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Abstract: This work is devoted to the investigation of dielectric permittivity which is influenced
by electronic, ionic, and dipolar polarization mechanisms, contributing to the material’s capacity
to store electrical energy. In this study, an extended dataset of 86 polymers was analyzed, and two
quantitative structure–property relationship (QSPR) models were developed to predict dielectric
permittivity. From an initial set of 1273 descriptors, the most relevant ones were selected using a
genetic algorithm, and machine learning models were built using the Gradient Boosting Regressor
(GBR). In contrast to Multiple Linear Regression (MLR)- and Partial Least Squares (PLS)-based
models, the gradient boosting models excel in handling nonlinear relationships and multicollinearity,
iteratively optimizing decision trees to improve accuracy without overfitting. The developed GBR
models showed high R2 coefficients of 0.938 and 0.822, for the training and test sets, respectively.
An Accumulated Local Effect (ALE) technique was applied to assess the relationship between the
selected descriptors—eight for the GB_A model and six for the GB_B model, and their impact on
target property. ALE analysis revealed that descriptors such as TDB09m had a strong positive effect
on permittivity, while MLOGP2 showed a negative effect. These results highlight the effectiveness of
the GBR approach in predicting the dielectric properties of polymers, offering improved accuracy
and interpretability.

Keywords: dielectric constant; polymers; QSPR; Gradient Boosting Regressor; Accumulated Local
Effect

1. Introduction

Dielectric permittivity is a fundamental electrical property that characterizes a ma-
terial’s response when subjected to an electric field [1]. This property is related to the
dielectric constant (ε) and reflects the material’s ability to align and orient electric dipoles
within its structure in response to an external electric field. The greater the polarizability
of the molecules, the higher the value of (ε) [2]. This property is influenced by several
polarization mechanisms. In electronic polarization, the electric field distorts the electron
cloud around atoms, generating temporary dipoles [3]. In ionic polarization, the electric
field slightly displaces ions from their equilibrium positions in ionic materials [4]. Lastly,
dipolar polarization occurs in materials with permanent dipoles, where the electric field
aligns these dipoles, increasing permittivity based on molecular polarizability [4]. Even
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in materials such as liquids and gases that lack permanent dipoles, dielectric permittivity
exists [5], as electrons or ions within the material can still shift in response to an external
field, contributing to the material’s dielectric properties [3,4]. Together, these mechanisms
enhance the material’s overall capacity to store electrical energy, which is reflected in the
value of the dielectric constant [6,7]. This property is a fundamental characteristic of a
material and commonly used to predict other electrical properties of polymers [6–8]. It
applies to materials physics, chemistry, electrical engineering, and polymer science [1].
The implementations of this characteristic property knowledge are evident in high-energy
density capacitors [9], high-voltage cables [9], microelectronics [10], and photovoltaic
devices [11,12].

However, the theoretical prediction of the dielectric constant in polymers presents a
multifaceted challenge. This inherently nonlinear property requires considering various
factors, such as temperature, electric field frequency, polymer structure, composition,
sample morphology, impurities, loads, plasticizers, and other additives [7,13]. Furthermore,
each application requires the polymer’s dielectric constant (ε) to be within a specific range
that meets the particular demands of that application [8]. Understanding and adjusting
this range is crucial for the effective design of new materials.

Therefore, given the inherent complexity of many substances, there is a significant
demand for machine learning (ML) models to efficiently predict these properties, optimiz-
ing both time and resources. In the field of materials informatics and cheminformatics,
the Quantitative Structure–Property Relationship (QSPR) methodology stands out as an
important machine learning-based approach. This methodology relies on machine learning
models to forecast or elucidate chemical compound’s properties by leveraging distinct
chemical descriptors [14]. The efficacy of the model’s predictions and its capacity to unveil
the relationships between a material’s molecular or other microscopic physical proper-
ties and the targeted properties being modeled are significantly influenced by the careful
selection of descriptors [14]. In this sense, the QSPR approach has proven to be effec-
tive in predicting various properties, including glass transition (Tg) in polymers [15,16]
and (Tg) in polymer coating materials [17]. Several QSPR models have also been devel-
oped for predicting dielectric permittivity in polymers [1,17–19] using different datasets,
feature-representation methods, variable selection procedures, and so on. For instance, Liu
et al. [20] developed a QSPR model to predict dielectric permittivity using a small dataset of
22 polyalkenes. The resulting model utilized a multiple linear regression analysis (MLRA),
had a high (R2

train) value of 0.907, and standard error (s) of 0.001 for the training set. Three
quantum-chemical descriptors were selected: ELUM (energy of the lowest unoccupied
molecular orbital), q- (minimum negative atomic charge) and S (configurational entropy of
the system). The authors thoroughly explored the physical significance of these descriptors,
linking them to polymer polarizability and charge separation capability.

