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Abstract: The use of fossil-based plastics in food packaging poses a serious environmental concern.
Pectin, a natural biodegradable polymer, offers a potential solution for environmentally friendly
and sustainable food packaging to replace fossil-based plastics. This article reviews the applications
of pectin in active and intelligent packaging and analyzes the latest research trends. Bibliometric
analysis was used to review the existing literature on pectin in food packaging. Data were collected
from the Scopus database, which covers research on film manufacturing and pectin-based coating.
Pectin-based active packaging contains antimicrobial and antioxidant compounds such as ascorbic
acid and essential oils, which effectively prevent bacterial growth while absorbing oxygen and water
vapor. In contrast, pectin-based intelligent packaging allows real-time monitoring of food quality
through integrated color-changing indicators, eliminating the need for open packaging. Research
trends have shown a significant increase in publications on pectin-based packaging, reflecting the
growing interest in sustainable packaging solutions. With a focus on innovation and sustainability,
pectin can replace conventional plastics and provide safer and more durable packaging solutions,
thereby supporting global efforts to reduce the environmental impact of plastic waste.

Keywords: bioactive compounds; bibliometric analysis; pectin; properties; bioplastics

1. Introduction

Packaging plays an important role in the food industry by protecting food products
from damage, contamination, and deterioration during distribution and storage. However,
conventional packaging from petroleum-based polymers causes severe environmental
problems owing to their non-biodegradable environmental properties. Since the beginning
of the 21st century, fossil-based global plastic production has doubled, reaching 394 million
tons in 2021 and continuing to rise to 400.3 million tons in 2022 [1]. Projections indicate
that by 2060, the amount of plastic leaking into aquatic environments such as rivers, lakes,
and oceans is expected to increase by 91%, reaching 11.6 million tons per year [2]. The
accumulation of plastic waste originating from land and flowing into the oceans is antici-
pated to continue rising alongside rapid population growth [3]. Therefore, biodegradable
packaging can be an alternative to conventional plastics.

Pectin is a natural polymer that shows promise as an ingredient for the manufacture
of biodegradable plastics. Pectin is a natural polysaccharide found in plant cell walls that
contains linear chains of D-galacturonic acid in α(1–4) bonds with some -COOH in the form
of methyl esters [4]. Pectin can be extracted from a variety of natural sources, including
fruits, such as oranges, apples, lemons, and grains. It can be derived from agricultural
waste, such as lemon peel, pitaya, tomato, pomelo, dragon fruit, and passion fruit [5–8].
Pectin can be classified into two types: high-methoxyl pectin with a carboxyl esterification
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degree higher than 50% and low-methoxyl pectin with a carboxyl esterification degree
less than 50% [9]. However, the commonly used pectin is high-methoxyl pectin. Pectin
has attracted widespread attention as a potential source of biopolymers in food packaging
because of its unique properties such as biodegradability [10], biocompatibility, and the
ability to form a solid film [11]. In addition, pectin-based packaging is generally considered
safe (GRAS) by the Food and Drug Administration (FDA) [12].

The development of food packaging films using bio-based biodegradable polymers,
such as pectin, combined with natural or synthetic additives to improve material properties
and product shelf life has recently become an attractive solution in the food industry. Active
packaging contains active compounds with antimicrobial and antioxidant properties that
extend the shelf life of food products by releasing active compounds that can prevent the
growth of bacteria and absorb oxygen and water vapor in the package [13–18]. Many
studies have added reinforcing agents, such as nanofillers [19–22], biopolymers [23–25],
plasticizers, and natural substances, such as essential oils, into the packaging matrix [26,27].
Pectin-based films in active food packaging can slow fat transfer, such as the migration
of fat from fatty foods to packaging [28], and help retain food moisture. In addition,
intelligent packaging is often applied to biopolymer-based packaging because it allows
consumers to assess and monitor food quality without damaging the packaging materials.
Pectin-based films have also shown advantages in mechanical properties and their ability
to act as barriers to aroma, oxygen, and water transfer, comparable to synthetic polymers
in food packaging [29]. An overview of pectin as a biopolymer in food packaging is shown
in Figure 1.
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Figure 1. An overview of biopolymer-based pectin in active and intelligent packaging applications.

Many reviews on pectin, its structure, and extraction methods have been published.
The structural changes, mechanisms, and applications of modified pectin have been pre-
viously reviewed [30]. Pectin modification methods have also been comprehensively
discussed [31]. Researchers have also reviewed various conventional and non-conventional
methods for extracting pectin from different sources and examined their bioactivity [32].
In addition, the potential of pectin to produce renewable and environmentally friendly
packaging, in line with the concept of circular economy, has been evaluated [33] as well
as its applications in various fields (food, pharmaceutical, and cosmetic industries) [34].
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However, only a few reports have examined food packaging films using pectin as active
and intelligent packaging, and none have comprehensively integrated the development
trend of pectin as food packaging through a bibliometric approach. Therefore, this review
aims to study the sources, extraction methods, physical properties, and applications of food
packaging. It also comprehensively discusses the application of pectin-based active and in-
telligent packaging in food products. It also uses quantitative data and statistical analysis to
assess the development and future direction of pectin-based food packaging research using
a bibliometric analysis approach. This review is expected to provide insights to scientists
and industry players regarding the potential of pectin as a natural polymer, its applications
in active and intelligent food packaging, and the direction of its future development.

