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Abstract: A novel prototype based on the combination of a multi-junction, high-efficiency photo-
voltaic (PV) module and a supercapacitor (SC) able to self-power a wireless sensor node (WSN) for
outdoor air quality monitoring has been developed and tested. A PV module with about an 8 cm2

active area made of eight GaAs-based triple-junction solar cells with a nominal 29% efficiency was
assembled and characterized under terrestrial clear-sky conditions. Energy is stored in a 4000 F/4.2 V
supercapacitor with high energy capacity and a virtually infinite lifetime (104 cycles). The node power
consumption was tailored to the typical power consumption of miniaturized, low-consumption NDIR
CO2 sensors relying on an LED as the IR source. The charge/discharge cycles of the supercapacitor
connected to the triple-junction PV module were measured under illumination with a Sun Simulator
device at selected radiation intensities and different node duty cycles. Tests of the miniaturized
prototype in different illumination conditions outdoors were carried out. A model was developed
from the test outcomes to predict the maximum number of sensor samplings and data transmissions
tolerated by the node, thus optimizing the WSN operating conditions to ensure its self-powering
for years of outdoor deployment. The results show the self-powering ability of the WSN node over
different insolation periods throughout the year, demonstrating its operation for a virtually unlimited
lifetime without the need for battery substitution.

Keywords: multi-junction photovoltaic module; supercapacitors; wireless sensor nodes; CO2 sensors;
self-powered sensors; environmental gas monitoring

1. Introduction

Mitigation and adaptation to global warming and climate change represent a priority
strategy for sustainable economic growth and development [1,2]. Air quality control
through global and local monitoring of toxic gases is a powerful tool in view of achieving
this final objective. Recent research has been directed toward the development of extended
wireless networks of miniaturized and energy-sustainable sensors [3–5] composed of
power-efficient storage elements and small-sized nodes. Wireless sensor nodes (WSNs)
are, in general, equipped with an energy-harvesting and storage section consisting of a
photovoltaic (PV) module, battery storage and a power management system (PMS) [6]. The
amount of energy/power managed by these systems is mainly affected by the embedded
sensors and the data transmission tasks. For gas monitoring tasks, optical-based carbon
dioxide (CO2) sensors, chemoresistive sensors, particulate sensors and catalytic sensors
are among the most expensive in terms of energy demand [7–10]. This makes them
virtually incompatible with ultra-low-power applications relying on harvesting sources.
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Indeed, the most popular and accurate CO2 gas sensors exploit Non-Dispersive InfraRed
(NDIR) technology [7] based on an IR source, traditionally an incandescent lamp, which
may have a typical power consumption of up to 300 mW [8]. Recently, IR LED sources
working in pulse mode have become available, with power consumption reduced to about
10 mW [7]. Chemiresistive sensors, due to their high-temperature operation, have a power
consumption of the same order of magnitude [9], while particulate sensors may require
even one order of magnitude higher [10].

To manage such power consumption, traditional PV modules based on silicon, char-
acterized by a 10–20% efficiency depending on its crystalline quality [11], require a non-
negligible size. Miniaturized devices can be obtained by means of next-generation PV
modules characterized by considerably higher energy conversion efficiencies. Consoli-
dated prototypes based on GaAs-based triple-junction solar cells, in fact, may achieve 30%
efficiency under terrestrial Sun irradiation [12], allowing the PV module’s effective area
exposed to the Sun to be almost halved with respect to silicon-based devices.

A further advance in the node energy-harvesting architecture may concern the energy
storage aspect, increasing the device’s eco-friendliness by excluding Li batteries, which
have a non-negligible environmental impact due to their limited lifetime, flammability and
toxicity. Supercapacitors recently emerged as a valid alternative to traditional batteries due
to their advantages in terms of fast charging, high power density, long life cycle and wide
temperature range of operation [13,14]. Their potential for high-performance self-powered
wireless multi-sensing microsystems has been recently exploited [15]. In fact, a WSN power
supply system with a 35 cm2 photovoltaic surface coupled with supercapacitors (2 × 25 F
capacitance and 2.7 V voltage) for permanent operation was presented and discussed
in [15].

