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Abstract: Hybrid carbon nanotube (CNT) sheets were fabricated by mixing CNTs with silver
nanowires (AgNWs) and MXene to study their electromagnetic-interference (EMI)-shielding proper-
ties. CNT/AgNW and CNT/MXene hybrid sheets were produced by ultrasonic homogenization and
vacuum filtration, resulting in free-standing CNT sheets. Three different weight ratios of AgNW and
MXene were added to the CNT dispersions to produce hybrid CNT sheets. Microstructure charac-
terization was performed using scanning electron microscopy, and the Wiedemann–Franz law was
used to characterize transport properties. The resulting hybrid sheets exhibited improved electrical
conductivity, thermal conductivity, and EMI-shielding effectiveness compared to pristine CNT sheets.
X-band EMI-shielding effectiveness improved by over 200%, while electrical conductivity improved
by more than 1500% in the hybrid sheets due to a higher charge-carrier density and synergistic effects
between nanomaterials. The addition of AgNW to CNT sheets resulted in a large improvement in
electrical conductivity and EMI shielding; however, this may also result in increased weight and
sample thickness. Similarly, the addition of MXene to CNT sheets may result in an increase in weight
due to the presence of the denser MXene flakes.

Keywords: carbon nanotubes; silver nanowire; MXene; EMI shielding; transport properties

1. Introduction

Modern communication technologies, such as cell phones and radios, rely on devices
to accurately transmit and receive electromagnetic waves (EMWs) to exchange information.
Protecting these devices from harmful EMWs that may disrupt communications is critical.
The disruption of electronics by their interaction with EMWs is called electromagnetic
interference (EMI) and can lead to the misinterpretation of data and, in some cases, device
failure [1]. Shielding materials block EMI through two primary mechanisms: reflection and
absorption. The reflection of the EMW occurs due to an impedance difference between the
two mediums in which the wave must travel; here, air is a high-impedance medium, and
as the impedance of the shield is lower, the more electrically conductive it is. Inside the
shield, the EMW is absorbed due to generated eddy currents, which is also dependent on
electrical conductivity as well as magnetic permeability [2].

This research aims to introduce tunable lightweight materials that can enhance EMI-
shielding performance. Shielding materials are currently primarily metals due to their high
electrical conductivity and manufacturability [3]. Due to the high density of metals, recent
research trends in industries, such as wearable electronics, are seeking to replace metals in
high-performance applications with lightweight materials that decrease weight in order
to encourage low-profile electronics and improve maneuverability [4–6]. Additionally,
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new EMI-shielding materials must also demonstrate sufficient thermal conductivity to
effectively dissipate heat. As integrating EMI shielding into systems with high-frequency
electronics becomes commonplace, these electronics produce heat and are susceptible to
overheating [7].

Since the discovery of carbon nanotubes (CNTs) in 1991, they have been widely inves-
tigated for their mechanical, electrical, and thermal properties [8–10]. CNTs are lightweight
and can be assembled into large sheets and roll-to-roll products through dispersion tech-
niques. Given the multifunctionality and low density of CNT-based materials, they have
become attractive potential candidates as lightweight EMI-shielding materials [11–14].
Additionally, CNTs have excellent thermal transfer properties, making them an attractive
candidate for board-level shielding applications [15].

MXenes are a new class of 2D materials produced from a MAX phase material, which
consists of a transition metal (M), aluminum (A), and either carbon, nitrogen, or a com-
bination of the two elements (X). To produce MXene from the MAX phase, aluminum is
removed via selective etching, and the remaining material is exfoliated to produce thin 2D
flakes. The resulting metal carbonitride layers exhibit excellent electrical conductivity for a
myriad of next-generation EMI-shielding applications [16,17].

Silver nanowires (AgNWs) are another attractive material for EMI-shielding appli-
cations due to their high intrinsic electrical conductivity, large aspect ratio, and ease of
manufacturing [18,19]. AgNW’s large aspect ratio make it an ideal filler as it can percolate
into a network at low concentrations and can be added to many polymer matrices, as well
as CNTs, to form sheets for EMI-shielding applications [20,21].

