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Abstract: The accurate extraction of buildings from remote sensing images is crucial in fields such as
3D urban planning, disaster detection, and military reconnaissance. In recent years, models based
on Transformer have performed well in global information processing and contextual relationship
modeling, but suffer from high computational costs and insufficient ability to capture local infor-
mation. In contrast, convolutional neural networks (CNNs) are very effective in extracting local
features, but have a limited ability to process global information. In this paper, an asymmetric
network (CTANet), which combines the advantages of CNN and Transformer, is proposed to achieve
efficient extraction of buildings. Specifically, CTANet employs ConvNeXt as an encoder to extract
features and combines it with an efficient bilateral hybrid attention transformer (BHAFormer) which
is designed as a decoder. The BHAFormer establishes global dependencies from both texture edge
features and background information perspectives to extract buildings more accurately while main-
taining a low computational cost. Additionally, the multiscale mixed attention mechanism module
(MSM-AMM) is introduced to learn the multiscale semantic information and channel representations
of the encoder features to reduce noise interference and compensate for the loss of information
in the downsampling process. Experimental results show that the proposed model achieves the
best F1-score (86.7%, 95.74%, and 90.52%) and IoU (76.52%, 91.84%, and 82.68%) compared to other
state-of-the-art methods on the Massachusetts building dataset, the WHU building dataset, and the
Inria aerial image labeling dataset.

Keywords: building extraction; bilateral hybrid attention; convolutional neural network; remote
sensing; semantic segmentation; transformer

1. Introduction

With the rapid development of remote sensing technology, the accurate extraction
of buildings from high-resolution remote sensing images is of great significance in the
fields of 3D urban planning [1–3], disaster detection [4–6], and military reconnaissance [7,8].
This is crucial for practical applications, such as urban growth analysis, infrastructure
development, and post-disaster damage assessment. Despite significant progress, the
complexity of urban environments and the diversity of building appearances, as well
as image blurring in high-resolution remotely sensed images, make complete and high-
precision extraction of buildings from remotely sensed images still a challenging task.

Early building extraction methods mainly relied on manual interpretation and classical
image processing techniques, such as edge detection, region growing, and morphological
operations, to depict building boundaries. For example, Sobel and Canny edge detectors
are widely used for building edge recognition, while region-based methods mainly classify
and group pixels with similar features through segmentation algorithms. However, these
methods are highly sensitive to noise interference and lighting conditions and have poor
generalization ability, which prevents them from being widely used in various vision tasks.
Another common traditional approach is the use of hand-designed features and rule-based
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systems, in which features such as texture, shape, color, and spectrum are hand-designed
and used in combination to improve segmentation for building extraction. Although
these methods have achieved some success, their hand-designed features have many
shortcomings. For example, poor robustness in the face of complex backgrounds and easily
interfered with by noise and shadows; inconsistent extraction results in the face of scale
changes and different angles of buildings; reliance on low-level features; and lack of high-
level semantic information, all of which affect the building extraction effect, and cannot
be generalized to different datasets and various complex urban scenarios. Advances in
aerospace technology and electronic sensor technology have made high-resolution remote
sensing image data more abundant [9–11], laying a foundation for the development of
building extraction methods based on deep learning.

In recent years, deep learning (DL) techniques have sparked a revolution in the fields
of computer vision [12,13] and natural language processing [14], especially in image pro-
cessing, which provides new possibilities for solving the building extraction problem for
high-resolution remotely sensed imagery. This has transformed building extraction from
traditional manual methods into more efficient automated methods. Deep learning-based
building extraction methods can not only make reasonable use of the texture, color, and
geometric information of buildings but also make use of building contextual spatial infor-
mation. Compared with manual methods, deep learning methods are able to learn target
features from multiple perspectives at the same time, which helps to further improve the
accuracy of building extraction. Among them, convolutional neural networks (CNN) [15]
and Transformer [16] have received considerable attention owing to their excellent per-
formance, and are widely used in image semantic segmentation tasks. To fully utilize the
advantages of CNN and Transformer, it is first necessary to reveal the problems that need
to be faced when extracting buildings from remote sensing images. As shown in Figure 1,
buildings have different shapes and styles, including circular, rectangular, and irregular
shapes. This prevents the knowledge of a single shape style from being effectively applied
to all buildings, increases the risk of misclassification through experience or rules, and
increases the difficulty of edge detection, requiring more complex algorithms and models
to capture diverse geometric features [17]. Second, buildings are subject to scale variations
due to different sampling distances and viewing angles. For small-scale buildings, they
may be masked or ignored by background noise; for large-scale buildings, they may be
beyond the scope of a single remote sensing image block, resulting in feature loss [18]. In
addition, complex backgrounds (e.g., vegetation, water bodies, shadows, and other inter-
ferences) may obscure the edges of buildings, increasing the difficulty of edge detection,
while interferences in the background may have similar colors and textures as buildings,
leading to misclassification [19]. Finally, remote sensing images may be blurred due to
sensor technology limitations, atmospheric interference, and imaging motion trajectories
during the acquisition process, making the edges and details of buildings blurred, making
it difficult to distinguish between the buildings and the background, and further decreasing
the accuracy of classification methods based on feature matching and edge detection [20]. In
order to cope with the above difficulties in building extraction, we need to make reasonable
use of deep learning methods to automatically learn local features such as the shape, color,
and texture of the building, and at the same time, pay attention to the correlation between
the target object and the information of the surrounding environment, so as to identify the
influence of interfering objects on the overall shape features of the building, accurately
locate the overall structure of the building, and further obtain good segmentation results.
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CNN can automatically learn the detailed features of buildings through a large amount
of labeled data without the need to manually design the features, which enables the model
to be adapted to a variety of building types through training. CNN can effectively capture
the local detailed features of a region, such as texture and edges, through convolutional
operations. Meanwhile, the convolutional operations of multilayered convolutional kernels
of different sizes can capture different levels of shape information from low to high, which
enhances the model’s adaptability to buildings with diverse shapes [21]. However, due to
the fixed size of the convolution kernel, CNN is insufficient for dealing with long-range
dependencies and is prone to ignoring global information. Influenced by sampling distance
and viewing angle factors, buildings will present different scales, i.e., the same type of
building may present different sizes on the same remote sensing image, which brings
challenges to the fixed-size convolution kernel approach [22]. Image pyramids [21] and
atrous convolution [23] provide a solution to this problem by generating multiscale image
pyramids by downsampling images to different scales, enabling the model to learn features
at different scales. Atrous convolution introduces a dilation rate on the basis of ordinary
convolution, which increases the sensory field to different degrees by setting different
dilation rates to capture contextual information at different scales without increasing the
computational complexity. Finally, by fusing the features of different scales, the accuracy of
the model in recognizing buildings of different scales is improved. In complex background
environments, the influence of interfering objects such as roads, vegetation, and shadows, as
well as the image blurring problem, results in blurred edges of buildings and increased pixel-
value similarity with the surrounding background, making it more difficult to accurately
distinguish buildings from the background. The self-attention mechanism in Transformer
can effectively capture the global contextual information and calculate the correlation
between each pixel and all other pixels in the image so as to effectively differentiate the
overall information of the building and the background and improve the accuracy of the
building extraction [24]. In addition, it is also possible to cope with the complexity of the
background by increasing the interaction between the encoder and decoder and retaining
high-resolution spatial information through skip connections [25].