The activity proposed in this paper represents a significant improvement of this previ-
ous pioneering work by making use of a hybrid supercapacitor, characterized by higher
capacitance, power and energy density [16–18], in conjunction with a high-efficiency triple-
junction PV module in place of the more common polycrystalline or monocrystalline silicon
PV cells. These devices, once accurately characterized with laboratory instrumentation,
were integrated into a small-size WSN to prove their permanent outdoor operation. The
WSN is designed to have an average power demand of about 10 mW, which is the typical
consumption of solid-state LED-based sensing devices for CO2 monitoring [7]. However,
the obtained results can be generalized to various sensing devices for environmental and
air quality monitoring, such as temperature and humidity sensors or electrochemical sen-
sors for O2, CO, NOx and Volatile Organic Compound (VOC) measurements, which are
characterized by power requirements similar to or lower than those experienced in the
presented tests.

The system architecture and the PV module and supercapacitor characterization are
presented in Section 2 (Materials and Methods). Section 3 describes the main experimental
results obtained with the whole prototype, both in the laboratory with a Sun Simulator lamp
and outdoors. Section 4 presents the model developed from the test outcomes to optimize
the WSN operating conditions in view of ensuring the virtually unlimited self-powering of
the prototype. Finally, the conclusions and outlooks of the presented research are reported
in Section 5.

2. Materials and Methods

We prepared the prototype PV module starting from four GaAs-based solar cells
(MSCM-4.5-14.8-30%) produced by Shanghai YIM Machinery Equipment Co., Ltd. (Shanghai,
China) [19]. Each solar cell is composed of a series of two triple junctions. They are dust- and
waterproof in accordance with the IP67 protocol and guaranteed under (−80 ◦C, +80 ◦C)
temperature conditions for 8 years of operation. The area of each cell is 17 × 16.4 mm2, and
its weight is 0.7 g; the cell active area is 2.1 cm2. The nominal operating voltage and current
are 4.5 V and 14.8 mA, respectively, and the efficiency is η = 29% at null Air Mass (AM0)
and T = 25 ◦C, namely, standard conditions for characterizing photovoltaic modules for
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extraterrestrial applications. A photograph and the circuit schematics of the PV module we
assembled as a series of two solar cells in parallel are shown in Figure 1a,b. The operating
current and voltage values expected in this configuration from nominal specifications are
29.6 mA and 9 V, corresponding to 266 mW peak power.
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Figure 1. The PV module composed of eight triple-junction solar cells: (a) photograph and (b) circuit
schematics (each diode D is composed of two triple-junctions in a series). (c) A photo of the hybrid
supercapacitor used in this work. (d) A picture of back and front views of the CO2 sensor emulated
in this work.

Table 1 shows the nominal specifications of the supercapacitor (C424000R) used in this
study, manufactured by DongGuan GongHe Electronics Co., Ltd. (Dongguan, Guangdong,
China), with a cylindrical shape, a 69 mm height, and a 24 mm diameter, characterized by
the protection class IP30 and 70 g weight [18]. A photograph of the hybrid supercapacitor
used in this work is reported in Figure 1c.

Table 1. Parameters of the supercapacitor C424000R used in this study [18].

Parameter Measurement Unit Nominal

Capacitance F 4000
Voltage V 4.2

Max recharging voltage V 4.2
Energy storage Wh 14

Internal resistance (AC) mΩ 45
Normal current A 2
Leakage current mA/72 h ≤0.5

Cycle life # ≥100,000
Operating temperature range ◦C −40 ÷ 65

Storage temperature range ◦C −40 ÷ 70

Finally, the sensor emulated in the following tests is the CozIR-LP by Gas Sensing So-
lutions Ltd. (Cumbernauld, Glasgow, UK) [7], whose back and front pictures are presented
in Figure 1d. It is an NDIR sensor for CO2 measurements (30 ppm of resolution) based
on a solid-state LED, which dissipates less energy than other sensing solutions based on
filament lamps. The low power consumption of the CozIR-LP and its supply voltage range
make it compatible with battery-based operations, allowing it to be used in a wide range
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of Internet of Things applications. Moreover, communication through the UART interface
makes it extremely versatile and easily integrable with several types of MCU platforms.