CNTs, MXenes, and silver nanowires (AgNWs) have each been studied as potential
EMI-shielding materials [22–24]. In addition, hybrid composites of CNT/AgNWs and
CNT/MXenes have been extensively studied to achieve improved properties compared to
CNTs, AgNWs, and MXenes individually [20,25–32]. Zhang et al., Jing et al., and Choi et al.
reported improved electrical properties by as much as 10,000% for CNT/AgNW hybrid
composites [20,26,27]. Oluwalowo et al. also reported improved electrical conductivity
and thermal properties as a result of the synergistic effects between AgNWs and CNTs [28].
Wang et al. fabricated CNT/AgNW sandwich structures that achieved an SE as high as
72 dB [21]. Zhao et al. reported conductivity as high as 385 S cm−1 for layered CNT/MXene
hybrid papers [29]. Liang et al. demonstrated that CNTs help prevent MXene layers
from restacking and ensure that the MXene layers maintain a 2D morphology, resulting
in improved conductivity in the hybrid material [30]. Yang et al. report an improvement
in EMI-shielding properties in CNT sheets via the addition of MXene, achieving an SE
as high as 60.5 dB in the X-band [31]. Xue et al. fabricated CNT/MXene/polyimide
aerogels that had an average SE of 68.2 dB with low reflection [32]. The literature indicates
that the combination of CNTs with either MXene or AgNW leads to heightened EMI-
shielding, thermal, and electrical properties. Furthermore, the addition of nanomaterials
to fiber-reinforced materials may lead to additional multifunctional properties, including
flame-retardancy and improved mechanical properties [33,34].

Although many reports exist that discuss improvement in properties of CNT hybrid
sheets, few report comparisons between different hybrid sheets follow the same manufac-
turing procedure. Additionally, few reports exist that characterize transport properties in
CNT/AgNW and CNT/MXene hybrid sheets. In this article, we report in our study on the
improvements in the electrical conductivity, thermal conductivity, and EMI-shielding perfor-
mance of CNT hybrid sheets with multiple concentrations of MXene and AgNW produced
by the same ultrasonic-dispersion and vacuum-filtration processes. The Wiedemann–Franz
law was used to characterize phonon and electron transport within CNT/AgNW and
CNT/MXene hybrid sheets. Scanning electron microscopy (SEM) was used to characterize
sample morphology, and a structure–property–performance relationship was established.
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2. Methods
2.1. Materials

The CNTs used in this research were vertically aligned multi-walled CNTs (MWCNTs)
1–2 mm long and 20 nm in diameter, purchased from General Nano (Cincinnati, OH,
USA). AgNWs were used as received from Advanced Chemical Supplier (Pasadena, CA,
USA) in the form of an aqueous dispersion. The length and diameter of the AgNWs were
100–200 µm and 50 nm, respectively. Ti3C2Tx MXene was produced in-house by selectively
etching MAX phase material purchased from American Elements (Los Angeles, CA, USA).
The etching of aluminum was performed using LiF with HCl, and the intercalation was
performed using TMAOH before centrifuging to isolate single and few-layer MXene flakes.

2.2. Fabrication of Hybrid CNT Sheets

CNT/AgNW and CNT/MXene hybrid nanotube sheets were fabricated by ultrasonic
dispersion and vacuum filtration, as shown in Figure 1. Due to van der Waals forces
among individual CNTs, they are difficult to disperse in pure water without surface
modifications [35]. As a result, the CNTs tend to agglomerate and fall out of solution,
leading to low-quality films [36]. The addition of a surfactant, such as Triton X-100, can de-
bundle and stabilize individual nanotubes, allowing CNTs to form homogenous aqueous
dispersions [37]. To produce the hybrid sheets, CNTs were added to 200 mL of DI water
along with 2 mL of Triton X-100. The CNTs were then dispersed by a QSonica Q700
tip sonicator for 45 min. To preserve the lengths of the CNTs and prevent excessive
heating, sonication was performed in 10 s pulses within an ice bath. This method for
dispersing CNTs in solution was previously characterized and shows results in well-
dispersed suspensions, as characterized by UV-Vis [38]. Following CNT dispersion, either
AgNW or MXene was then stirred into the CNT dispersion, followed by an additional
sonication time of 5 min. The dispersion was immediately filtered via vacuum-assisted
filtration through a nylon filter with a pore size of 0.45 µm. The resulting free-standing
papers were allowed to dry overnight before being washed 5 times with isopropyl alcohol
to remove any residual surfactant. A TA Instruments TGA Q50 was used to confirm the
removal of the surfactant via thermogravimetric analysis (TGA) at 10 ◦C per minute up to
900 ◦C in air. TGA data can be found in the Supplementary Material, Figure S1. The removal
of the surfactant is critical for maximizing the electrical properties of the resultant CNT
sheet. Table 1 lists the samples fabricated for this study, including the type of nanomaterial,
weight percent, and volume percent added to the CNTs. The samples are named based on
the weight percent and type of nanomaterial filler (i.e., 50C50A contains 50 wt% CNT and
50 wt% AgNW). Each sample was made using the same total weight of material so that
each hybrid paper had the same areal density regardless of paper density and thickness.

