

0
[H̄K(v)]

2dv =
2
α3 ∑K

k=1 ∑K
m=1 ḡk(λ)ḡm(λ)

1

(k + m)3 =
2
α3 ḡT

K(λ)ΘKḡK(λ),

(A4)
where the K × K positive definite (the proof is analogous to that of Lemma 1) matrix ΘK of

the elements θkm =
1

(k + m)3 is defined by Equation (46). The equalities in (44) and (45)

are proved.
According the known Rayeigh–Ritz inequalities [72], (Lemma I):

λmin(X)xTx ≤ xTXx ≤ λmax(X)xTx, (A5)
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which holds for any x ∈ Rm and any symmetric matrix X = XT ∈ Rm,m, where λmin(X) and
λmax(X) are minimal and maximal eigenvalues of the matrix X. Since for positive definite
ΦK and ΘK their eigenvalues are identical to the singular values [39] (p. 77), in view of
(A5) Equations (A1), (A2), and (A4), imply the lower and upper bounds in (44) and (45).
Proposition is proved. □

Appendix A.3. Proof of Proposition 3

The error between the spectra H̄M
K (v) (41) and

∼
H

M

K (v) (50) is given by the formula below:

H̄M
K (v)−

∼
H

M

K (v) = ∑K
k=1

[
ḡk(λ)−

∼
gk(λ)

]
hk(v),

therefore, the integral square error between these spectra is as follows:∥∥∥∥H̄M
K (v)−

∼
H

M

K (v)
∥∥∥∥2

2
=
∫ ∞

0

[
∑K

k=1

[
ḡk(λ)−

∼
gk(λ)

]
hk(v)

]2
dv,

and, in view of (18), is described by the next formula:∥∥∥∥H̄M
K (v)−

∼
H

M

K (v)
∥∥∥∥2

2
= ∑K

k=1 ∑K
m=1

[
ḡk(λ)−

∼
gk(λ)

][
ḡm(λ)−

∼
gm(λ)

]
φkm,

whence, having in mind the notation (25), the quadratic form is obtained∥∥∥∥H̄M
K (v)−

∼
H

M

K (v)
∥∥∥∥2

2
=

1
α

[
ḡK(λ)−

∼
gK(λ)

]T
ΦK

[
ḡK(λ)−

∼
gK(λ)

]
. (A6)

By (51) and (39)
ḡK(λ)−

∼
gK(λ) = αUKΩKUT

KzN (A7)

with the vector of the measurement noises zN = GK − GK, which, substituted into (A6)
and combined with the SVD (35), yields∥∥∥∥H̄M

K (v)−
∼
H

M

K (v)
∥∥∥∥2

2
= αzT

NUKΩKΣKΩKUT
KzN .

Diagonal structure of the matrices ΣK (36) and ΩK (38) implies the structure of the
next matrix

ΩKΣKΩK = diag

(
σ1

(σ1 + αλ)2 , . . . ,
σK

(σK + αλ)2

)
,

whence, by the right inequality in (A5) and since for orthogonal UK we have zT
NUKUT

KzN =
zT

NzN , the next upper bound is obtained∥∥∥∥H̄M
K (v)−

∼
H

M

K (v)
∥∥∥∥2

2
≤ α max

1≤k≤K

σk

(σk + αλ)2 zT
NzN ,

whence the inequality (54) with parameter γ (55) for the models H̄M
K (v) and

∼
H

M

K (v) di-
rectly follows.

Similarly, for the spectra H̄K(τ) (43) and
∼
HK(τ) (53) we have the following:

H̄K(τ)−
∼
HK(τ) = ∑K

k=1

[
ḡk(λ)−

∼
gk(λ)

]
𝒽k(τ),
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whence, having in mind (22), we obtain∥∥∥∥H̄K(τ)−
∼
HK(τ)

∥∥∥∥2

2
=

1
α

[
ḡK(λ)−

∼
gK(λ)

]T
ΦK

[
ḡK(λ)−

∼
gK(λ)

]
,

that is, this norm is identical to (A6); the second inequality in (54) follows.

Finally, for the spectra H̄K(v) (42) and
∼
HK(v) (52) we have the following:

H̄K(v)−
∼
HK(v) = ∑K

k=1

[
ḡk(λ)−

∼
gk(λ)

]
hk(v)v,

whence, having in mind the matrix ΘK introduced in (A4), we obtain∥∥∥∥H̄K(v)−
∼
HK(v)

∥∥∥∥2

2
=

2
α3

[
ḡK(λ)−

∼
gK(λ)

]T
ΘK

[
ḡK(λ)−

∼
gK(λ)

]
,

and next, by (A7), ∥∥∥∥H̄K(v)−
∼
HK(v)

∥∥∥∥2

2
=

2
α

zT
NUKΩKUT

KΘKUKΩKUT
KzN .