2. Systematic Review: Method and Outcome
2.1. Search Strategy

The search was conducted on 23 March 2024 using the Scopus database, which was
chosen because it is widely recognized as a comprehensive source of publication data for
systematic analysis and meta-analysis. The analysis was conducted based on the search
query (TITLE-ABS-KEY ((“pectin*”) AND (film*) OR (“coating”) AND (“food packag*”)).
Only articles published between 1998 and 2024, written in English, in the format of a review
or article type of document from a journal source, and in the final publication stage were
selected. Documents that did not meet these criteria were excluded. This rigorous selection
process resulted in a total of 310 documents being downloaded and saved in CSV file
format. These documents contained citation information (author, document type, year, etc.),
bibliographical information, abstract, and keywords for further analysis. The documents
were then converted into Microsoft Excel to revise erroneous keywords. Subsequently, to
reduce bias, Openrefine was used to clean keywords with the same meaning but different
forms of writing. The merged words biopolymer and biopolymers were merged into
biopolymers; polyvinyl alcohol and poly (vinyl alcohol) were merged into polyvinyl
alcohol; nanoemulsion and nanoemulsions were merged into nanoemulsion; Active food
package and active food packaging were merged into active food packaging; mechanical
properties and mechanical property were merged into mechanical properties; and pectin
film and pectin films were merged into pectin films.

2.2. Data Analysis

This analysis covers a wide range of indicators, including the frequency, trends,
rankings, network analysis, citations, and evaluation of word occurrences. For an additional
in-depth analysis, applications such as Vosviewer v.1.6.19 and Tableau were used. These
tools map co-occurrences with keywords, enabling the identification of key study areas,
visualization of country maps, and detection of emerging research trends.

3. Sources and Characteristics of Pectin

Pectin is a complex polysaccharide naturally present in all plant cell walls and lamel-
lae. Pectin can be extracted from fruits, vegetables, and other plants. However, the
primary sources are citrus peels and apple peels/pulp because of their high extraction
yield and availability as food processing industry waste [35,36]. Agricultural byprod-
ucts can also be new sources of pectin, such as banana peels [37], mango peels [38],
pomelo peels [39,40], cacao waste [41,42], and coffee pulp and grounds [43,44]. Recent
studies have shown some potential sources of pectin such as from sugar beet pulp, with
the hot acid extraction method yielding 28% pectin [45], and the microwave-assisted
method (MAE) reaching 37% [46]; from Jabuticaba peel yielding 22% pectin [47], and
Passiflora tripartita peel extract yielding 23% [48]. Pectin-based composite films prepared
with Schiff base (GS) compounds synthesized by γ-aminobutyric acid (GABA) showed
potential applications in fruit preservation as packaging materials [49]. Pectin-based
composite films incorporated with cannabidiol/2,6-di-O-methyl-β-cyclodextrin inclusion
complexes for food packaging were also reported to have good performance in strawberry
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preservation [50]. In addition, modified pectin has broad potential in packaging ap-
plications and other sectors. Pectin modified with fatty acids exhibits improved hy-
drophobicity and moisture resistance, making it particularly suitable for biodegradable
packaging [51]. Then, modification with phenolic acids provides antibacterial and an-
tioxidant properties, making them effective for active packaging that extends the shelf
life of food [52]. Furthermore, pectin modified with resorcinal and 4-hexylresorcinol also
showed significant improvements in antioxidant and antibacterial properties, which are
effective for extending the shelf life of meat, making it suitable for active packaging in
the preservation of meat products [53].

The characteristics of pectin in commercial use are strongly influenced by the source
of the pectin material, extraction method, residual galacturonic acid content, degree of
methoxylation/esterification (DM/DE), neutral sugar composition, and molecular weight.
The properties of pectin, such as its solubility, gelling ability, and film-forming ability, are
highly dependent on the source and degree of esterification. Pectin with a high methoxyl
(>7%) content has a DE > 50% and pectin with a low methoxyl (<7%) content has a
DE < 50% [37]. Packaging films with a high DE tend to exhibit better gel strength, viscosity,
and stability under different storage conditions [54]. Pectin films with a high degree of
esterification also exhibit lower water absorption and better mechanical resistance, making
them more suitable for food packaging applications that require an effective barrier to
moisture and gases [55]. In addition, the addition of plasticizers such as glycerol can
increase the flexibility of pectin film [56]. Thus, the degree of esterification of pectin affects
the physical and mechanical properties of films for food packaging applications.