Table 1. Sample naming convention, filler amount in weight, and volume percent.

Sample Name Filler (wt%) Filler (vol%)

100C 0% 0%

50C50A 50% AgNW 6.25% AgNW

25C75A 75% AgNW 9.1% AgNW

15C85A 85% AgNW 10.19% AgNW

50C50M 50% MXene 15.91% MXene

25C75M 75% MXene 22.10% MXene

15C85M 85% MXene 24.34% MXene
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Figure 1. Ultrasonic dispersion and filtration processes.

2.3. Hybrid Sheet Structure Characterization

The structure of CNT/AgNW and CNT/MXene hybrid sheets was characterized by SEM
and X-ray diffraction (XRD). Sample morphology was studied via SEM using a Thermo-Fisher
(Waltham, MA, USA) FEI Helios G4 dual beam microscope. Crystalline structures in the
hybrid sheets were measured using a Rigaku (The Woodlands, TX, USA) Smartlab Powder
X-ray diffractometer. XRD results are given in the Supplementary Material, Figure S2.

2.4. Measurement of Electrical Properties and EMI Shielding

Electrical conductivity was measured using a Suragus Eddycus TF Lab 2020. EMI-
shielding effectiveness (SE) was measured using a Keysight (Santa Rosa, CA, USA) M937A
vector network analyzer (VNA) and WR90 waveguides in the X-band range (8.2–12.5 GHz).
Figure 2 presents a diagram of the experimental setup that includes the VNA, waveguides,
and the four scattering parameters (S-parameters). These S-parameters are labeled Sab,
where a and b denote the ports that receive and send the signal, respectively. S11 and S22
represent the reflection of incident signals, while S12 and S21 represent the transmission.
The scattering parameters S11 and S12 were used to calculate the reflection and absorption
components of shielding effectiveness.
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2.5. Measurement of Thermal Properties

In-plane thermal diffusivity was measured at room temperature via laser flash analysis
(LFA, Netzsch 457 Microflash, Burlington, MA, USA). The mean diffusivity was determined
after three runs. Modular differential scanning calorimetry (MDSC) was used to measure
specific heat at room temperature. Equation (1) was used to calculate thermal conductivity
(κ), where α denotes the thermal diffusivity; ρ denotes the bulk density; and Cp denotes
the specific heat capacity.

κ = αρCp (1)

3. Results and Discussion
3.1. Microstructure Analysis

Figure 3a,b present SEM images of the surface of 50 wt% CNT/AgNW hybrid sheets.
Individual NWs can be seen dispersed throughout the CNT network and appear to form a
fully percolated network of their own at this loading, suggesting a sharp increase in properties
at 50 wt%. Figure 3c,d present SEM images of the surface of 50 wt% CNT/MXene hybrid
sheets. MXene flakes of less than ~1 µm and up to ~5 µm are visible both on and within
the CNT networks. CNTs can be faintly seen through the MXene layers, confirming their
few-layer structure. Here, the MXene flakes are seen to be disconnected from one another,
suggesting that the high loading of MXene may be necessary to result in a more electrically
conductive network. Figure 3e,f display the cross-section of CNT/AgNW and CNT/MXene
hybrid sheets, respectively. The addition of AgNW resulted in a loosely packed network, as
shown in Figure 3e. Contacts among CNTs and AgNWs can form a variety of nanostructures,
which has been discussed in the literature. [26,39]. At 50 wt%, the addition of MXene results
in a dense network due to the restacking of individual 2D layers. This dense network reduces
sample thickness but may also cover MXene active sites and reduce charge carrier mobility [40].
Additionally, in both cases, some separation of the constituent nanomaterials can be seen,
which may be caused by uneven settling during the vacuum-filtration process.
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3.2. Electrothermal Analysis

As expected, the addition of AgNW or MXene into CNT sheets resulted in an increase
in electrical conductivity [27,30]. Figure 4a displays these results. The improved electrical
conductivity can be attributed to synergistic interactions among the nanomaterials in addi-
tion to the additives possessing higher conductivity than CNTs, as AgNW and MXene pos-
sess an electrical conductivity of 6.3 × 109 S·cm−1 and 2 × 104 S·cm−1, respectively, while
the CNTs used in this study have a conductivity of 227 S·cm−1 [25,30,41,42]. AgNW and
MXene have charge-carrier densities of 5.85 × 1022 cm−3 and ~2 × 1021 cm−3, respectively,
while the density of charge carriers in MWCNTs is in the order of 9 × 1020 cm−3 [43–45].
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Figure 4. Change in (a) electrical and (b) thermal conductivity with increasing filler weight.