The used power management system (PMS) is from Waveshare, Shenzhen, China [20].
It has a 65.2 mm × 56.2 mm size, is compatible with 6 V to 24 V solar panels and supports a
14500 Li-ion battery (850 mAh) or an equivalent rechargeable storage element. The voltage
across the storage element must be between 2.9 V and 4.2 V. The system provides a regulated
output at 5 V/1 A or 3.3 V/1 A to power up a connected load. The specifications of the
PMS are given in Table 2. In this study, we modified the battery case of the PMS to match
the supercapacitor dimensions. The node is connected to the 3.3 V/1 A output. To select the
maximum power point (MPP), this PMS applies the constant-voltage method, automatically
setting the output voltage Vout as a fraction of the open-circuit voltage Voc by a voltage
divider. By selecting the open-circuit voltage Voc = 9 V within the range of possible values
(6–9–12–18–24 V), the actual voltage output fixed by the PMS is Vout = 7.65 V = 0.84 Voc.

Table 2. Specifications of the power management system used in this study [20].

Parameter Measurement Unit Nominal

Vin V 6 ÷ 24
Vcharge max V 4.2 ± 1%

Vdischarge max V 2.9 ± 1%
Iquiesc mA <2

T ◦C −40 ÷ 80
η % 78

A picture of the whole system under study, composed of the PV module made of four
triple-junction solar cells, the power manager system (PMS) carrying the supercapacitor
(SC) and the wireless sensor node (WSN) with a resistive load emulating a sensor, is shown
in Figure 2a. The flowchart of the entire system is sketched in Figure 2b.

Measurements were carried out both indoors and outdoors. Laboratory tests were
carried out by means of a Sun Simulator 2000 (Abet Technology, Milford, CT, USA) based
on a 150 W Xe lamp [21]. The radiation intensity and the temperature of the module
were continuously monitored by a Kipp & Zonen (OTT HydroMet B.V., Delft, The Nether-
lands) CMP3 pyranometer equipped with the SOLRAD read-out system [22] and a Pt1000
thermometer. The CMP3 has a sensitivity S = 28 ± 4 µV/(W/m2), a spectral range of
300–2800 nm and a response time of about 1 s. The uncertainty of the intensity measured
was evaluated after repeated measurements in the same conditions, up to ten times, result-
ing in a 5% error. The Qmini WIDE VIS spectrometer (Broadcom Inc., Palo Alto, CA, USA)
with a spectral resolution of 1.5 nm and a (225 nm, 1030 nm) measurement range based
on a CCD, was used to monitor the radiation spectrum [23]. A Keithley (Tektronix, Brack-
nell, UK) 2401 (source/electrometer was used to measure the PV module current–voltage
(I–V) characteristics. The instrument is characterized by a maximum measured voltage
Vmax = 21 V, 100 µV resolution, accuracy ∆V = 0.015%V + 1.5 mV and maximum current
supplied I = 105 mA. The uncertainty of the voltage measurement was experimentally
determined by repeating measurements in the same operating conditions, up to ten times,
yielding values within the instrument accuracy. A picture of the system running when the
PV module is exposed to Sun Simulator illumination is shown in Figure 2c. The voltage
across the supercapacitor is measured by a Keithley DMM 199, which is able to perform
voltage measurements in the range from 300 V to 1 µV with a 5 1⁄2-digit resolution. Data
are collected through GPIB/NI protocols by means of the MATLAB R2020b instrument
control toolbox. A block diagram of the whole measurement system is shown in Figure 2d.

A prototype sensor node was exploited using a network infrastructure relying on
long-range (LoRa) modulation and the associated LoRa Wide-Area Network (LoRaWAN)
protocol [24]. In detail, the sensor node transmitted the sampled data to a LoRa gateway
according to the “class A” LoRaWAN standard implementation, and then the gateway was
in charge of redirecting the packets to the Chirpstack cloud LoRaWAN server, which in
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turn decoded and decrypted the received packets and sent the retrieved information to
an SQL database for storage. With the aim of testing the operation of a general-purpose
device, a standard low-power consumption system architecture was designed, integrating a
low-power 8-bit AVR ATtiny84 microcontroller by Microchip and an RFM95 LoRa module
by HopeRF (Shenzhen, China). The MCU was programmed according to a sleep routine
that foresaw the periodic wakeup of the MCU at fixed time intervals.
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Figure 2. (a) A photograph of the system used in this study, composed of the PV module made of
four triple-junction solar cells, the PMS carrying the supercapacitor and the wireless sensor node with
resistance simulating typical sensor consumption. (b) The system flowchart, including the emulated
CO2 sensor. (c) A photograph of the system during a measurement under the Sun Simulator. (d) A
block diagram of the measurement system.