In order to fully utilize the advantages of CNN and Transformer to achieve more
accurate building extraction from remote sensing images, an asymmetric network named
CTANet is proposed. It adopts CNN as the encoder and Transformer as the decoder and
combines the advantages of the two in order to improve the accuracy and efficiency of
building extraction. Specifically, in CTANet, the powerful ConvNeXt [26] is adopted as
an encoder for feature extraction, which not only inherits the local feature extraction capa-
bility and parameter sharing property of traditional CNN, but also borrows many design
principles from Transformer, such as an improved activation function and regularization
method. This enables ConvNeXt to efficiently process multiscale features and adapt to
changes in the scale of buildings in remote sensing images, thus enhancing its feature
extraction capability. Next, an efficient bilateral hybrid attention transformer (BHAFormer)
is designed as a decoder, which utilizes the advanced abstract feature processing capability
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of bilateral hybrid attention (BHA) to establish global dependencies from the perspectives
of both texture edge features and background information, while reducing the length of the
query, key, and value sequences to reduce the computational cost of the SA process. This
design enables the model to cope better with interference from complex backgrounds and
capture global information, thus improving the accuracy of edge extraction and overall
structure recognition. Finally, information loss is a common problem during downsam-
pling, especially during multiscale feature extraction, where detailed information is easily
lost. To solve this problem, we introduce a multiscale mixed attention mechanism module
(MSM-AMM). With MSM-AMM, the model is able to mitigate the information loss during
downsampling and provide the decoder with multiscale semantic information and channel
representations of the encoder features, thus preserving more detailed information and
enhancing the accuracy of building extraction. The contributions of this paper can be
summarized as follows:

(1) A Transformer block named bilateral hybrid attention transformer (BHAFormer) is
proposed as a decoder. It establishes global dependencies from two perspectives:
texture edge features and background information. At the same time, the BHAFormer
reduces the computational cost of self-attention and improves the efficiency of build-
ing extraction.

(2) The multiscale mixed attention mechanism module (MSM-AMM) is designed to
supplement the information loss in the downsampling process. This module contains
two branches: the spatial attention branch (SAB), which utilizes strip convolution and
3 × 3 convolution with different depths to capture multiscale feature information, and
the channel attention branch (CAB), which learns the correlation between channels
through channel attention to suppress noise interference.

(3) Combining the above modules, an asymmetric network (CTANet) that combines
CNN and Transformer is proposed. Compared to other state-of-the-art segmentation
networks, CTANet achieves the best performance on three widely used building
extraction datasets while keeping the computational cost low.

2. Related Work

This section explores recent relevant research results and model designs in remote
sensing, focusing on analyzing the development of CNN-based semantic segmentation
methods, Transformer in visual tasks, and its applications. These researches provide an
important theoretical foundation and practical experience for our proposed approach.

CNN-based semantic segmentation methods: Convolutional neural networks (CNN)
were first applied to image segmentation tasks owing to their powerful feature extraction
capability, especially when dealing with local features such as image details and textures.
In order to further improve the extraction of local features from images, a lot of research has
been carried out. A fully convolutional network (FCN) [27] replaced the fully connected
layer with a convolutional layer, which allowed the segmentation task to develop into an
end-to-end pixel-level classification task, laying the foundation for FCN-based building
extraction methods for remote sensing images. However, the spatial resolution of the FCN
decreases during the downsampling process, resulting in the loss of detailed information
and inability to fully capture detailed features such as building boundaries. U-Net [28]
introduced an encoder-decoder structure. Image features are extracted in the encoder
stage, the image spatial resolution is restored in the decoder stage, and encoder features
are fused with decoder features through skip connections to better combine low-level
spatial information with high-level semantic information. Deeplab [29] introduces atrous
convolution and atrous spatial pyramid pooling (ASPP) techniques to enhance the capture
of multiscale information by expanding the receptive field of the convolution kernel.
DeeplabV3+ [30] further combines an encoder-decoder architecture to cope with more
complex contexts. Similarly, PSPNet [21] employs a pyramid pooling module (PPM) to
capture multiscale contextual information to improve semantic segmentation performance.
PFPN [31] combines feature pyramid network (FPN) and panoramic segmentation concepts
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to enhance feature representation through multiscale feature fusion, which can cope with
both object detection and semantic segmentation tasks.

CNNs are effective at extracting local features and learning rich semantic features.
However, due to the fixed size of convolutional kernels in CNN-based models, their ability
to capture long-range dependencies is limited. In addition, in remote sensing scenes
with complex backgrounds, the complex shapes of buildings and occlusion of interfering
objects may affect the capture of global features, which in turn affects the accuracy of
building extraction.

Transformer development in visual tasks: Transformer was originally designed to
solve natural language processing (NLP) problems. With its excellent global relational
modeling capabilities, variants of Transformer quickly excelled in visual tasks and triggered
a lot of research. The vision transformer (ViT) [32] was proposed to cope with the image
task. The ViT segments an image into contiguous chunks, which are then spread out to
serve as input to the Transformer. Through the self-attention (SA) mechanism, ViT can
realize information exchange globally and capture long-distance dependencies in an image.
Pyramid vision transformer (PVT) [33] introduces a pyramid structure that can handle the
information at different scales. Meanwhile, PVT designed a spatial reduced attention (SRA)
layer module to reduce the computational complexity by reducing the length of the key
and value sequences in the SA computation. Swin Transformer [34] introduces the concept
of shift windows, which divides the image into non-overlapping windows, computes SA
locally within each window, and then obtains global attention by moving the window or
stacking multiple Transformer blocks. Shunted Transformer [35] uses convolution kernels
at different scales to convolve the input image and then obtains keys and values at different
scales at different heads by multiscale token aggregation (MSTA) and linear transformation
to capture the multiscale features of the image. However, these methods still maintain the
full size of the query sequence when reducing the key and value sequences, thus still having
high computational costs for SA computation. DSAFormer [36] significantly reduces the
SA computational cost by simultaneously reducing the lengths of the query, key, and value
sequences for coarse global relationship modeling. In addition, DSAFormer supplements
the local spatial information by strip convolution. Although these Transformer variants
perform well in image tasks, they still have some limitations: high computational cost and
inferiority to traditional CNNs in capturing local detailed features.