As the concentration of AgNW exceeded 50 wt%, there was a drastic increase in
electrical conductivity; however, this was not the case for MXene. As can be seen in
Figure 3a, AgNWs were able to easily make contact across the sample due to the high
aspect ratio of the wires. However, Figure 3c shows disconnected MXene flakes within the
CNT network, which contribute little toward increasing conductivity.

Figure 4b presents the thermal conductivity of CNT hybrid sheets with respect to in-
creasing the filler content. The thermal conductivity of pristine CNTs was 16.88 W·m−1·K−1,
which is in line with the literature results [46]. In both CNT/AgNW and CNT/MXene
hybrid sheets, 50 wt% filler resulted in improved thermal conductivity due to the presence
of more thermally conductive nanomaterials. However, the thermal conductivity drops at
high concentrations of both AgNW and MXene, potentially due to the uneven filtering of
the nanomaterials, as can be seen in SEM. Higher concentrations of AgNW or MXene may
lead to more uneven filtering and, hence, a worse dispersion, giving these samples lower
thermal conductivity. The effects of filler content on thermal conductivity (κ) were similar
to electrical conductivity (σ), as there exists a relationship between the two properties
described by the Wiedemann–Franz law, presented in Equation (2).

κ

σ
= LT (2)

In this equation, T is the temperature in Kelvin, and the constant of proportionality, L, is
called the Lorenz number. In metals, the Lorenz number approaches the Sommerfeld value,
L0 = 2.45 × 10−8 W·Ω·K−2 [47]. The Lorenz number tends to vary from this Sommerfeld
value with respect to the ratio of the mean free path of thermal conduction ( lτ) to the mean
free path of electrical conduction (lε), as presented in Equation (3) [48].
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L = L0

(
lτ
lε

)
(3)

Figure 5 plots the Lorenz numbers of CNT/AgNW and CNT/MXene hybrid sheets.
The Lorenz number for the pristine CNT sheet was found to be 2.5 × 10−6 V2·K−2, which
indicates that the mean free path for thermal conduction was significantly higher than the
mean free path for electrical conduction. This suggests the existence of phonon-dominant
thermal conduction in CNTs, as has been previously reported [46]. In general, the addition
of nanomaterial fillers to CNT reduced the Lorenz number, which brought it closer to the
Sommerfeld value and more in accordance with metallic conduction. The 25C75A sample
exhibited the highest degree of electron thermal conduction with a Lorenz number of
7.19 × 10−8 V2·K−2. For both AgNW and MXene, increasing the filler content from 75 wt%
to 85 wt% appeared to show an increase in Lorenz value.

Nanomaterials 2024, 14, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. The calculated Lorenz number for CNT/AgNW hybrid sheets and CNT/MXene hybrid 
sheets at 298 K. 

At 75 wt%, the more electrically conductive materials were fully percolated through 
the CNT network, creating a robust electrically conductive network across the hybrid 
sheet. The further addition of either AgNW or MXene did not drastically improve electri-
cal conductivity; however, improvements to thermal conductivity were observed due to 
fewer boundaries on which phonons could scatter [49]. Table 2 summarizes the electrical 
and thermal conductivity results. 

Table 2. Summary of electrical and thermal conductivity for CNT/AgNW and CNT/MXene hybrid 
sheets at 298 K. 

Sample Electrical Conductivity (S·cm−1) Thermal Conductivity (W·m−1·K−1) 
100C 227 16.9 ± 3.1 

50C50A 679 128.0 ± 15.7 
25C75A 3294 11.7 ± 8.9 
15C85A 3610 27.9 ± 2.9 
50C50M 1189 42.4 ± 4.5 
25C75M 1285 15.6 ± 3.2 
15C85M 1717 49.7 ± 3.9 

3.3. EMI-Shielding Properties 
When an electromagnetic wave interacts with a conductor, charges within the con-

ductor move to cancel the electric field, while generated eddy currents cancel the applied 
magnetic field inside the shield. Therefore, the most important properties of the shielding 
material are electrical conductivity, magnetic permeability, and shield thickness. 