Concerning the radio transmission settings, a transmitting frequency of 868 MHz,
output power of 14 dBm, coding rate (CR) of 4/8, spreading factor (SF) of 12 and band-
width (BW) of 125 kHz were set. These settings were chosen as a tradeoff between the
low-consumption requirement and transmission reliability in the case of a hypothetical
outdoor application scenario, which may be affected by critical issues related to noise,
signal attenuation, reduced radio coverage and long distances between sensor nodes and
gateways. Indeed, CR = 4/8 guarantees the best error correction, while SF = 12 provides
the highest receiver sensitivity and the lowest packet loss, which are important aspects to
be accounted for in deployments of monitoring systems in remote and critical scenarios.
Finally, a resistive load was embedded in view of emulating an average power consumption
of 10 mW as typical sensor consumption. The node was programmed to wake up for 1 min
to simulate its consumption during sensor measurement, and then a radio transmission
was performed. The flowchart describing the program executed by the MCU is presented
in Figure 3.
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2.1. PV Module Characterization

The PV module we assembled is a novel prototype with unknown performance under
both outdoor terrestrial and indoor laboratory conditions. We measured the current–
voltage (I-V) characteristics under 1000 W/m2 in AM1.5G conditions (solar radiation, SR)
and under Sun Simulator irradiation (SS) at 1000 W/m2 intensity and with the AM1.5G
filter. The results are shown in Figure 4a,b, respectively, for current–voltage (I-V) and
power–voltage (P-V) curves. The maximum power coordinates (Vmax,Imax) and (Vmax,Pmax)
are depicted in both plots, together with the actual output coordinates (Vout,Iout) and
(Vout,Pout), respectively, due to the PMS selection at 85% Voc. The relevant photovoltaic
parameters obtained from measurements are reported in Table 3. Here, Isc is the short-
circuit current, and FF is the fill factor, while ηout and ηmax are the energy conversion
efficiencies, respectively, in the output and maximum power point conditions.
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The measured parameters of the PV module are lower than the nominal ones, probably
due to the irradiation conditions being different from nominal extraterrestrial parameters
and characterized by a higher temperature. In general, the measurements evidence that the
PV module performs better under solar irradiation than under Sun Simulator illumination.



Sensors 2024, 24, 6340 7 of 15

This is probably due to a spectrum mismatch of the Sun Simulator with respect to the
actual solar radiation spectrum. This is shown in Figure 5, which compares the two spectra
measured with the Qmini spectrometer in the range 300–1030 nm for the same intensity
(1000 W/m2) in AM1.5G conditions. A decrease in efficiency of about 2% is due to the
differences between the output current and voltage coordinates (Vout,Iout) selected by the
MPP algorithm of the PMS and the maximum power point coordinates (Vmax,Imax).

Table 3. Measured parameters of the triple-junction module under 1000 W/m2 AM1.5G.

Parameter Measurement Units Sun Simulator Solar Irradiation

Isc mA 24.0 26.0
Voc V 10.10 9.88

Vmax V 9.09 8.74
Imax mA 21.0 23.7
Vout V 7.65 7.65
Iout mA 22.8 24.9
FF % 78.7 80.6

Pmax mW 191 207
Pout mW 174 190
ηmax % 24 26
ηout % 22 24

T ◦C 35 41
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2.2. Supercapacitor Characterization