Application of Transformer in visual tasks: Due to the high computational cost
of Transformer, how to utilize Transformer effectively in semantic segmentation models
and give full play to the advantages of both CNN and Transformer has become a hot
research topic. Segmenter [37] and sparse token transformer (STT) [38] use Transformer in
both the encoder and decoder parts to ensure that the global context information is fully
captured at each stage. Swin-Unet [39] and DC-Swin [40] use the Swin Transformer in
the encoder section to capture the details and global features of the image through a local
window attention mechanism and multiscale feature fusion. TransUNet [41] uses a hybrid
CNN-Transformer encoder, which first uses CNN for feature extraction, then the extracted
feature maps are converted into sequences by patch embedding, which is used as input
to the Transformer to capture global contextual information. TCNet [42], TransFuse [43],
and BuildFormer [44] all use a hybrid architecture combining a CNN and Transformer
to extract both local features and global contextual information using a dual backbone,
followed by multiscale feature fusion to improve the model’s ability to recognize buildings
of various sizes.

Despite the excellent results achieved by the above models, these models usually
employ Transformer blocks in the encoder stage, or throughout the model, or use a dual-
backbone structure of CNN and Transformer, which requires a large number of parameters
and high computational cost. Considering the respective advantages of CNN and Trans-
former, we propose an asymmetric network called CTANet that achieves the best extraction
performance on three building datasets at a low computational cost compared to other
state-of-the-art segmentation networks. In addition, we have briefly summarized the
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strengths and weaknesses of the aforementioned methods in Table 1, which provides
valuable insights for the design of our proposed approach.

Table 1. Brief summary of related work.

Method Advantages Disadvantages

FCN [27] End-to-end pixel-level classification. Loss of fine details due to resolution
reduction during downsampling.

U-Net [28]
Encoder-decoder structure with skip connections
enhances feature fusion between low-level spatial

and high-level semantic information.

Limited performance in complex scenes
and when the dataset is small or not

diverse enough.

Deeplab series [29,30]
Uses atrous convolution and ASPP to enhance

multiscale feature extraction and captures complex
contexts effectively.

Increased computational complexity and
slower inference speed.

PSPNet [21] Pyramid pooling module (PPM) improves
multiscale contextual information capture.

Still suffers from accuracy loss on the
edges of very small objects.

PFPN [31]
Combines feature pyramid network (FPN) with

panoptic segmentation to enhance multiscale
feature representation.

High computational resource
requirements, slow training,

and inference.

ViT [32] Excels in capturing global dependencies
via self-attention.

High computational cost; struggles with
local feature extraction.

PVT [33] Pyramid structure handles multiscale information;
SRA mechanism reduces computational complexity.

Less effective than CNNs in local
feature extraction.

Swin Transformer [34] Uses a shifting window mechanism, effectively
capturing both local and global information.

Long training time for large-scale images,
high memory consumption.

Shunted Transformer [35] Improves model efficiency and accuracy through
multiscale token aggregation.

Limited performance on small datasets
has a large number of parameters.

DSAFormer [36] Significantly reduces self-attention computation by
shortening query, key, and value sequences.

Less capable of capturing fine local
features compared to
CNN-based methods.

Segmenter [37] Uses Transformer in both encoder and decoder to
capture global context at every stage.

Large number of parameters and high
computational demand.

STT [38] Uses sparse token processing to reduce
computational load and improve efficiency. Weak in capturing local features.

Swin-Unet [39] Employs Swin Transformer to capture both local and
global information.

High computational overhead and long
training time.

DC-Swin [40] Combines Swin Transformer for fine-resolution
remote sensing image segmentation.

Requires significant computational
resources for high-resolution images.

TransUNet [41] Hybrid CNN-Transformer encoder captures both
local and global information.

Complex architecture, resulting in high
inference time and resource consumption.

TCNet [42] Dual-backbone architecture enhances the recognition
of buildings of various sizes.

Large number of parameters; high
computational burden.

TransFuse [43]
Hybrid CNN and Transformer architecture capture

both local features and global
contextual information.

High computation due to
dual-backbone design.

BuildFormer [44] Dual-backbone architecture effectively combines
local and global feature extraction.

High computational cost due to the
complexity of Transformer components.

Proposed CTANet

Combines the strengths of CNN and Transformer in
a hybrid architecture, achieving better feature

extraction with lower computational cost compared
to the aforementioned hybrid models.

-
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3. Methods

This section first describes the general architecture of the proposed asymmetric net-
work CTANet and then describes in detail the modular structure we used in each part
of the model separately, including the ConvNeXt block used in the encoder stage, the
BHAFormer block used in the decoder stage, and the MSM-AMM introduced in the middle
of the model. Finally, a loss function is introduced.

3.1. General Architecture of CTANet

As shown in Figure 2, our proposed CTANet is an asymmetric network designed
following the encoder-decoder structure. The network mainly consists of ConvNeXt,
BHAFormer, and MSM-AMM.
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In the encoder stage, we use the powerful CNN model ConvNeXt-Tiny as the backbone
network and utilize the local feature extraction capability and parameter sharing property
of CNN to first extract features from the image. As the depth of the convolutional layers
increases, different convolutional layers can extract the features at different semantic levels.
Among them, shallow features contain rich fine-grained information and are mainly used
to capture details and local features, which can accurately capture detailed information
such as the colors, textures, edges, and corners of buildings. Deep features, on the other
hand, contain more high-level abstract information, mainly coarse-grained information,
i.e., semantic information, which is used to extract high-level abstract features, such as the
global shape and structure of the building, as well as the category and spatial relationship
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of the building. The combination of shallow and deep features will help improve the
accuracy and completeness of building extraction.

In the decoder stage, we use BHAFormer for post-processing to compute global infor-
mation. The deep feature output from the encoder is used as the input to the BHAFormer
in the decoder, and the global information is modeled using the high-level abstract feature
processing capabilities of the two attention paths of the BHAFormer to capture more com-
plex semantic features. BHAFormer contains significant attention path (SAP) and overall
attention path (OAP), in which the size of the input feature map can be reduced to 1/4 of
its original size and retained to contain significant features such as texture, edges, and
corners, as well as overall features such as overall structure and background information,
respectively, before SA computation. In this way, it is possible to realize global relationship
modeling from different perspectives separately, while reducing the cost of SA computa-
tion by exploring global dependencies from more perspectives, which helps to extract the
boundary of a building more accurately and locate the building as a whole in a variety of
complex scenarios. In addition, by introducing MSM-AMM between the encoder and the
decoder, the information loss caused by the downsampling process is mitigated, and the
decoder is provided with the multiscale semantic information and channel representation
of the encoder.