Figure 5. The calculated Lorenz number for CNT/AgNW hybrid sheets and CNT/MXene hybrid
sheets at 298 K.

At 75 wt%, the more electrically conductive materials were fully percolated through
the CNT network, creating a robust electrically conductive network across the hybrid
sheet. The further addition of either AgNW or MXene did not drastically improve electrical
conductivity; however, improvements to thermal conductivity were observed due to fewer
boundaries on which phonons could scatter [49]. Table 2 summarizes the electrical and
thermal conductivity results.
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Table 2. Summary of electrical and thermal conductivity for CNT/AgNW and CNT/MXene hybrid
sheets at 298 K.

Sample Electrical Conductivity
(S·cm−1)

Thermal Conductivity
(W·m−1·K−1)

100C 227 16.9 ± 3.1

50C50A 679 128.0 ± 15.7

25C75A 3294 11.7 ± 8.9

15C85A 3610 27.9 ± 2.9

50C50M 1189 42.4 ± 4.5

25C75M 1285 15.6 ± 3.2

15C85M 1717 49.7 ± 3.9

3.3. EMI-Shielding Properties

When an electromagnetic wave interacts with a conductor, charges within the conductor
move to cancel the electric field, while generated eddy currents cancel the applied magnetic
field inside the shield. Therefore, the most important properties of the shielding material are
electrical conductivity, magnetic permeability, and shield thickness. Equations (4)–(6) express
the critical properties and interactions that influence plane-wave shielding [50].

SER = 10log10

(
σ

16ωε0µ

)
(4)

SEA = 10log10

(
et
√

ωµσ/2
)

(5)

SET(dB) = SER + SEA = 10log10

(
σ

16ωε0µ

)
+ 10log10

(
et
√

ωµσ/2
)

(6)

In these equations, σ denotes electrical conductivity (S·m−1); ω denotes frequency
(Hz); ε0 is the electrical permittivity of air (F·m−1); µ denotes the magnetic permeability
of the shielding material (H·m−1); and t denotes the thickness of the shield (m). Even at
low filler concentrations of AgNW and MXene, the hybrid sheets improved shielding—
especially reflective shielding. This improvement is attributed to the combination of high
conductivity and low thickness in the CNT hybrid sheets. Figure 6a reveals the SER, SEA,
and SET of the hybrid sheets containing 50 wt% filler. SEA, SEA, and SET of the hybrid
sheets containing higher filler concentrations can be found in the Supplementary Material,
Figure S3. In the case of all hybrid sheets, the shielding mechanism was dominated by
reflection, with up to 99% of the contribution coming from reflection. This was due to the
hybrid sheets having very high electrical conductivity and low thickness. Figure 6b shows
the total SE of all samples in this study, where 25C75A showed the highest SE, achieving an
over 90 dB reduction at 9 GHz. Interestingly, 50C50M showed a lower SE than pristine CNT
despite its higher electrical conductivity. This is attributed to a decreased thickness in the
CNT/MXene hybrid. Normalizing the SE by density and thickness provides further insight
into the interactions between nanomaterials. When normalized by density and thickness,
50C50M shows the highest SE, followed by 25C75M. This is attributed to the fact that
MXene has a much lower density than silver, and thus, the addition of low concentrations
may greatly increase SE with minimal impact on density.



Nanomaterials 2024, 14, 1587 9 of 12

Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 13 
 

 

Equations (4)–(6) express the critical properties and interactions that influence plane-wave 
shielding [50]. 𝑆𝐸ோ = 10 logଵ଴ ൬ 𝜎16𝜔𝜀଴𝜇൰ (4) 

𝑆𝐸஺ = 10 logଵ଴ ቀ𝑒௧ඥఠఓఙ ଶ⁄ ቁ (5) 

𝑆𝐸்ሺ𝑑𝐵) = 𝑆𝐸ோ + 𝑆𝐸஺ = 10 logଵ଴ ൬ 𝜎16𝜔𝜀଴𝜇൰ + 10 logଵ଴ ቀ𝑒௧ඥఠఓఙ ଶ⁄ ቁ (6) 