In subsequent studies in 2016, Wu et al. [19] developed a model to predict the dielectric
constant based on 58 polymers. The authors employed Partial Least Squares (PLS) regres-
sion as the modeling technique, incorporating the Infinite Chain Descriptors (ICD) 2D, TAE
and GAP_inf3_inv. The model trained on the training dataset showed (R2

train) of 0.91 and
a Root-Mean-Square Error (RMSE) of 0.11. Additionally, when evaluating the model on
an external test set, it showed high R2 values and achieved strong predictive capabilities,
reaching an (R2

test) of 0.96 and an RMSE of 0.11 in both cases. Finally, in a recent study,
Zhuravskyi et al. [1] used a dataset of 71 polymer samples. The authors applied a combined
genetic algorithm (GA) and multiple linear regression analysis (MLRA) to select optimal
descriptors and develop predictive models. Two models were created—the first model
used five descriptors, achieving an (R2

train) of 0.842 and a standard error (s) of 0.187. The
second model incorporated eight descriptors, demonstrating improved results with (R2

train)
of 0.905 and s of 0.151. Both models exhibited robust predictive skills when externally
validated, showing (R2

test) of 0.829 and 0.810 for training and test sets, respectively.
Although all of these earlier publications report on QSAR/QSPR studies to predict

dielectric permittivity of different polymers, they all have certain limitations. First of all, not
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all models use separated sets for training and test sets to validate the models’ predictions; as
well, the size of published datasets is smaller and/or limited in comparison to the current
model, restricting the applicability domain of the previous models.

Additionally, methods like Multiple Linear Regression (MLR) are vulnerable to mul-
ticollinearity, leading to unstable coefficients and overfitting, as well as an increased risk
of identifying misleading relationships between variables, especially when many vari-
ables are involved [21]. However, Partial Least Squares (PLS) handles multicollinearity
well, but it may overlook important relationships by focusing primarily on general trends.
Moreover, its accuracy can be compromised if the variables are on very different scales,
complicating model interpretation [21,22]. Also, nonlinear correlations may not be well
captured by these linear methods, limiting their ability to model complex relationships
accurately [23]. In contrast, gradient boosting (GB) models are highly effective at managing
both multicollinearity and nonlinear relationships between variables [24]. The method
is very powerful, since it is updating the weights after each iteration, influencing precise
models in the sequence for continuous improvement of overall accuracy over time [25,26].
Thus, GB has been successfully used in QSAR models to predict bandgap [27] and glass
transition temperature [28] in polymers, with predictive capability of R2

train above 0.90
in both cases, where high prediction quality was achieved even with many descriptors
without overfitting [29].

In this work, a QSAR model was developed using a dataset of 86 polymers. Two
versions of the model (GB_A and GB_B) were evaluated using cross-validation and external
datasets. The optimization of the models involved the use of eight descriptors, and six
descriptors, respectively. Parameters of the Gradient Boosting model, such as criterion,
max_features, min_samples_leaf, max_leaf_nodes, and min_impurity_decrease [30], were
optimized using the grid search technique [24]. These hyperparameters (Table 1) are crucial
for enhancing model accuracy [31], significantly increasing the model’s ability to capture
complex relationships between input and output variables, prevent overfitting, and ensure
robust decision-making [31,32]. The optimized model demonstrated an effective prediction
of the dielectric constant in various types of polymers.

Table 1. Runtime parameters for Gradient Boosting Regressor.

Model
Type Common Values Unique Values

Gradient Boosting
Regressor_A

alpha: 0.9; ccp_alpha: 0.0;
criterion:friedman_mse; init: None;

learning_rate: 0.2; loss: squared_error; max depth: 4;
n estimators: 10max_features: None; max_leaf_nodes: None;

min_impurity_decrease: 0.0;
min_samples_leaf: 1;

Gradient Boosting
Regressor_B

min_samples_split: 2;
min_weight_fraction_leaf: 0.0;

n_iter_no_change: None; random_state: 42; max depth’: 2;
n estimators: 13subsample: 1.0; ‘tol’: 0.0001;

validation_fraction: 0.1; verbose: 0;
warm_start: False.