The MSM-AMM processed output is spliced with the output of the previous layer of
the corresponding layer of the decoder to fuse the shallow features with the deeper ones
through two 3 × 3 convolutions, which helps improve the accuracy and completeness
of the building extraction. After that, it is used as the input of the corresponding layer
BHAFormer for global relationship modeling, and finally, the feature map is restored to
its original size by the upsampling module to obtain the final building extraction result.
The module optimizes the features, suppresses noise interference, and enhances building-
related features. To more clearly illustrate the changes in image size within each layer of
the network, we have created an architecture table that sequentially numbers each layer
based on the flow of the image. The table includes the layer name, input and output sizes,
and filters, as shown in Table 2.

Table 2. Network Layer Architecture of CTANet.

Layer Name Input Size Output Size Filters (Channels)

Conv Stem (512, 512, 3) (128, 128, 96) 96
Downsample-1 (128, 128, 96) (64, 64, 192) 192
Downsample-2 (64, 64, 192) (32, 32, 384) 384
Downsample-3 (32, 32, 384) (16, 16, 768) 768

ConvNeXt-1 (128, 128, 96) (128, 128, 96) 96
ConvNeXt-2 (64, 64, 192) (64, 64, 192) 192
ConvNeXt-3 (32, 32, 384) (32, 32, 384) 384
ConvNeXt-4 (16, 16, 768) (16, 16, 768) 768

MSM-AMM-1 (128, 128, 96) (128, 128, 96) 96
MSM-AMM-2 (64, 64, 192) (64, 64, 192) 192
MSM-AMM-3 (32, 32, 384) (32, 32, 384) 384
BHAFormer-1 (128, 128, 96) (128, 128, 96) 96
BHAFormer-2 (64, 64, 192) (64, 64, 192) 192
BHAFormer-3 (32, 32, 384) (32, 32, 384) 384
Upsample-1 (16, 16, 768) (32, 32, 384) 384
Upsample-2 (32, 32, 384) (64, 64, 192) 192
Upsample-3 (64, 64, 192) (128, 128, 96) 96
Upsample-4 (128, 128, 96) (512, 512, 96) 96

Segment Head (512, 512, 96) (512, 512, 2) 2 (Classes)

3.2. ConvNeXt

Although CNN networks perform well in tasks such as image classification and target
detection, variants of Transformer even outperform traditional CNNs in visual tasks due
to Transformer’s superior performance in capturing global contextual information and
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modeling complex dependencies. ConvNeXt is proposed to address the limitations of
traditional CNNs in complex visual tasks. It borrows some design concepts from the Swin
transformer and optimizes the CNN architecture, which allows ConvNeXt to retain the
powerful feature extraction capability and computational efficiency of the CNN while
increasing the receptive field and improving the global information capture capability of
the model, which is more suitable for the complex visual tasks nowadays.

As shown in Figure 3, the ConvNeXt backbone network has a hierarchical structure
divided into four stages, each consisting of multiple convolutional blocks (ConvNeXt
blocks). Among them, the number of ConvNeXt block stacks in each stage is 3, 3, 9, and
3. At the entrance of the network, the image is first passed through a convolutional layer
with a step size of 4 to fuse neighboring elements and reduce the image size. After that,
before the beginning of each stage, downsampling is performed through a convolutional
layer with a step size of 2 to extract features at different scales. With the design of a layered
structure, ConvNeXt is able to better capture shallow features, such as the details and edges
of buildings, as well as deeper features, such as the overall structure and layout.
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The ConvNeXt block is similar in design to the inverted bottleneck structure of Mo-
bileNetV2 [45], but the location of the convolutional layers is different. Feature extraction
is first performed by depthwise convolution with the number of groups equal to the num-
ber of input channels, and each convolutional kernel is responsible for only one channel,
reducing the number of parameters and achieving a balance between FLOPs and accuracy.
Unlike traditional convolution, which uses a 3 × 3 convolution kernel, ConvNeXt uses
a larger 7 × 7 deep convolution kernel, which enhances the model’s receptive fieldand
improves its ability to capture global information. The number of channels of the feature
map is then expanded by a 1 × 1 convolution, and another 1 × 1 convolution is used
to compress the number of channels of the feature map back to its original dimension,
increasing the feature representation capability of the network. In addition, ConvNeXt
has undergone several adjustments to further optimize performance. For example, the
number of activation and normalization layers is reduced, and layer normalization (LN) is
used instead of batch normalization (BN), which helps reduce the computational overhead
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and memory usage during training. At the same time, the GELU activation function is
used instead of the ReLU activation function, which enhances the nonlinear expression
ability of the model and improves training stability and overall performance. Through this
fine design and optimization, ConvNeXt is able to achieve higher feature extraction and
information processing capabilities while maintaining computational efficiency.

3.3. BHAFormer

The SA process in the conventional vision transformer (ViT) flattens the input 2D
image (X ∈ RC×H×W) into a sequence of 1D image blocks (X ∈ RN×C) and performs a
linear mapping using three learnable weight matrices (Wq, Wk, and Wv ∈ RC×dk ) to obtain
the query (Q), key (K), and value (V) sequence vectors from the input image sequences,
all of which have dimensions N × dk. Next, the attention score matrix, with dimensions
N × N, is generated by performing a dot product operation on the tokens of the query
and key sequences. This matrix reflects the similarity information between different image
blocks (tokens). To prevent the result from being too large, it is divided by a scaling factor√

dk, where dk denotes the dimension of the vector, and N = H × W denotes the length of
the sequence of image blocks. Then, the attention scores are converted into an attention
weight matrix using the softmax function, which represents the relative importance of
individual image blocks. Finally, the attention weight matrix is multiplied by a sequence
of values to perform a weighted summation so that the model can focus on the most
relevant information to establish global dependencies. The self-attention (SA) mechanism
ensures the effective interaction of global information in the input image sequence by
performing the above computation for each token. The SA computation can be expressed
as the following equations:

Q, K, V = XWq, XWk, XWv (1)

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (2)

However, since the SA computational complexity is quadratic with respect to the
sequence length, this brings about a huge amount of computation. In order to reduce the
computational cost of processing high-resolution images, some visual transformers have
attempted to optimize the SA computation process. For example, PVT designed spatial-
reduction attention (SRA) to reduce the sequence length of keys and values; Shunted
Transformer designed shunted SA (SSA) to downsample keys and values with different
heads to different sizes in order to obtain features with different granularities. Although
these methods reduce the sequence length of keys and values, simple downsampling
leads to a loss of information, which affects the global relationship modeling of important
features, such as building texture, edges, and corner points. In addition, the query in these
methods remains full size, causing the feature maps obtained from SA computation to
remain the same size as the query, keeping the computational cost high.