The hybrid supercapacitor is a novel prototype with unknown performance during
charge/discharge. An Electro-Automatik EA-PS 9080-60 T (Viersen, Germany) source
and Electro-Automatik EA EL 9080-45T (Viersen, Germany) were used to measure the
charge/discharge cycles of the supercapacitor in terms of voltage vs. state-of-charge (SoC)
characteristics. Charge/discharge cycles expressed in terms of voltage across the super-
capacitor as a function of its state of charge (SoC) are shown in Figure 6a. The currents
flowing in the SC and voltage across electrodes during charge/discharge cycles are given in
Figure 7a,b. The hysteresis effect observed in the charge/discharge cycles of Figure 6a can
be explained in terms of equivalent internal resistance RESR (see Figure 6c), adding a voltage
contribution VR = RESRI during measurements. RESR can be evaluated from the voltage dif-
ference between the two linear parts of the charge/discharge curves, ∆V = 2VR = 160 mV,
measured at the same current: I = 4 A. We obtain RESR = 20 mΩ, in agreement with the
nominal value (see Table 2). To evaluate the energy stored by the supercapacitor, we note
that, considering the capacitance value, C = 4000 F, the highest voltage, 4.2 V, corresponds
to a charge Qmax = CVmax = 16,800 C obtained at SoC = 100%. Then, we can determine



Sensors 2024, 24, 6340 8 of 15

the energy stored in the supercapacitor as U = 1
2 QV. Figure 6b shows that the stored

energy U is linearly dependent on the voltage across the supercapacitor electrodes, VSC,
in the range (3.6 V, 4.2 V). Here, a change ∆Vsc = 1 mV corresponds to exchanged energy
on the supercapacitor Usc = 55.94 J = 15.54 mWh. We note that, for proper operation, the
supercapacitor must be kept working within this voltage range.
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Figure 7. The current supplied and voltage measured as a function of time during the supercapacitor
(a) charge and (b) discharge cycles shown in Figure 6a.

3. Experimental Results
3.1. Laboratory Tests

Laboratory tests of the whole system were carried out by exposing the PV module to
illumination with selected intensities from the Sun Simulator. The node was woken for
1 min at programmable time intervals with a power consumption of 10 mW. Meanwhile,
the voltage across the SC was measured (at approximately 0.5 s time intervals) by means of
the 5½-digit multimeter. Prior to this, the SC had been charged to work in the proper linear
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voltage range: 3.6 ÷ 4.2 V. The results for light intensities of 0, 350, 600 and 960 W/m2 are
shown in Figure 8a,b, which depict cases where the node, respectively, is switched off and
on, sampling and transmitting every 5 min. The same tests were repeated for transmission
every 15 min and 30 min. When the node is switched off, the voltage across the SC changes
monotonically, increasing at higher intensities (600 W/m2, 960 W/m2), remaining almost
constant at intermediate intensity (350 W/m2) and slightly decreasing in dark conditions.
From these measurements, we can determine the consumption of the system during the
sleeping periods. In Figure 8b, we observe that each time the node wakes up during the
1-min-long sensing phase, a voltage drop, ∆V = R I, occurs, with I being the current flowing
from the PV module and R being the resistive load. The spike at the end of each node
operation indicates the data transmission phase.
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3.2. Outdoor Tests

Outdoor tests of the whole system were carried out in Florence, Italy, at nighttime
and in daylight under clear-sky conditions. The system was placed on a platform, oriented
toward the south with a 37◦ tilt, carrying, on the front surface, the PV module, the pyra-
nometer and the temperature sensor. The PMS, SC and node were positioned underneath
the platform to prevent excessive heating.

As an example, Figure 9b,c show the voltage measured across the SC vs. time with
transmission every 30 min, respectively, during night- and daytime. Figure 9d shows the
intensity measured by the pyranometer during the daylight measurement.
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We observe that the voltage derivative as a function of time is proportional to the
irradiation intensity, dV

dt ∝ φ, as expected. When considering a 24 h day–night period, we
measured a 35 mV total increase in voltage across the supercapacitor, corresponding to
Usc = 0.54 Wh energy stored in the supercapacitor.