Pectin has several significant technical and functional properties (Figure 2). In the
food industry, pectin is often used as a thickening and stabilizing agent. In addition,
pectin has biodegradability [50], biocompatibility [57], and edibility properties [58], making
it suitable as a polymeric matrix for manufacturing active edible packaging films [59].
Other studies have shown that blending pectin with other polymers, such as pullulan,
can improve the properties of pectin films [60,61]. This combination forms intermolecular
hydrogen bonds that improve the thermal stability and surface hydrophobicity of the
film, which are particularly important for food packaging applications [60]. Pectin can
also be incorporated into bioactive components to improve food product functionality.
The development of pectin composite films with the addition of nanoparticles such as
titanium oxide (TiO2) improves the mechanical and water vapor barrier properties. While
pectin serves as the primary polymer providing film-forming capability, the addition
of TiO2 specifically enhances these properties, including providing UV light filtering
capacity, making these films ideal environmentally friendly and functional food packaging
materials [62]. Additionally, pectin films can be modified with other natural ingredients
to enhance their antimicrobial and antioxidant properties. Although pectin itself does
not possess significant antimicrobial and antioxidant capabilities, it serves as the primary
polymer, forming films with good mechanical properties, low water vapor permeability,
and the unique ability to bind and release antimicrobial and antioxidant compounds
in a controlled manner [59,63]. For example, the addition of polyphenol extracts from
tea to pectin films can enhance their antioxidant and antimicrobial activities, which are
crucial for extending the shelf life of food products [64]. Based on this, pectin offers
an innovative and environmentally friendly solution for food packaging applications,
providing effective protection against microbes and oxidation and improving the quality
and safety of food products.
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Figure 2. Techno-functional properties of pectin.

4. Bibliometric Analysis
4.1. Trend of Publication

Figure 3 illustrates the annual publication pattern (1998–2024) on using pectin as a
food packaging material. Figure 3a shows the number of documents obtained based on the
types of articles and reviews; 263 documents were articles (84.83% of the total documents)
and 47 documents were reviews (15.16%).
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(b) total publications.

The development of publications was divided into three stages: budding, develop-
ment, and explosion (Figure 3b). The budding period, which lasted from 1998 to 2015,
was characterized by a gradual increase in the number of scientific articles focusing on
pectin-based food packaging research. In 1998, a group of academics began to realize the
importance of carbon neutrality and regularly conducted research on this subject. This
phenomenon persisted until 2015. However, this period was characterized by slow progress
in research related to pectin-based food packaging, as using fossil-based plastics is still
an option in food packaging production. In addition, pectin is inadequate in producing
characteristics resembling synthetic packaging. However, the few studies conducted during
this period formed a strong foundation for future research on pectin-based food packaging.

The second stage (development period), which runs from 2016 to 2019, is character-
ized by consistent progress in pectin-based food packaging research papers. The gradual
increase in publications is due to bio-based plastics having unique advantages over conven-
tional plastics in reducing dependence on finite fossil resources and reducing greenhouse
gas emissions.

The current usage of bioplastics is minimal, accounting for less than one percent of
the total annual plastic production, which exceeds 390 million tons. Nevertheless, the
market for bioplastics is expanding dynamically due to rising demand and the emergence
of advanced materials, applications, and products. Furthermore, the growth of publications
during this period can also be attributed to the existing tendency to utilize waste generated
from agricultural and industrial conversions as a means of reducing environmental damage
or utilizing substantial biomass resources for the production of high-value products, such
as pectin. This period lays the groundwork for the potential future exponential growth in
pectin-based food packaging research.

The third phase (explosion period), which runs from 2020 to 2024 (ongoing), is char-
acterized by a significant surge in the number of pectin-based food packaging research
articles. The increase in publications during this period is attributed to the rapid growth
and innovation within the bioplastics industry. This industry has the potential to separate
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economic growth from resource depletion and environmental impact. Furthermore, the
European Commission has acknowledged the significance of bioplastics in the bioeconomy
and their ability to hasten the transition to a circular economy. The European Bioplastics
Association, which represents the interests of the bioplastics industry in Europe, is col-
laborating closely with European institutions and other relevant stakeholders to shape a
favorable economic and policy environment in Europe that will support the flourishing
of the bioplastics industry. This drives the interest of scientists to continue developing
bioplastic packaging with good properties and characteristics. It is important to note that
this study does not include all articles produced in 2024, as the data for this year are still
ongoing and are predicted to continue to increase until the end of the year.