Previous work pointed out [36] that intensive pixel-level SA computation may not
be required for the global relationship modeling of individual buildings in a local area.
Therefore, it performs rough global relationship modeling by reducing the query, key, and
value sequence lengths; however, this cannot be used to treat local details. To address
these problems, we designed the BHAFormer. As shown in Figure 4, the BHAFormer block
consists of a batch normalization layer, two 1 × 1 convolutional layers, a GELU activation
layer, a dropout layer, bilateral hybrid attention (BHA), and a feed-forward network layer.
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Considering the positive significance of pooling operations in feature extraction,
maximum pooling can highlight the significant features in the image, such as texture,
edges, and corner points, while average pooling can preserve the overall data features and
highlight the overall structure and background information of the image. Therefore, the
BHA designed two paths of attention. First, we subject the input image X ∈ RC×H×W to a
spatial-reduction operation (SR) by fusing neighboring pixels through a 4 × 4 convolution
to obtain a feature map X′ ∈ R

C×H×W
4 with a size of 1/4 of the original image. Then, the

feature map is flattened into a sequence of N × C/4, and the query (Q ∈ RN×dk ) sequence
vector is obtained using the weight matrix Wq ∈ R

C
4 ×dk mapping to shorten the sequence

length, where N = H/4 × W/4. Next, the feature map X is subjected to a maximum pooling
operation via the significant attention path (SAP) to highlight texture, edge, and corner
features to obtain XSAP ∈ R

C×H×W
4 . Meanwhile, an average pooling operation is performed

through the overall attention path (OAP) to highlight the background information and
the overall structure to obtain XOAP ∈ R

C×H×W
4 . Here, the window sizes are both set to 4.

Subsequently, XSAP and XOAP are linearly transformed through the weight matrices Wk

and Wv ∈ R
C
4 ×dk , respectively, to obtain the sequence vectors K1, V1, and K2, V2 ∈ RN×dk .

These two sets of keys and values are then used in SA computation with the query (Q) to
establish global dependencies from the perspectives of texture edge features and overall
background information, respectively. To better capture the relative position information,
the relative position encoding (B ∈ RN×N) is added after the dot product of Q with K1
and K2, and then multiplied with V1 and V2, respectively, to obtain the weighted feature
maps ZSAP and ZOAP ∈ R

C×H×W
4 . Finally, the fused ZSAP and ZOAP are upsampled to their

original dimensions to obtain the final output Z ∈ RC×H×W , which is then conveyed to the
feed-forward network. The process of BHA can be represented by the following equations:

X′ = SR(X) (3)

XSAP, XOAP = MaxPool(X), AVgPool(X) (4)

Q = X′ Wq (5)

K1, V1 = XSAPWk, XSAPWv (6)

K2, V2 = XOAPWk, XOAPWv (7)

Attention(Q, K, V) = softmax(
QKT
√

dk
+ B)V (8)
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ZSAP, ZOAP = Attention(Q, K1, V1), Attention(Q, K2, V2) (9)

Z = Upsample(ZSAP + ZOAP) (10)

3.4. MSM-AMM

During the downsampling process of the encoder, the shallow features generated
contain a wealth of fine-grained information, such as color, texture, edges, and corner
points, which are important. However, as the network layers deepen, it inevitably leads
to information loss and noise interference. To solve this problem, we design the multi-
scale mixed attention mechanism module (MSM-AMM), which is used to supplement
the information loss in the downsampling process and enhance the network’s ability to
recognize buildings. As shown in Figure 5, MSM-AMM contains two attention branches
for enhancing the multiscale representation of encoder features in the spatial semantic
and channel dimensions. In the spatial attention branch, we use a 3 × 3 convolution and
two sets of strip convolutions (1 × 5 and 5 × 1, 1 × 11, and 11 × 1) to capture multiscale
features. Strip convolutions are particularly suitable for extracting strips from segmented
scenes [46]. In the channel attention branch, the feature map is compressed to 1 in length
and width by global average pooling to efficiently aggregate the global spatial information
of each channel so as to pay more attention to the representation of channel features. Next,
we use two 1 × 1 convolutions to compress the number of channels to 1/r times the original
and then recover them to learn the dependencies between channels, highlight important
features, suppress unimportant features, and reduce the noise, where the compression
ratio r is 16. Then, the channel attention map is obtained by a sigmoid function, which is
used to further adjust the importance weights of each channel. Finally, the outputs of the
two branches are multiplied by the original inputs to learn a multiscale representation of
the space and channel dimensions, which are then added together to fuse the features.
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Figure 5. The structure of MSM-AMM. Contains spatial attention branch and channel atten-
tion branch.

3.5. Loss Function

During the model training process, we adopted the same approach as in [44], using
a joint loss function for optimization, which includes a cross-entropy loss and a dice loss,
to guide the model to correctly classify each pixel in the image as either a building or a
background. In addition, we introduced binary cross entropy as an edge loss to ensure that
the model focuses on the accurate extraction of the building edge pixels during the training
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process and reduces edge blurring, thus improving the accuracy of the building boundary
extraction. The specific loss function formula can be expressed as follows:

Ltotal = αLCE + βLDice + γLBCE (11)

where LCE denotes cross-entropy loss, LDice denotes dice loss and LBCE denotes binary
cross-entropy loss. In our experiments, we set the parameters α, β, and γ to 1.0, 1.0, and
10.0, respectively.

4. Experiments

In this section, we first introduce the three widely used building datasets [9–11] on
which we conduct our experiments in this paper and the related experimental setup we
employ. Then, ablation studies are performed on our proposed BHAFormer and MSM-
AMM to demonstrate their effectiveness. Finally, we select the most recent state-of-the-art
semantic segmentation models for comparison experiments with our proposed model to
demonstrate the superiority of our proposed CTANet.

4.1. Dataset Introduction
4.1.1. Inria

The Inria aerial image labeling dataset contains scenes from ten cities, each with
36 RGB images of 5000 × 5000 pixels with a ground sampling distance of 0.3 m. The
training set contains five cities, Austin, Chicago, Kitsap, Tyrol, and Vienna, and the test set
contains five cities: Bellingham, Bloomington, Innsbruck, San Francisco, and East Tyrol.
We refer to [44] as well as the official partitioning recommendations and select the first
five images of each city in the original training set for validation and the rest for model
training. Before training, we fill each image with 5120 × 5120 pixels and then crop it into
512 × 512 pixel blocks for training.