4. Discussion

In the proper voltage range of the supercapacitor (3.6 V to 4.2 V), the energy stored
in the SC is a linear function of the voltage across its electrodes, Vsc (see Figure 6b). This
is useful, as we can discuss the exchanged energies in terms of changes in Vsc during
operation, a parameter easy to measure directly. To discuss the change in Vsc as a function
of time, we consider three contributions: ∆Vout, ∆Vin and ∆Vquiesc. The first, which is always
negative, is associated with the node activity; the second, which is always positive, is due
to the PV module supply under radiation; and the third is associated with the consumption
needed to power up the PMS. In terms of incremental contributions per unit time, we
define the following:

Gtot = Gout + Gin + Gquiesc =

(
∆V
∆t

)
out

+

(
∆V
∆t

)
in
+

(
∆V
∆t

)
quiesc

(1)

From the measurements shown in Figure 8a, taken when the node is sleeping, we
can determine Gquiesc =

(
∆V
∆t

)
quiesc

from the slope of the Vsc–time curve in the case of

null radiation intensity. We obtain Gquiesc = 0.01 mV
min . This corresponds to a power

consumption of 9.3 mW and to an energy loss Uquiesc = 0.14 Wh. From measurements at

350, 600 and 930 W/m2 light intensity (see Figure 8a), we can determine Gin =
(

∆V
∆t

)
in

from the slope of Vsc(t) at different radiation intensities. As a result, we obtain Gin + Gquiesc
as a function of radiation intensity, as shown in Figure 10a (for error bar estimation,
see Section 2). The best fit of this curve is obtained by exploiting a polynomial of the
second order. Then, Gout can be determined by evaluating the voltage loss after each
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transmission at any radiation intensity applied. As an example, Figure 10c shows a plot of
the voltage across the supercapacitor, Vsc, measured as a function of time under irradiation
equal to 350 W/m2 and with node wakeups every 15 min. The voltage drop due to two
consecutive node wakeups is evidenced by the difference between the intercepts of the
best-fit lines immediately after the transmission takes place. The loss of voltage due to
node consumption is evaluated as the difference between the change in the intercept of the
voltage–time line when the node is sleeping between two consecutive transmissions. We
obtain a voltage drop for each wakeup equal to ∆Vtr = −0.18 mV, a value independent of
the irradiation intensity. In terms of the corresponding energy stored in the supercapacitor,
we obtain Utr = 2.8 mWh. Gtot is then determined as a function of the number of wakeups
per unit time and of the radiation intensity, as shown in Figure 10b.
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Gin + Gquiesc plotted as a function of radiation intensity. The best fit is obtained with a second-order
polynomial. (b) Total voltage change per unit hour, Gtot, plotted as a function of the number of
transmissions per unit hour for different radiation intensities. (c) A plot of the voltage across the
supercapacitor, Vsc, measured as a function of time under Sun Simulator illumination in the case of
350 W/m2 and node sensing/transmission every 15 min. The voltage drop due to two consecutive
node transmissions is evidenced by the difference between the intercepts of the corresponding best-fit
lines (see text).

From the plots in Figure 10, knowing the insolation curve during the day, it is possible
to compute the corresponding change in voltage per unit time. As an example, Figure 11a,b
show, respectively, the insolation curve measured on four days with a clear sky in 2023
(data from NREL database [25]) and the corresponding voltage change per minute in the
case of transmission every 15 min calculated with this model.
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at the end of the year only down to 3.8 V. The same calculation carried out for the second 
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Figure 11. (a) The insolation curve measured on four days with a clear sky in 2023 [25] and (b) the
corresponding voltage changes per unit minute, G, estimated in the case of transmission every 15 min.

By summing up the contributions throughout the day, we obtain the voltage change
per day for that particular insolation curve: as an example, in Figure 12a, we show the
voltage change calculated throughout the whole year in the case of transmission every
15 min. Figure 12b shows the voltage across the supercapacitor evaluated in the case of
sensing/transmitting, respectively, every 15 min and 30 min during the first year, starting
with a 100% state of charge of the battery, corresponding to 4.2 V. We observe that, in the
case of wakeups every 15 min (red line), Vsc, at the end of the first year, is below the proper
range required for the supercapacitor (Vsc as low as 3.2 V), indicating that, energetically,
the system is unbalanced. On the contrary, transmission every 30 min shows a Vsc decrease
at the end of the year only down to 3.8 V. The same calculation carried out for the second
year, where Vsc starts from this as the initial value, shows that Vsc is still within the required
range (blue line). The decrease in Vsc observed in the wintertime is balanced by its increase
during the spring-to-autumn period, guaranteeing the self-sufficiency of the WSN for two
whole years. Moreover, during successive years, Vsc should repeat the trend of the second
year, so we can expect Vsc to remain within the proper range (3.6 V, 4.2 V) for virtually
unlimited operation periods.
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Figure 12. (a) The voltage change across the supercapacitor per day of the year, estimated in the case
of transmission every 30 min. (b) The daily value of Vsc estimated during the first year of operation
for transmission every 15 min (red line) and 30 min (black line), starting from a full SoC (Vsc = 4.2 V);
the same calculation (blue line) in the case of the second-year operation for transmission every 30 min,
starting from the SoC estimated at the end of the previous year (corresponding to Vsc = 3.8 V).