4.2. Research Hotspot Trends Based on Keywords

A bibliometric analysis was conducted to investigate current research trends in the
utilization of pectin as a food packaging material. Using data from relevant scientific articles
from Scopus, the analysis was conducted using VOSviewer to illustrate the occurrence
of keywords. Of the 814 keywords collected, 53 keywords that appeared at least four
times were selected for inclusion in the analysis. Several studies have shown that keyword
analysis is an important component in bibliometric analysis techniques [14,65–67]. This is
due to its significance in a variety of fields, including shared word analysis and information
consultation, and its function as a filter in research searches. The resulting keyword network
provides insight into the relationships between research topics, highlighting emerging
themes such as sustainable food packaging, biodegradable materials, and the application of
pectin in edible films. This analysis shows the focus of research on eco-friendly packaging
innovations and the functional properties of pectin, especially its antimicrobial attributes
and mechanical durability. The keyword occurrence network of the selected articles is
shown in Figure 4.
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Figure 3a shows that the author keywords with the highest frequency, represented by
the largest circles, are “pectin”, “food packaging”, “edible films”, “active packaging”, and
“biopolymers”. The keywords were categorized into eight clusters based on bibliometric
mapping generated by VOSviewer software. The cluster shown in red has the highest
number of items, covering terms mostly centered on pectin prevention. These keywords
include chitosan, Pickering emulsion, controlled release, film, and high- and low-methoxyl
pectin. The purple and light blue clusters grouped keywords related to their application in
food packaging (polyvinyl alcohol, pectin film, polyphenols, and mechanical properties)
and their application in edible films (shelf-life, biopolymers, and composite films). The
green cluster, which contains 10 items, groups keywords that focus on active packaging
that preserves or extends the shelf life of products (antimicrobial activity, antioxidant
activity, antimicrobial, preservation, nanocomposite, and nanoemulsion). In addition,
the dark blue cluster focuses on sustainability aspects (biodegradability, biocomposites,
bioplastics, circular economy, and byproducts). Finally, the yellow and orange clusters
focus on the general packaging characteristics (films, coatings, tensile strength, and water
vapor permeability) and polymer sources derived from polysaccharides (essential oils,
packaging films, and biodegradability). From the data in Figure 3a, it can be said that
pectin-based natural polymers are promising for applications in food packaging because of
their good mechanical, physical, and biodegradable properties and characteristics. This has
been confirmed by previous research [68], which assessed the best performance of pectin-
based edible films in terms of thermal, mechanical, and gas barrier properties. In addition,
the blending of pectin and pullulan can provide high strength and thermal stability to the
resulting edible film [60].

In addition to explaining publication trends, Figure 3b shows keywords based on the
time revolution. The keywords that are orange–red in color and have large circles are the
keywords that have been widely researched by scientists. It can be seen that mechanical
properties often associated with tensile strength and water vapor permeability have long
been important indicators in the manufacture of pectin-based packaging. Films with high
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water vapor permeability and low tensile strength severely limit their applications in the
food packaging industry [69,70]. Keywords such as antimicrobial activity, antioxidant
activity, preservation, shelf life, sustainability, and biodegradability are currently being
discussed. These keywords are currently the top of mind because of the demand for plastics
that not only have good properties and characteristics but are also environmentally friendly,
sustainable, and can maintain the quality and safety of the packaged product. Recent
research has added antioxidant compounds [10,46], nanoparticles [71,72], and essential
oil [73–76] to a pectin-based packaging matrix to maintain quality and extend product
shelf life.

5. Application of Pectin-Based Materials in Active and Intelligent Food Packaging

Although pectin can form packaging films with high mechanical properties and
barriers, the functionalities of pectin-based films still need to be improved by adding more
bioactive compounds to increase their capability to protect food products and prolong
their shelf life. The addition of active compounds to packaging improves the functional
properties and extends the shelf life of products. The use of extracts derived from plants,
animals, and microorganisms has been recognized as a valuable component that improves
the functional properties of pectin-based films and coatings [77,78]. In addition, chemical
compounds in the form of nanoparticles are frequently used as antimicrobial agents in
food packaging [79].

Table 1 provides an overview of pectin-based active packaging applications in various
food products. Diverse pectin sources, such as citrus, watermelon, and broccoli leaf pectin,
are combined with different film components and active agents to produce packaging
materials with enhanced functional properties. For example, the use of polydopamine-
coated lignin nanoparticles (LNP@PDA) in citrus pectin-based composite films not only
improves the mechanical strength and water resistance but also provides UV protection and
high biological activity [80]. These results successfully extended the shelf life of bananas
and milk [80]. In addition, multi-active films containing chitosan, epigallocatechin gallate
(EGCG), and natamycin (NATA) showed significant improvements in UV protection,
mechanical properties, and gas barrier properties, which are effective in maintaining
strawberry freshness [81]. Pectin from watermelon rind combined with potato starch, TiO2
nanoparticles, and Lycium barbarum leaf flavonoids produced a composite film capable of
improving mechanical strength, thermal resistance, and antimicrobial properties, which
was effective in inhibiting microbial growth and chemical damage to Tan goat meat [82].

Pectin can be combined with other polymers to improve the mechanical, physical,
and barrier properties, ultimately extending the shelf life and improving the quality of
food products. For example, persimmon pectin mixed with sodium alginate, guar gum,
and baobab seed oil, as well as broccoli leaf pectin combined with tapioca starch and
broccoli leaf polyphenols (BLPs), showed significant improvements in mechanical strength,
water resistance, and biological activity, which were effective in extending the shelf life of
mushrooms and chilled mutton [30,83]. In addition, citrus pectin-based films with carbon
quantum dots from garlic showed enhanced antioxidant and antibacterial activities as well
as better mechanical properties, which successfully extended the shelf life of strawber-
ries [84]. The combination of pectin with polyhydroxyalkanoate (PHA) and coffee ground
extract showed effective water barrier ability and antimicrobial activity in preserving
mashed carrots [85]. These studies confirm that pectin, with various modifications and
combinations, provides a promising solution for safer and more durable food packaging,
improving the quality and extending the shelf life of food products.
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Table 1. Application of pectin-based active packaging in enhancing the shelf life of food products.