4.1.2. Massachusetts

The Massachusetts building dataset consists of 151 urban aerial images measuring
1500 × 1500 pixels in the Boston area of the United States and contains a wide range of
scales, shapes, and types of building facilities in the area. The entire dataset covers about
340 km2 of the Boston area, with a ground sampling distance of 1 m. Before model training,
we fill each image and then crop it into 512 × 512 pixel image blocks for the experiments.

4.1.3. WHU

The WHU building dataset covers the city of Wuhan, China, and contains both high-
resolution satellite imagery and aerial imagery. The aerial image dataset covers an area of
more than 450 km2 and involves 22,000 buildings. The image size is 512 × 512 pixels, and
the ground sampling distance is 0.3 m. In this paper, we select the aerial image dataset for
the experiments.

4.2. Experimental Details
4.2.1. Experimental Settings

In this paper, our experiments are conducted on a single NVIDIA GTX 3090 GPU (24G
RAM; Nvidia, Santa Clara, CA, USA) using the PyTorch 1.10.0 framework. Experimentally,
we use the AdamW optimizer with an initial learning rate set to 1 × 10−3 and a weight
decay of 0.0025. The learning rate scheduling strategy is used to train the model using a
cosine annealing strategy for a total of 105 training epochs. In order to expand the dataset,
we augmented the data with random flip, random brightness and contrast change, and
random rotation for all training samples to enhance the generalization ability of the model.
For the test samples, we applied horizontal and vertical flipping. These settings partly refer
to the experimental design in [44].
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4.2.2. Evaluation Metrics

We evaluate the performance of the model using four metrics that are widely used
in the field of building extraction, i.e., Precision, intersection over union (IoU), Recall, and
F1-score. Precision indicates which of the predicted pixels are real building pixels. IoU
indicates the overlap between predicted building pixels and real building pixels. Recall
indicates which of the real building pixels are correctly predicted. The F1-score combines
precision and recall to provide an overall measure. A higher F1-score indicates better
performance in terms of both precision and recall. Each metric can be expressed by the
following equation:

Precision =
TP

TP + FP
(12)

IoU =
TP

TP + FP + FN
(13)

Recall =
TP

TP + FN
(14)

F1 − score = 2 × Precision × Recall
Precision + Recall

(15)

where true positive (TP) indicates the number of pixels correctly predicted as buildings,
i.e., the model correctly identifies the area of the building. A false positive (FP) denotes the
number of pixels incorrectly predicted as buildings, i.e., the pixel label is not a building,
and the model incorrectly predicts it as a building pixel. A false negative (FN) indicates
the number of pixels not predicted to be buildings, i.e., the pixels of actual buildings are
incorrectly predicted by the model as background and other distractions.

4.3. Ablation Study

In order to fully evaluate the effectiveness of each module in our proposed CTANet,
we chose to perform ablation experiments on the Inria aerial image labeling dataset and the
Massachusetts building dataset, as shown in Tables 3 and 4. Compared to the Massachusetts
dataset, the Inria dataset is more representative of model training and evaluation due to its
diversity and high resolution. At the same time, a larger image size contains more types of
urban buildings, which makes the experimental results more generalizable. Therefore, we
analyze the experimental results of the Inria dataset in detail.

Table 3. Ablation study results on the Inria aerial image labeling dataset.

Method F1 IoU Precision Recall

Baseline 89.81 81.51 91.17 88.49
Baseline+MSM-AMM 90.26 82.25 91.43 89.12
Baseline+BHAFormer 90.37 82.43 91.58 89.19

CTANet (Ours) 90.52 82.68 91.75 89.32

Table 4. Ablation study results on the Massachusetts building dataset.

Method F1 IoU Precision Recall

Baseline 85.87 75.24 87.52 84.28
Baseline+MSM-AMM 86.33 75.94 87.58 85.11
Baseline+BHAFormer 86.52 76.24 87.75 85.32

CTANet (Ours) 86.70 76.52 88.20 85.25

Effectiveness of BHAFormer: As shown in Table 3, the experiment was first tested
using the benchmark model ConvNeXt-Tiny, which yielded an F1-score, IoU, and precision
of 89.81%, 81.51%, and 91.17%, respectively. When we add BHAFormer as a decoder to
the benchmark model, the results show that the F1-score, IoU, and precision are 90.37%,
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82.43%, and 91.58%, respectively, which are improved by 0.56%, 0.92%, and 0.41% over
the benchmark model. This indicates that BHAFormer is more accurate in extracting the
edges and complex structures of buildings by establishing global dependencies from both
texture edge features and overall background information. This improves the classification
performance of the model as a whole, thus proving the effectiveness of the module.

Effectiveness of MSM-AMM: Similarly, when we add only MSM-AMM to the baseline
model, the results show that the F1-score, IoU, and precision are 90.26%, 82.25%, and 91.43%,
respectively. Compared to the baseline model, there is an improvement of 0.45%, 0.74%, and
0.26%, respectively, thus proving the effectiveness of MSM-AMM.MSM-AMM improves the
accuracy of the model in recognizing buildings of different sizes and shapes by capturing
multiscale features, thus improving the overall segmentation performance.

Subsequently, we added BHAFormer and MSM-AMM to the benchmark model, and
the results showed that the F1-score, IoU, and precision were 90.52%, 82.68%, and 91.75%,
respectively, for the best performance. Compared to the benchmark model, the three
evaluation metrics improved by 0.71%, 1.17%, and 0.58%, respectively. These results show
that the comprehensive performance of the model is significantly improved by combining
BHAFormer and MSM-AMM, which further proves that each of our proposed modules
helps the model in building extraction. As shown in the visualization results in Figure 6,
before the introduction of BHAFormer and MSM-AMM, the segmentation results of the
baseline model showed more mispredictions by predicting the background as buildings,
while the edges of the closely spaced small buildings were lost, resulting in the display
of a blurred whole in the prediction result map. When BHAFormer and MSM-AMM are
added, the mispredictions of buildings are reduced, edges are smoother, and the gaps
between buildings in a dense cluster of small buildings are more clearly visible. This
illustrates that the global relationship modeling capability of BHAFormer helps the model
to accurately locate buildings in complex background environments and reduces false
predictions. Meanwhile, the multiscale features captured by MSM-AMM enable the model
to extract small buildings more accurately and suppress the interference of background
noise on building edge extraction.
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4.4. Experimental Results and Analysis

To demonstrate the superiority of our proposed CTANet, we conduct comparative
experiments with recent state-of-the-art methods on three widely used datasets ( the In-
ria aerial image labeling dataset, Massachusetts building dataset, and WHU building
dataset). The selected methods include semantic segmentation models: Segmenter [37],
Swin-Unet [39], DC-Swin [40], TransUNet [41], and TransFuse [43], as well as models spe-
cialized for building extraction: MSRF-Net [6], STT [38], TCNet [42], and BuildFormer [44].