This simple model was obtained from the outcomes achieved during the Sun Simulator
tests. However, as we know that under solar radiation, the PV module is more efficient than
under the Sun Simulator due to the better match of the triple-junction spectral response with
the solar spectrum, even more promising results are expected for outdoor deployments. In
fact, the total voltage change in the case of the complete night–day operation with a clear
sky, as in Figure 9c, is estimated by the model to be equal to 32 mV, slightly lower than
what was actually measured, that is, 35 mV.
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Before concluding, we need to mention here that the model discussed in this paper
does not consider weather effects, such as partial insolation due to cloud coverage, and is
based only on clear-sky insolation curves. To extend the discussion accordingly, a more
detailed model should be used considering more realistic solar radiation intensity curves,
directly measured at a specific location throughout the year and averaged over a significant
number of years. In the case of Italy, these curves are available from a database by ENEA,
Italy [26], as a listing of the average daily radiation intensities as a function of each month
of the year, averaged for the years from 2006 to 2022 for several locations. As an example,
the monthly curve of normal global average daily radiation for Siena, Italy, is shown in
Figure 13. Error bars due to 5% uncertainty in the intensity are added to the plot (see
Section 2).

Sensors 2024, 24, x FOR PEER REVIEW 13 of 16 
 

 

for transmission every 15 min (red line) and 30 min (black line), starting from a full SoC (Vsc = 4.2 V); 
the same calculation (blue line) in the case of the second-year operation for transmission every 30 
min, starting from the SoC estimated at the end of the previous year (corresponding to Vsc = 3.8 V). 

This simple model was obtained from the outcomes achieved during the Sun Simu-
lator tests. However, as we know that under solar radiation, the PV module is more effi-
cient than under the Sun Simulator due to the better match of the triple-junction spectral 
response with the solar spectrum, even more promising results are expected for outdoor 
deployments. In fact, the total voltage change in the case of the complete night–day oper-
ation with a clear sky, as in Figure 9c, is estimated by the model to be equal to 32 mV, 
slightly lower than what was actually measured, that is, 35 mV. 

Before concluding, we need to mention here that the model discussed in this paper 
does not consider weather effects, such as partial insolation due to cloud coverage, and is 
based only on clear-sky insolation curves. To extend the discussion accordingly, a more 
detailed model should be used considering more realistic solar radiation intensity curves, 
directly measured at a specific location throughout the year and averaged over a signifi-
cant number of years. In the case of Italy, these curves are available from a database by 
ENEA, Italy [26], as a listing of the average daily radiation intensities as a function of each 
month of the year, averaged for the years from 2006 to 2022 for several locations. As an 
example, the monthly curve of normal global average daily radiation for Siena, Italy, is 
shown in Figure 13. Error bars due to 5% uncertainty in the intensity are added to the plot 
(see Section 2). 

 
Figure 13. Monthly normal global average daily radiation measured in Siena, Italy, for the years 
from 2006 to 2022. Data from the ENEA Solaritaly database [26]. 