By applying the right inequality in (A5) and including the orthogonality of UK we have:∥∥∥∥H̄K(v)−
∼
HK(v)

∥∥∥∥2

2
≤ 2

α
ς1zT

NUKΩKΩKUT
KzN .

whence in view of the structure of the matrix ΩK (38) we immediately obtain∥∥∥∥H̄K(v)−
∼
HK(v)

∥∥∥∥2

2
≤ 2 ς1

α(σK + αλ)2 zT
NzN ,

which implies (56) and completes the proof. □

Appendix A.4. Proof of Proposition 4

Since for any tk = αk and any m, by (12) and (18), we have the following:

ϕm(tk) =
1

αk + αm
= φkm = φmk,

the value of the relaxation modulus model ḠK(t) (57) for t = tk = αk can be described by
the equation below:

ḠK(tk) = ∑K
m=1 ḡm(λ)ϕm(tk) = ∑K

m=1 ḡm(λ)φkm = ∑K
m=1 ḡm(λ)φmk.

Therefore, index QK(ḡK(λ)) (58) can be expressed as follows:

QK(ḡK(λ)) =
1
K ∑K

k=1 [Ḡ(tk)]
2
+

1
K ∑K

k=1 ∑K
m=1 ḡm(λ)φmk φkm ḡk(λ)−

2
K ∑K

k=1 ∑K
m=1 ḡm(λ)φmkḠ(tk),

whence, due to (22) and (25), i.e., having in mind that elements of the matrix ΦK are equal
to αφkm, the equivalent matrix-vector form follows

QK(ḡK(λ)) =
1
K

GT
KGK +

1
K

1
α2 ḡT

K(λ)ΦKΦKḡK(λ)−
2
K

1
α

GT
KΦKḡK(λ),
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which in compact form is given by the following:

QK(ḡK(λ)) =
1
K

[
GK − 1

α
ΦKḡK(λ)

]T[
GK − 1

α
ΦKḡK(λ)

]
.

The first equality in (59) is derived.
By the SVD (35), including Formula (39), the above can be rewritten as outlined below:

QK(ḡK(λ)) =
1
K

[
GK − 1

α
UKΣKUT

KUKΩKYK

]T[
GK − 1

α
UKΣKUT

KUKΩKYK

]
;

whence, due to orthogonality of UK, we obtain

QK(ḡK(λ)) =
1
K

[
GT

KGK − 2YT
KΣKΩKYK + YT

KΩKΣKΣKΩKYK

]
.

The diagonal structure of the matrices ΣK (36) and ΩK (38) yields

ΣKΩK = diag
(

σ1

σ1 + αλ
, . . . ,

σK
σK + αλ

)
,

whence, remembering that YK = UT
KGK (40), we have the following:

QK(ḡK(λ)) = ∑K
k=1

[
1 − 2σk

σk + αλ
+

(σk)
2

(σk + αλ)2

]
y2

k ,

and, after algebraic manipulations, equivalently,

QK(ḡK(λ)) = ∑K
k=1

(αλ)2y2
k

(σk + αλ)2 .

whence second Equation in (59) directly follows. □

Appendix A.5. Norms of the Spectra H(τ) (65), H(v) (68), and HM(v) (69)

By (69), ∥∥∥HM(v)
∥∥∥2

2
=
∫ ∞

0
HM(v)

2
dv = ϑ2

∫ ∞

0
e−2(v−m)2/qdv,

which can be written as follows:∥∥∥HM(v)
∥∥∥2

2
= ϑ2e−2m2/q

∫ ∞

0
e−2v2/q+4vm/qdv.

Therefore, using the known integral ([62] Equation (3.322.2)),

∫ ∞

0
e
−

x2

4β
−χx

dx =
√

πβ eβχ2
er f c

(
χ
√

β
)

(A8)

and lying β = q/8 and χ = −4m/q, we immediately obtain

∥∥∥HM(v)
∥∥∥2

2
= ϑ2

√
πq/2
2

er f c

(
−m√

q/2

)
, (A9)
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whence and in view of the equality of the norms
∥∥HM(v)

∥∥
2 = ∥H(τ)∥2, the next equal-

ity follows ∥∥∥HM(v)
∥∥∥

2
= ∥H(τ)∥

2
= ϑ

4
√

πq/2√
2

√√√√er f c

(
−m√

q/2

)
. (A10)

By (68), we have the following:

∥H(v)∥2
2 =

∫ ∞

0
H(v)2dv = ϑ2

∫ ∞

0
v2e−2(v−m)2/qdv,

which, to facilitate determination of the integral, can be rewritten as follows

∥H(v)∥2
2 = ϑ2e−2m2/q

∫ ∞

0
v2e−2v2/q+4vm/qdv.