Pectin Source Film/Coating
Components Active Agents Food Products Improved Film Properties

Shelf Life of
Product

Improved
Ref.

Citrus pectin

Polydopamine-
coated lignin
nanoparticles
(LNP@PDA)

Antioxidants,
antibacterial

agents,
UV-blocking

agents

Bananas, milk
TS: 35.76 Mpa,

WCA: 92.42◦, UV blocking: 100%
(UVA, UVB, UVC)

7 days (control
3–4 days) [80]

Citrus pectin

Chitosan, pectin,
epigallocatechin
gallate (EGCG),

natamycin
(NATA)

Antioxidants
(EGCG),

antifungal
(NATA)

Strawberries
TS: 71.64 Mpa, UV bloking: <1%

(200–350 nm), WPV:
0.69 × 10−13 kg·m−1·s−1·Pa−1

8 days (control
1–2 days) [81]

Watermelon peel
pectin

Potato starch,
TiO2

nanoparticles,
Lycium barbarum

leaf flavonoids
(MLFs)

Antioxidants
(MLFs),

antimicrobial
(nano-TiO2)

Tan mutton

TS: 45.9% improvement, WPV:
decreased by 18%, thermal

stability: maintained up to 220 ◦C,
antioxidant activity: significant

reduction in lipid oxidation

15 days (control
9 days) [82]

Persimmon
pectin

Sodium alginate,
guar gum,

β-Cyclodextrin,
baobab seed oil

Antioxidants
(Lycium

ruthenicum
extract),

antibacterial
agents (Silver
nanoparticles)

Mushrooms
TS: 15.87 MPa, WVP:

4.82 g/m2.h.kPa, WCA: 91.23◦,
antioxidant activity: 88.26%

30 days [71]

Broccoli leaf
pectin

Tapioca starch,
broccoli leaf
polyphenols

(BLPs)

Antioxidants
(BLPs) Chilled mutton

TS: 9.34 MPa, EB: 10.91%, WVP:
2.61 g·mm/(m2·h·Pa), antioxidant

activity: 88.24% DPPH
scavenging rate

12 days [83]

Citrus peel pectin
Garlic-derived

carbon quantum
dots (CDs)

Antioxidants
(CDs),

antibacterial
agents (CDs)

Strawberries

TS: 6.96 MPa, EB: 36.85%, WVP:
1.057 × 10−9 g m−1 h−1 Pa−1,

antioxidant activity: 50%
scavenging rate

5 days [84]

Citrus pectin Chitosan, jujube
seed powder

Antioxidants
(polyphenols),
antimicrobial

agents

Grapes

TS: 0.8375 MPa, EB: 38.25%, WVP:
33.71 × 10−9 g cm−1 s−1 Pa−1,

antioxidant activity: 98.02% DPPH
scavenging rate

10 days [86]

Citrus peel pectin
Sodium alginate,
calcium chloride,

glycerol
Cinnamic acid Fresh beef

TS: 0.124 MPa, EB: 13.88%, WVP:
2.915 × 10−9 g m/m2 s Pa,

antibacterial activity: 84.09%
reduction in bacterial load

5 days [87]

Citrus peel
powder (orange,
lemon, pomelo,

mandarin)

Sodium alginate,
glycerol

Polyphenols,
carotenoids,
essential oils

Corn oil

TS: 8.26–9.14 MPa, EB:
8.05–17.18%, WVP:

1.34–1.92 × 10−10 g m−1 s−1 Pa−1,
antioxidant activity: strong (based

on DPPH assay)

15 days [88]

Pectin

Ovalbumin
(OVA), chitosan
(CS), gallic acid

(GA)

Antioxidants
(GA),

antibacterial
agents (GA)

Salmon fillets
TS: 15.97 MPa, EB: 7.29%, WVP:

low, antibacterial activity: effective
against E. coli and M. morganii

Extended by
3 days [89]

Citrus pectin

Polyhydroxyal-
kanoates (PHAs),

spent coffee
ground (SCG)

extract

Antioxidants
(chlorogenic acid),

antimicrobial
agents

(caffeoylquinic
acid isomers)

Mashed carrots
TS: 9.1 MPa, EB: 16.1%, WVP:

reduced significantly, antioxidant
and antimicrobial activity: high

Extended by
3 days [85]

Pectin

Chitosan (CS),
calcium

propionate (CP),
curcumin-β-
cyclodextrin
(Cur-β-CD)

Antioxidants
(Cur),

antibacterial
agents (CP, Cur)

Pork

TS: moderate, WVP:
4.55 × 10−11 g·(m·s·Pa)−1,

antibacterial activity: 79.41%
against E. coli, 83.82% against

S. aureus

[9]
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Table 1. Cont.