4.4.1. Experiment on the Inria Aerial Image Labeling Dataset

As shown in Table 5, on the Inria aerial image labeling dataset, our proposed CTANet
achieved the best results on four evaluation metrics, with an F1-score, IoU, precision, and
recall of 90.52%, 82.68%, 91.75%, and 89.32%, respectively, which were significantly higher
than those of other state-of-the-art methods. Specifically, compared to the best-performing
semantic segmentation models TransUNet and Swin-Unet, CTANet is 1.16% and 3.98%
higher in F1-score, 1.91% and 6.41% higher in IoU, 1.31% and 4.88% higher in precision,
and 1.0% and 3.11% higher in recall, respectively. Meanwhile, compared with BuildFormer,
a state-of-the-art method focusing on building extraction, our F1-score, IoU, precision, and
recall are 0.75%, 1.24%, 1.0%, and 0.51% higher, respectively. These results demonstrate the
superior performance of CTANet in building extraction. Although the FLOPs of CTANet
are slightly higher than those of TransFuse, it brings significant improvement in the four
evaluation metrics and has significantly lower FLOPs than the other methods.

Table 5. Comparison with SOTA methods on the Inria aerial image labeling dataset.

Methods FLOPs (G) F1 IoU Precision Recall

Segmenter [37] 126.12 89.33 80.72 90.38 88.3
Swin-Unet [39] 97.69 86.54 76.27 86.87 86.21
TransUNet [41] 168.92 89.36 80.77 90.44 88.32
TransFuse [43] 50.53 89.32 80.71 90.29 88.38

STT [38] 106.21 87.99 79.42 - -
BuildFormer [44] 117.12 89.77 81.44 90.75 88.81
CTANet (Ours) 50.77 90.52 82.68 91.75 89.32

As shown in Figure 7, we visualize and compare the prediction results of CTANet
with those of the recent state-of-the-art Transformer-based methods (TransUNet, Swin-
Unet, and BuildFormer). It can be seen that in the second row, although the buildings
are less disturbed by the background, TransUNet, Swin-Unet, and BuildFormer perform
poorly compared to CTANet in terms of the building edge extraction results, and even
make wrong predictions, mistaking the background for the buildings. This is because
CTANet uses ConvNeXt as an encoder, which is good at detail and local feature extraction,
while the large convolutional kernel ensures a certain global information-capturing ability,
which is especially important for the recognition of building edges and complex structures.
As can be seen from the results in the first and third rows, when facing a dense cluster
of small buildings, CTANet is able to extract the edges of the buildings more clearly
and smoothly with the help of MSM-AMM, reflecting the independence between the
buildings. While other models usually cannot effectively recognize the gaps and edge
pixels between buildings when facing dense building clusters, resulting in redundant
and irregular extraction results. In the results of the fourth and fifth rows, it can be seen
that there is multiple vegetation in the background to cover the buildings, which leads
to the omission of other models in extracting the buildings, incorrectly recognizing the
buildings as the background, and failing to represent the overall structure of the buildings
in a complete way. In contrast, CTANet, with the help of BHAFormer, is able to effectively
locate the buildings in a complex background environment and accurately distinguish the
overall differences between the buildings and the background.
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4.4.2. Experiment on the Massachusetts Building Dataset

As shown in Table 6, CTANet outperforms other state-of-the-art methods on the Mas-
sachusetts building dataset, achieving the highest F1-score, IoU, and precision of 86.7%,
76.52%, and 88.2%, respectively. Specifically, CTANet achieves 0.35% and 0.78% higher
F1-score, 0.54% and 1.21% higher IoU, and 1.8% and 0.5% higher precision, respectively,
compared to the best-performing semantic segmentation models, Swin-Unet and Tran-
sUNet. Although lower than Swin-Unet and the latest building extraction network TCNet
in the recall, the F1-score combines precision and recall and is more representative in
measuring the comprehensive performance of the model. Compared to BuildFormer, the
best-performing building extraction network, CTANet’s F1-score is 0.51% higher, IoU is
0.78% higher, precision is 0.68% higher, and recall is 0.35% higher. In addition, CTANet
maintains the lowest FLOPs, showing the advantage of its computational efficiency.

Figure 8 shows the visualization results of CTANet with other models on the Mas-
sachusetts building dataset. The buildings in the Massachusetts dataset have uneven
density and distribution and are affected by lighting conditions, which leads to variations
in the brightness and contrast of the images, making the extraction of buildings more
difficult. As can be seen from the images in the first and third rows, the buildings have
complex structures and are affected by lighting, and the shadow coverage makes the
buildings similar to the background in terms of grayscale values, losing the texture and
color features of the buildings. These factors cause other models to incorrectly identify
shadowed areas as buildings or fail to recognize the parts of buildings that are covered
by shadows. CTANet combines global and local information to enhance the robustness
of the model to the shadow-covered areas, preserving as much as possible the original
structure of the buildings. In the images of the second, fourth, and fifth rows, due to the
blurring of the dataset images, when the color and texture of the buildings are similar to
the background, noise interference is introduced, which may result in missed detection or
incorrect prediction, and increase the difficulty of building extraction. CTANet enhances
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the features and reduces the noise to preserve the integrity of buildings through multiscale
learning of the spatial and channel dimensions.

Table 6. Comparison with SOTA methods on the Massachusetts building dataset.