Whence, using the known integral ([62] Equation (3.462.7))

∫ ∞

0
x2e−µx2−2χxdx = − χ

2µ2 +

√
π

µ5

(
2χ2 + µ

4

)
eχ2/µer f c

(
χ
√

µ

)
, (A11)

by lying µ = 2/q and χ = −2m/q, we immediately obtain

∥H(v)∥2
2 =

1
4

ϑ2

[
mq e−2m2/q +

√
πq
2

(
4m2 + q

2

)
er f c

(
−
√

2m
√

q

)]
, (A12)

whence

∥H(v)∥2 =
ϑ

2

√√√√√ qπ

2

(
4m2 + q

2

)
er f c

(
−
√

2 m
√

q

)
+ mq e−2m2/q. (A13)

Appendix A.6. Norms of the Double-Mode Gauss Spectra H(τ) (70), H(v) (71), and HM(v)
We obtain the desired result presenting the spectrum H(v) (71) as sum of two uni-

mode Gauss spectra

H(v) = ϑ1ve−(v−m1)
2/q1 + ϑ2ve−(v−m2)

2/q2 = H1(v) + H2(v). (A14)

Therefore, we have the following:

∥H(v)∥2
2 = ∥H1(v)∥2

2 + ∥H2(v)∥2
2 + 2

∫ ∞

0
H1(v)H2(v)dv, (A15)

where ∫ ∞

0
H1(v)H2(v)dv = ϑ1ϑ2e−a

∫ ∞

0
v2e−q̄v2

e2vm̄dv,

with the parameters m̄, q̄ and a defined by the following formula:

m̄ =
m1

q1
+

m2

q2
, q̄ =

1
q1

+
1
q2

, a =
m2

1
q1

+
m2

2
q2

. (A16)

Therefore, by (A11), lying µ = 2/q and χ = −2m/q, we immediately obtain

∫ ∞

0
H1(v)H2(v)dv = ϑ1ϑ2e−a

[
m̄

2q̄2 +

√
π

q̄5

(
2m̄2 + q̄

4

)
em̄2/q̄er f c

(
− m̄√

q̄

)]
,
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which combined with Formula (A12) applied for H1(v) and H2(v), in view of (A15) yields

∥H(v)∥2
2 =

1
4

ϑ2
1

[
m1q1 e−2m2

1/q1 +

√
πq1

2

(
4m2

1 + q1

2

)
er f c

(
−
√

2m1√
q1

)]
+

1
4

ϑ2
2

[
m2q2 e−2m2

2/q2 +

√
πq2

2

(
4m2

2 + q2

2

)
er f c

(
−
√

2m2√
q2

)]
+

2ϑ1ϑ2e−a
[

m̄
2q̄2 +

√
π

q̄5

(
2m̄2 + q̄

4

)
em̄2/q̄er f c

(
− m̄√

q̄

)]
.

(A17)

By (A14) and (4)

HM(v) = ϑ1e−(v−m1)
2/q1 + ϑ2e−(v−m2)

2/q2 = HM
1 (v) + HM

2 (v).

Therefore, as above,∥∥∥HM(v)
∥∥∥2

2
=
∥∥∥HM

1 (v)
∥∥∥2

2
+
∥∥∥HM

2 (v)
∥∥∥2

2
+ 2

∫ ∞

0
HM

1 (v)HM
2 (v)dv, (A18)

where ∫ ∞

0
HM

1 (v)HM
2 (v)dv = ϑ1ϑ2e−a

∫ ∞

0
e−q̄v2

e2vm̄dτ,

with the parameters m̄, q̄ and a defined by (A16), which, by Equation (A8), lying β =
1
4q̄

and χ = −2m̄, can be expresses as follows:

∫ ∞

0
HM

1 (v)HM
2 (v)dv =

1
2

ϑ1ϑ2e−a
√

π

q̄
e

m̄2

q̄ er f c

(
−m̄

√
1
q̄

)
.

Substituting the above into (A18) and combining with (A9) applied for the partial
spectra, HM

1 (v) and HM
2 (v), we obtain

∥∥HM(v)
∥∥2

2 = ϑ2
1

√
πq1/2

2
er f c

(
−m1√

q1/2

)
+ ϑ2

2

√
πq2/2

2
er f c

(
−m2√

q2/2

)
+

ϑ1ϑ2e−a
√

π

q̄
e

m̄2

q̄ er f c

(
−m̄

√
1
q̄

)
,

whence, for ∥H(τ)∥2 =
∥∥HM(v)

∥∥
2, the next formula follows

∥H(τ)∥2 =


√

πq1/2 ϑ2
1

2
er f c

(
−m1√

q1/2

)
+

√
πq2/2 ϑ2

2
2

er f c

(
−m2√

q2/2

)
+ ϑ1ϑ2

√
π

q̄
e

m̄2

q̄
−a

er f c
(
− m̄√

q̄

)
1
2

(A19)
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