In these equations, σ denotes electrical conductivity (S·m−1); ω denotes frequency 
(Hz); ε0 is the electrical permittivity of air (F·m−1); µ denotes the magnetic permeability of 
the shielding material (H·m−1); and t denotes the thickness of the shield (m). Even at low 
filler concentrations of AgNW and MXene, the hybrid sheets improved shielding—espe-
cially reflective shielding. This improvement is attributed to the combination of high con-
ductivity and low thickness in the CNT hybrid sheets. Figure 6a reveals the SER, SEA, and 
SET of the hybrid sheets containing 50 wt% filler. SEA, SEA, and SET of the hybrid sheets 
containing higher filler concentrations can be found in the Supplementary Material, Fig-
ure S3. In the case of all hybrid sheets, the shielding mechanism was dominated by reflec-
tion, with up to 99% of the contribution coming from reflection. This was due to the hybrid 
sheets having very high electrical conductivity and low thickness. Figure 6b shows the 
total SE of all samples in this study, where 25C75A showed the highest SE, achieving an 
over 90 dB reduction at 9 GHz. Interestingly, 50C50M showed a lower SE than pristine 
CNT despite its higher electrical conductivity. This is attributed to a decreased thickness 
in the CNT/MXene hybrid. Normalizing the SE by density and thickness provides further 
insight into the interactions between nanomaterials. When normalized by density and 
thickness, 50C50M shows the highest SE, followed by 25C75M. This is attributed to the 
fact that MXene has a much lower density than silver, and thus, the addition of low con-
centrations may greatly increase SE with minimal impact on density.  

 
Figure 6. EMI-shielding properties: (a) reflection, absorption, and total SE for pristine CNT, 50 wt% 
CNT/AgNW, and CNT/MXene hybrid sheets. (b) SE of the pristine and hybrid sheet. 

In some applications, thickness may be a more important factor than areal density, 
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Figure 6. EMI-shielding properties: (a) reflection, absorption, and total SE for pristine CNT, 50 wt%
CNT/AgNW, and CNT/MXene hybrid sheets. (b) SE of the pristine and hybrid sheet.

In some applications, thickness may be a more important factor than areal density,
and so Equations (4)–(6) can be deployed to model and compare the SE of each film
independent of thickness. Figure 7a compares the measured and calculated SE values for
100CNT, 50C50A, and 50C50M samples. Electrical conductivity and sample thickness were
directly measured, with magnetic permeability assumed to be ~µ0. The model agreed
with the measured results to within ~3 dB. This indicates that the SE performance can be
accurately estimated using the established equations. Figure 7b displays the SE predictions
for pristine CNT sheets and each hybrid CNT sheet at a thickness of 15 µm. Here, electrical
conductivity and magnetic permeability were the only variables. The addition of a small
amount of AgNW (50 wt%) resulted in relatively small improvements in SE while increasing
the concentration to 75 wt% resulted in much higher shielding. At loadings higher than
75 wt%, AgNW appeared to have diminishing returns.
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Conversely, the addition of 50 wt% MXene resulted in a 74% improvement in shielding
effectiveness compared to pristine CNT sheets. At 8.2 GHz, SE improved from 37 dB
to 50 dB. Increasing the MXene content beyond 50 wt% yields small gains in SE, as SE
improves from 50 dB to 54 dB at 85 wt%.
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4. Conclusions

Dispersion and vacuum-filtration procedures were used to form CNT hybrid sheets
containing high-weight percentages of AgNW and Ti3C2Tx MXene. The addition of 1D and
2D nanomaterials to CNT sheets resulted in increased electrical and thermal conductivity
due to the increased number of conductive paths and positive synergistic effects between
the nanomaterials. The hybrid sheets also showed increased EMI shielding at different filler
contents, but EMI shielding and density must be optimized for lightweight applications.
Additionally, the resulting hybrid sheets also show phonon-dominant thermal conduction,
as calculated by the Wiedemann–Franz law. The results indicate that the addition of AgNW
or MXene to CNT sheets results in improved electrical and thermal conductivity and
higher EMI shielding across the X-band. The addition of AgNW to CNT sheets resulted
in only small improvements at low concentrations, while the addition of 75 wt% AgNW
showed vast improvements in SE over the pristine CNT sheet. AgNW greatly improved the
electrical conductivity of CNT sheets, resulting in an increased SE in the X-band. However,
this also increased the sample weight, and CNT/AgNW hybrid sheets showed a lower SE
than CNT/MXene hybrids when normalized by thickness and density. Small additions of
MXene to CNT resulted in greater improvements in SE, and increasing the MXene content
further showed only small increases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14191587/s1, Figure S1: TGA curves of unwashed CNT
sheet, washed CNT sheet, and hybrid CNT sheets containing 50 wt% AgNW and 50 wt% MXene;
Figure S2: XRD of CNTs used in this study, commercially available CNTs, and (a) AgNW and 50C50A,
and (b) MXene and 50C50M.
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