In the case of March, we have ϕday = 4.1 kWh/m2. Considering our PV module, with 
an active area of 8.4 cm2 and 24% efficiency when connected to the PMS, the average en-
ergy released daily by the panel would be UPVtheo = 0.86 Wh, a value that compares favor-
ably to the one we can extract from the outdoor measurements reported in Figure 9c. In 
fact, our 24 h outdoor measurements made in March corresponded to Usc = 0.54 Wh energy 
stored in the supercapacitor. As the power consumption of the system is 0.14 Wh and the 
energy due to the WSN activity throughout the whole day, in case of transmission every 
30 min, is UWSN = Utr x 24 × 2 = 0.13 Wh, the total solar panel energy from the PV module 
can be calculated at UPVexp = 0.81 Wh, a value in agreement with what is expected from the 
data shown in Figure 13.  

5. Conclusions 
The development and testing of a novel prototype system for WSN ambient moni-

toring have been presented and discussed. The device, based on eight GaAs-technology 

Figure 13. Monthly normal global average daily radiation measured in Siena, Italy, for the years from
2006 to 2022. Data from the ENEA Solaritaly database [26].

In the case of March, we have ϕday = 4.1 kWh/m2. Considering our PV module, with
an active area of 8.4 cm2 and 24% efficiency when connected to the PMS, the average energy
released daily by the panel would be UPVtheo = 0.86 Wh, a value that compares favorably to
the one we can extract from the outdoor measurements reported in Figure 9c. In fact, our
24 h outdoor measurements made in March corresponded to Usc = 0.54 Wh energy stored
in the supercapacitor. As the power consumption of the system is 0.14 Wh and the energy
due to the WSN activity throughout the whole day, in case of transmission every 30 min, is
UWSN = Utr × 24 × 2 = 0.13 Wh, the total solar panel energy from the PV module can be
calculated at UPVexp = 0.81 Wh, a value in agreement with what is expected from the data
shown in Figure 13.

5. Conclusions

The development and testing of a novel prototype system for WSN ambient monitoring
have been presented and discussed. The device, based on eight GaAs-technology triple-
junction solar cells with an 8.4 cm2 total active area coupled with a 4000 F/4.2 V hybrid
supercapacitor, proved to be able to self-power a WSN with 10 mW power consumption
for a 1 min long operation and transmission every 30 min for virtually unlimited periods.
Although the tested power consumption is compatible with that of new-generation LED-
based NDIR sensors for CO2 measurement, these results can be extended to a wider range
of sensors with similar or lower power demand, such as temperature and humidity sensors
or electrochemical sensors for O2, CO, NOx and VOC measurements.

The presented outcomes are aimed at providing a preliminary evaluation of the energy
sustainability of the system. On the basis of these promising results, our future goal is the
validation of the system through prolonged outdoor deployments to actually demonstrate
the possibility of realizing energy-sustainable low-power systems relying on small-sized
multi-junction PV panels and novel hybrid supercapacitors. The prototype is now under
further development to exploit the first application with innovative low-consumption
miniaturized NDIR LED-based CO2 sensors [8]. Moreover, further engineering is required
to make the system compliant with applications in outdoor scenarios. To this end, the effect
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of external factors that could worsen the harvesting efficiency of the PV modules, e.g., dust
and pollution causing exceptionally low radiation intensities with prolonged exposure, will
be evaluated. Finally, on the basis of our promising results, an extended model including
weather effects on insolation and the corresponding sizing of the PV/supercapacitor/PMS
in view of the self-powering the miniaturized WSN are now under further development,
and they will be the subject of forthcoming work.
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Nomenclature

Symbol Parameter Measurement Unit
AM Air Mass
C Capacitance [F]
f Radiant intensity [W/m2]
FF Fill factor [%]
G Incremental voltage rate across supercapacitor [mV/min]
I Current [A]
Imax Current at peak power [V]
Iout Current at PMS [V]
Isc Short-circuit current [A]
Pmax Maximum PV Power [W]
ηmax Efficiency [%]
Pout Power at PMS [W]
RESR Internal resistance [W]
T Temperature [K]
t Time [s], [h]
UPV Daily energy released by PV module [Wh]
Usc Energy stored in supercapacitor [J]
UWSN Energy required by WSN [Wh]
V Voltage [V]
Vmax Voltage at peak power [V]
Voc Open-circuit voltage [V]
Vout Voltage at PMS [V]
Vsc Voltage across supercapacitor [V]

https://nsrdb.nrel.gov/
http://www.solaritaly.enea.it/TabelleRad/TabelleRadIt.php
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