Pectin Source Film/Coating
Components Active Agents Food Products Improved Film Properties

Shelf Life of
Product

Improved
Ref.

Watermelon peel
pectin

Polyphenols from
watermelon peel
(WME), glycerol

Antioxidants
(polyphenols),
antimicrobial

agents
(polyphenols)

Chilled mutton
TS: 9.1 MPa, EB: 16.1%, WVP:

reduced significantly, antioxidant
and antimicrobial activity: high

Extended by
35 days [90]

Pectin Chitosan (CS),
Tween-80

Antioxidants
(α-Tocopherol)

Fatty food
simulant

TS: 16.64 MPa, water uptake:
163.91%, antioxidant activity: up
to 90.60% DPPH scavenging rate

Sustained
release over

10 days
[91]

Grapefruit peel
pectin (GFPec)

Grapefruit peel
methanolic

extract (GFPE),
maltodextrin-
encapsulated
lemon peel

extract (MD-LPE),
PEG400

Antioxidants
(GFPE, MD-LPE),

antimicrobial
agents (GFPE,

MD-LPE)

Cherry
tomatoes

TS: 15.09 MPa, EB: 19.12%, WVP:
reduced significantly, antioxidant
and antimicrobial activity: high

Extended by
6 days [92]

Pectin
Chitosan, gelatin,

glycerol,
Tween 80

Lemongrass
essential oil
(LEO), ZnO,

Zn(CH3COO)2·2H2O

Raspberries

TS: 16.87–21.78 MPa, EB:
48.69–73.04%, WVP: moderate,

antimicrobial activity: high against
S. aureus and E. coli

Extended by
8 days [93]

Passion fruit peel
pectin

Corn starch,
glycerol, turmeric

essential oil
(TEO)

Antioxidants
(TEO),

antimicrobial
agents (TEO)

Sliced bread TS: 10.94 MPa, EB: 61.85%, WVP:
5.11 × 10−7 g·h−1·m−1·Pa−1,

No fungal
contamination

for 9 weeks
[94]

TS: tensile strength; EB: elongation at break; and WVP: water vapor permeability.

Intelligent packaging is currently in the spotlight. Interest in intelligent packaging is a
sign of rising customer awareness and a growing sense of accountability among supply
chain managers and producers. The ever-evolving challenges in the contemporary era and
the search for better packaging solutions can be directly linked to this concept. The advent
of new technologies not only strengthens control over efficient chain management but
also helps prevent significant health problems from arising. Intelligent packaging usually
illustrates its essence by reflecting sufficient intelligence to capture the preferences of end
consumers [15,79,95]. In other words, a packaging system can be considered “intelligent”
if it possesses the capacity to identify alterations in its surroundings and can carry out
sophisticated operations such as identification, tracking, documentation, interaction, and
computation to prolong its shelf life, thereby furnishing data and warnings [96–98].

Table 2 shows various applications of pectin-based intelligent packaging used to detect
the freshness and quality of various food products. This intelligent packaging utilizes the
color changes produced by the interaction between pectin and natural colorants in response
to changes in pH and ammonia, which are key indicators of food freshness. In shrimp
products, several studies have shown that pectin-based films combined with anthocyanins
from different sources are effective in providing a visual indication of product freshness.
The combination of gelatin, pectin, and glycerol with anthocyanins from pistachio shells
resulted in a color change from pink/brown to yellow/brown, indicating the freshness
and deterioration of shrimp at various pH levels [99]. Meanwhile, films combining pectin
and chitosan nanostructures with anthocyanins from sumac showed rapid color changes
from red to olive green within 5 min and from red to green after 48 h of storage, indicating
high sensitivity to ammonia [100]. Another combination, pectin with sodium alginate and
CNCs and anthocyanins from red cabbage, showed a color change from purple to dark
green or greenish yellow after 72 h at 25 ◦C, with a slower change at 4 ◦C, providing an
accurate indication of the freshness of shrimp under various storage conditions [20].
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Table 2. Application of pectin-based intelligent packaging in food packaging.

Film
Components Intelligent Agent Sensing Type Food Products Improved Film Properties Significant Findings Ref.

Gelatin, pectin, glycerol Pistachio peel (anthocyanin) pH Shrimp TS: 0.7 MPa, EB: 56%, WVP: reduced
from 2.81 to 2.74 g·s−1·Pa−1·m−1

Color changes from cherry/pink to
yellow/brown indicating freshness and spoilage

at different pH levels
[99]

Pectin, chitosan nanofiber Sumac (anthocyanin) Ammonia, pH Shrimp TS: 60 MPa, EB: 23.3%, WVP:
2.34 × 10−11 g/m2 s Pa

Color changes from reddish to olive color within
5 min, and from reddish to greenish after 48 h

of storage
[100]

Pectin, sodium alginate, CNCs Red cabbage (anthocyanin) pH Shrimp TS: 17.19 MPa, EB: 39.18%,
WVP: 7.10%