Methods FLOPs (G) F1 IoU Precision Recall

Segmenter [37] 126.12 84.83 73.65 86.32 83.38
Swin-Unet [39] 97.69 86.35 75.98 86.40 86.31
DC-Swin [40] 72.52 84.12 72.59 83.07 85.19

TransUNet [41] 168.92 85.92 75.31 87.70 84.21
MSRF-Net [6] 81.92 83.90 72.27 87.04 80.98

STT [38] 106.21 85.40 74.51 86.55 84.27
TCNet [42] 91.88 84.29 76.21 85.17 86.82

BuildFormer [44] 117.12 86.19 75.74 87.52 84.90
CTANet (Ours) 50.77 86.70 76.52 88.20 85.25
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4.4.3. Experiment on the WHU Building Dataset

To demonstrate the generalization ability of CTANet in different environments, we
continue to compare CTANet with other state-of-the-art methods in our experiments on
the WHU building dataset. As shown in Table 7, CTANet still achieves the best evaluation
results of 95.74%, 91.84%, 95.86%, and 95.63% for the F1-score, IoU, precision, and recall,
respectively. Compared to Swin-Unet and TransUNet, CTANet has 1.28% and 2.17%
higher F1-score, 2.34% and 3.93% higher IoU, 1.33% and 2.41% higher precision, and
1.25% and 1.94% higher recall. Compared to the best-performing building extraction
network, BuildFormer and CTANet have 0.21%, 0.4%, 0.21%, and 0.23% higher F1-score,
IoU, precision, and recall, respectively. These results fully demonstrate that CTANet
possesses strong generalization ability and balanced performance.
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Table 7. Comparison with SOTA methods on the WHU building dataset.

Methods FLOPs (G) F1 IoU Precision Recall

Segmenter [37] 126.12 93.49 87.78 93.65 93.34
Swin-Unet [39] 97.69 94.46 89.50 94.53 94.38
DC-Swin [40] 72.52 93.96 88.61 94.38 93.54

TransUNet [41] 168.92 93.57 87.91 93.45 93.69
MSRF-Net [6] 81.92 94.82 90.16 94.97 94.68

STT [38] 106.21 94.97 90.48 - -
TCNet [42] 91.88 93.95 91.16 95.15 95.55

BuildFormer [44] 117.12 95.53 91.44 95.65 95.40
CTANet (Ours) 50.77 95.74 91.84 95.86 95.63

Figure 9 shows the prediction results of CTANet compared with those of the other
models on the WHU building dataset. As can be seen from the images in the first, second,
and third rows, the similarity in color and the lack of texture between the parcels and the
buildings cause most of the models to incorrectly predict the parcels as buildings. This
is because color is a very important feature in visual tasks and dominates the process of
learning and building features using a model. If this feature is overly relied upon and
other features are ignored, there will be cases in which backgrounds with similar colors are
incorrectly identified as buildings. CTANet enhances the model’s ability to extract diverse
features of a building through multiscale feature extraction and attention mechanisms to
improve the recognition accuracy. As can be seen from the images in the fourth and fifth
rows, the traditional square convolutional kernel may not be effective in performing feature
extraction for more slender and narrow spaghetti buildings. At the same time, the small
number of samples for this type of building makes it impossible for models with poor
generalization ability to effectively identify and segment these buildings. CTANet enhances
the ability to capture slender strip features through strip convolution with different depths
and multiscale feature fusion, providing enough details to extract the buildings accurately.
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5. Discussion

To further validate the superiority and necessity of our proposed module, we replace
the BHAFormer in the decoder part with other excellent Transformer modules, such as
PVT [33], Shunted Transformer [35], and DSAFormer [36], while keeping the CTANet
network architecture unchanged, and conducted experiments on the Inria aerial image
labeling dataset. As shown in Table 8, when CTANet introduces BHAFormer in the de-
coder, the F1-score and IoU achieve the best performance while maintaining the lowest
FLOPs and number of parameters, which fully proves the high efficiency and lightweight
of BHAFormer. Although PVT and Shunted Transformer reduce the cost of SA compu-
tation by reducing the length of the key and value sequences, the length of their query
sequences remains full size, which keeps the computational cost high during SA com-
putation. DSAFormer reduces the length of the query, key, and value sequences in SA
computation by downsampling the image; however, the ordinary downsampling operation
leads to loss of information and thus needs to be supplemented by additional local feature
extraction. Owing to the bilateral hybrid attention mechanism, BHAFormer reduces the
length of the query, key, and value sequences to reduce the cost of SA computation while
preserving the local features, such as edges, textures, and corner points, as well as global
features, such as the overall structure and background information, and performs global
dependency modeling from two perspectives, which achieves the best performance of
building extraction.

Table 8. Test results for different transformers in CTANet.

Method F1 IoU FLOPs (G) Params (M)

remove BHAFormer 90.26 82.25 45.9682 37.0048
replace with PVT [33] 90.32 82.35 53.4928 41.5221

replace with Shunted Transformer [35] 90.38 82.45 56.2157 41.9732
replace with DSAFormer [36] 90.36 82.41 51.2760 39.3206

CTANet (Ours) 90.52 82.68 50.7737 39.0978

Next, we continue to replace MSM-AMM with a skip connection while keeping the
overall architecture of CTANet unchanged. The experimental results are shown in Table 9,
where the performance is improved after replacing the skip connection; however, the results
are still lower than those of CTANet with MSM-AMM. This is because loss of information is
unavoidable during the encoder downsampling process. The skip connection connects the
encoder to the decoder to enhance information interaction, supplement the decoder with
shallow features, and improve segmentation performance, which demonstrates the positive
significance of fusing shallow features with deep features for building extraction. However,
unprocessed encoder features contain noise interference and lack multiscale information.
MSM-AMM further improves the segmentation accuracy by capturing multiscale feature
information through a spatial attention branch and channel attention branch, learning
channel representations, and reducing noise.

Table 9. The impact of encoder-decoder feature interaction and fusion.

Method F1 IoU

remove MSM-AMM 90.37 82.43
replace with Skip Connect 90.45 82.56

CTANet (Ours) 90.52 82.68

6. Conclusions

In this paper, we propose an asymmetric network that combines the advantages of
CNN and Transformer, named CTANet, to realize the accurate extraction of buildings.
CTANet uses ConvNeXt as the encoder, and BHAFormer as the decoder. Compared to
general Transformers, BHAFormer improves efficiency by reducing the computational cost
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of self-attention while establishing global dependencies from two perspectives: texture and
edge details, as well as overall background information. At the same time, we introduce
MSM-AMM to capture multiscale feature information and learning channel representations
to reduce noise and complement information loss during downsampling to improve the
segmentation performance of buildings. These innovations make CTANet stand out in
comparison with state-of-the-art methods, performing well on three widely used datasets:
the Massachusetts building dataset, the WHU building dataset, and the Inria aerial image
labeling dataset. CTANet not only maintains a relatively low computational cost, but also
excels in segmenting building edges, especially in dense building clusters.

It is worth noting that the method proposed in this paper still has some limitations;
for example, complex dynamic environments, such as light changes, shadow coverage, and
seasonal changes, still have an important impact on the extraction effect of buildings. In
the future, we will further delve into the network structure such that the model can effec-
tively capture both local and global features at each stage and improve the generalization
ability of the model in changing environments. In addition, we will continue to keep the
computational cost low to meet the needs of practical applications.
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