Color changes from lilac to dark green to
greenish-yellow after 72 h at 25 ◦C; slower color

change at 4 ◦C
[20]

Pectin, chitosan Black rice (anthocyanin) pH Meat TS: 57.3 MPa, elongation at break:
18.5%, WVP: 4.12 × 10−11 g/m2 s Pa

Changes color from red to blue as meat spoilage
increases, showing the indicative effect on

meat putrification [101]

Pectin, chitosan, glycerol Black rice (anthocyanin) Ammonia, pH Pork and Beef
Red to yellow-green color change indicating the

spoilage of meat; sensitive to volatile
basic nitrogen

Pectin/anthocyanin Phaseolus vulgaris
(anthocyanin) pH Chicken meat TS: 15 MPa, EB: 40%,

WVP: moderate

A film that changed from pink to brownish with
rising pH; the film has a strong ability to inhibit

the bacterial growth of E. coli and S. aureus
[102]

Pectin, sodium caseinate Sodium caseinate
(NaCas) Gas concentrations Kimchi

Transparency change: from 80% to
30% upon exposure to CO2,

pH-responsive: stable at pH 6.5,
changes rapidly at pH 4.5

Strong correlations between kimchi quality,
ripeness, and the indicator’s visible traits

during storage
[103]

Pectin/carboxymethyl cellulose
sodium/anthocyanins/metal

ion
Blue honeysuckle berry pH Shrimp

TS: increased by 1.52 times, WVP:
significantly reduced, thermal
stability: improved with metal

ion crosslinking

The film enhanced storage stability and
antioxidant capacity, and effectively monitored

shrimp freshness during storage
[104]

Pectin/starch/cyanidin/alizarin Cyanidin/alizarin pH Pork

TS: increased by cassava starch
addition, WVP: reduced

significantly, pH-sensitive color
change: red to blue–black

with spoilage

The film showed strong sensitivity to volatile
nitrogen, with visible color change over 10 days
at 4 ◦C, enabling real-time spoilage monitoring

[105]

TS: tensile strength; EB: elongation at break; and WVP: water vapor permeability.
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Based on the data in Table 2, most intelligent packaging systems use a pH-based
sensing mechanism, with color change as the visible reaction. This approach is often
used due to its simplicity and effectiveness in monitoring changes in food quality and
spoilage. However, intelligent packaging technologies can include broader functions
beyond pH-based color changes, such as temperature sensors, gas concentration, and
microbial detection, which provide more comprehensive monitoring. For example, Choi
and Han [103] showed that gas-based intelligent packaging can detect changes in CO2
levels inside the package. As CO2 increases, there is a pH change in the NaCas–pectin
solution that causes a change in transparency, signaling the fermentation stage and food
quality. Although most of the current pectin-based intelligent packaging systems focus on
pH and color change detection, the potential for expanding these intelligent features is still
enormous and requires further research. Some similar applications using other polymers
have incorporated functions such as temperature-sensitive labels (e.g., thermochromic
ink-based packaging) [106], gas detection sensors (e.g., ethylene sensors for monitoring
fruit ripening) [107], and RFID-enabled systems for tracking and interaction [108]. Overall,
pectin-based intelligent packaging has great potential for improving the safety and quality
of food products.

Pectin-based films, as in Tables 1 and 2, generally have moderate tensile strength,
ranging from 6.96 MPa to 9.34 MPa. Meanwhile, when compared to protein-based films,
gelatin in particular, can have a wider range of tensile strengths, from 5.8 MPa to 15.4
MPa, depending on the additives [109]. This suggests that protein-based films, particularly
gelatin, can achieve higher strength under certain conditions. In terms of elongation to
break, pectin-based films show more limited flexibility with a range of 10% to 36.85%,
whereas protein-based films, especially gelatin, show a much wider range. Gelatin, for
example, can stretch up to 471% [109], which indicates that protein-based films have a
much higher degree of flexibility. This makes them more suitable for applications that
require high elasticity. Although pectin-based films still need to be improved in terms of
their flexibility and mechanical strength, the use of composites with other materials can
help strengthen their mechanical properties, such as the addition of chitosan increasing the
tensile strength of pectin films to 71.64 Mpa [81]. The combination of pectin with various
polymers, natural colorants, and other additives not only improves the mechanical and
barrier properties of the film but can also extend the shelf life of the product and provide an
effective detection function. This innovation can be a more sustainable and environmentally
friendly solution than conventional plastics, supporting global efforts to reduce plastic
waste and improve food safety.

6. Limitations of Pectin-Based Packaging

Pectin-based packaging has various benefits, including biodegradability, renewability,
non-toxicity, gas barrier capability, high mechanical properties, superior rheological proper-
ties, cost-effectiveness, and strong film-forming capacity [110,111]. Despite the considerable
advantages of pectin-based packaging in active and intelligent packaging applications, cer-
tain obstacles need to be overcome to achieve wider implementation. Significant obstacles
still exist, including inefficiency in preventing moisture transfer, inadequate mechanical
characteristics, brittleness, low thermal stability, and excessive water solubility. For exam-
ple, films composed solely of pectin exhibit significant susceptibility to tearing and cannot
withstand substantial mechanical stress. These constraints hinder their use in packaging
and require strong load or physical stress resistance. To overcome these problems, several
attempts have been made to incorporate reinforcements, such as nanoparticles or other
polymers, into the pectin matrix [112–114].

In addition, the incorporation of ionic metals, including calcium chloride, zinc chlo-
ride, and magnesium chloride ions, into the pectin matrix can improve the mechanical
characteristics and water resistance of pectin films [104,115]. In addition, pectin sheets do
not have good barrier characteristics against moisture and gas, thus reducing packaging
efficacy. This is especially true for dry or fatty foodstuffs that require maximum protection
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from moisture or oxygen. Research results show that incorporating hydrophobic polymers
or nanoparticles into pectin can improve its barrier characteristics [116]. The incorporation
of bioactive substances, such as essential oils, nanoparticles, or indicator substances, is
often necessary to improve the characteristics of pectin films used in active and intelligent
packaging [117]. While incorporating such bioactive substances can improve film perfor-
mance, this often results in stability issues when stored. For example, the unregulated
liberation of active chemicals or the deterioration of bioactive substances caused by contact
with moisture or oxygen can reduce the long-term efficacy of films. To address these issues,
additional studies are needed to design approaches that can regulate the liberation of bioac-
tive substances with greater accuracy, such as by encapsulation methods [118] or the use
of protective coatings [119]. While improving the physical and mechanical characteristics
of pectin films by integrating additional polymers, nanoparticles, or active substances
is possible, this can also lead to higher production costs. Therefore, it will be difficult
for pectin-based packaging films with improved physical and mechanical properties to
compete with cheaper conventional plastics on a commercial scale.

7. Future Perspectives

Pectin has great potential as a base material for sustainable and environmentally
friendly food packaging. The future of pectin research and its applications in food packag-
ing includes several key inter-related areas. The development of more effective packaging
formulations should continue by exploring the combination of pectin with other ingre-
dients, such as nanoparticles, essential oils, and natural or synthetic polymers. These
combinations are expected to improve the mechanical, thermal, and functional properties
of packaging, thereby extending the shelf life of food via improved antimicrobial and
antioxidant properties. Innovation in pectin-based intelligent packaging is key. More ad-
vanced sensor technology integrated into pectin packaging will enable real-time detection
of changes in food quality without opening the packaging. This will improve consumers’
ability to directly assess food freshness, reduce food wastage, and increase their trust in
packaged products.

The implementation of circular economy concepts in the production and use of pectin
will strengthen its position as a sustainable packaging material. Collaboration between
academia, industry, and the government is crucial to creating policies and best practices
in waste management and pectin-based packaging production. This holistic approach
ensures that the entire life cycle of pectin products supports global sustainability goals.
The scale-up and commercialization of pectin products are also challenges that must be
addressed to meet greater industrial demands. Research should be directed at economically
and sustainably scaling up pectin packaging production. Economic feasibility studies and
market analysis will help identify opportunities and challenges in the commercialization
of pectin packaging, ensuring that production can be performed in a cost-effective and
sustainable manner. By focusing on innovation, sustainability, and collaboration, pectin has
the potential to become a key ingredient in future food packaging that is environmentally
friendly and efficient. Further development in these areas will enable pectin to replace
conventional plastics, provide safer and more durable packaging solutions, and support
global efforts to reduce the environmental impacts of plastic waste.

8. Conclusions

Pectin is a natural polymer that has the potential to be used as a base material for
biodegradable plastics because of its unique properties, such as biodegradability, biocom-
patibility, and the ability to form a sturdy film. In the food packaging industry, pectin
shows significant promise as a primary material for active and intelligent packaging. Active
packaging based on pectin incorporates antimicrobial and antioxidant compounds that
help prolong the shelf life of food products by inhibiting bacterial growth and absorbing
oxygen and water vapors. The use of nanoparticles and essential oils in the pectin ma-
trix, for example, can improve mechanical strength and water resistance and provide UV
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protection and high biological activity. However, pectin-based intelligent packaging en-
ables the monitoring of food quality without opening the package, with technology that
can detect environmental changes and provide data and alerts on the freshness of packaged
products. Various combinations of pectin with other components, such as natural and
synthetic polymers, nanoparticles, and plant extracts, have shown promising results in
improving functional properties and extending the shelf life of food products. For example,
the combination of pectin with potato starch and TiO2 nanoparticles has been shown to
improve the mechanical strength, thermal resistance, and antimicrobial properties of meat
and fruits.

Research trends on the use of pectin in food packaging have shown a significant
increase over the past decade, reflecting the growing awareness of the need for environ-
mentally friendly and sustainable packaging solutions. With the continuous development
of new technologies and applications, pectin has great potential to reduce the dependence
on conventional plastics and provide safer and more durable packaging solutions. Pectin
offers innovative and environmentally friendly solutions for food packaging applications,
providing effective protection against microbes and oxidation and improving the quality
and safety of food products.
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