Also, in this study the Accumulated Local Effect (ALE) approach was used to facilitate
the visualization of the individual impact of each descriptor on dielectric permittivity
predictions. ALE graphs serve as effective tools for both visualizing and quantifying the
individual influence of each input on prediction [33]. Although, several interpretative
methods exist, such as Partial Dependence Plots (PDP) and Individual Conditional Expec-
tation (ICE) curves, which have been used in various studies [34–37]. ALE plots offer more
precise interpretations in complex models. The ALE plots do so by mitigating inaccuracies
caused by the aggregation of heterogeneous effects and incorrect assumptions of feature
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independence [34,37]. Moreover, ALE plots allow for the identification of precise local
effects within the data, thereby improving the understanding of variable interactions—
something that ICE curves and PDPs are less effective at achieving. Additionally, ALE plots
are more computationally efficient, overcoming the limitations of PDPs in high-complexity
scenarios [36].

To our best knowledge, to date only one study has utilized the ALE method to
elucidate the mechanistic relationship of nonlinear QSAR models related to toxicity (log
LD50) discussed in work [33]. However, no previous studies have been identified that
apply this approach to investigate dielectric permittivity.

2. Materials and Methods
2.1. Experimental Data Collection

In this study, we examined a set of 86 polymers (Supplementary Materials, Table S1)
compiled from diverse public sources [1,7,38,39]. The dataset encompasses various poly-
mer types, including polyvinyls, polyethylenes, polyoxides, polystyrenes, polyethers,
polysulfones, polyacrylonitrile, polyamides, polyacrylates, poly-siloxanes, polyxylylenes,
polycarbonates, polyisoprenes, polymethylene, aromatic polymers, fluorinated polymers
and norbornene polymer.

All experiments were conducted at a temperature of 298 K, with measurements taken
at frequencies of 1, 60, 100, 1000, 10,000, and 1,000,000 Hz. To ensure data consistency,
the dielectric constant values obtained at these frequencies were extrapolated to 1 Hz
using linear regression equations (Supporting Information, Figure S1). This allowed for a
coherent comparison of dielectric permittivity under the same frequency conditions. The
quality of the fits was guaranteed by a coefficient of determination (R2) greater than 0.90.

The SMILES linear notation system was used for each polymer, representing molecular
structures in a compact text format, which makes it useful for chemistry software and
data exchange [40], and the SMILES notations for each polymer were obtained from
PubChem [41] and ChemDraw [42]. The molecules were optimized by Avogadro Software
version 1.2.0. [43] with Universal Force Fields (UFFs). A UFF is a general force field designed
to optimize minimal energy conformation that works for chemical structures based on all
possible elements. It determines parameters based on the element, its hybridization, and
connectivity; this force field is a big advantage over other force fields that usually only
work in specific cases depending on the available parameters [44].

2.2. Generation of Descriptors

Molecular descriptors are mathematical representations of the molecular properties
generated by specific algorithms based on mathematical equations [45]. The descriptors
were generated using alvaDesc [46]. The program calculates more than 5000 descriptors,
0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional, GETAWAY descriptors,
among others [46]. Highly correlated descriptors (R > 0.9), constant, and near-constant
descriptors (std < 0.1) were removed during pre-processing. After eliminating correlated,
constant, and near-constant descriptors, about 1273 descriptors were used for further
QSPR analysis.

Additionally, given the higher molecular weight of the polymers, the influence of
terminal groups on the overall polymer structure is minimal. Consequently, we can
disregard the contribution of terminal structures. In this context, we based our calculations
of structural features/descriptors on the repeating polymer units’ structures [1,20,47].

2.3. Model Assembly

For model construction and QSPR evaluation, the dataset was organized in ascending
order by the target property and split into an 80% training set and a 20% test set. The
preliminary phase, illustrated in the data distribution, consists of identifying and excluding
4 atypical structures from the dataset using a histogram [48]. Subsequently, a lower limit
(lower limit) was established by subtracting three times the standard deviation (σ) of the
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mean (χ): Lower Limit = χ − 3xσ and an upper limit (upper limit) by adding three times
the standard deviation of the mean: Lower Limit = χ+ 3xσ. This approach was in line with
the empirical standard in a normal distribution [48]. Several models, including Multilinear
Regressor (MLR), Support Vector Machine (SVM), Random Forests (RFR), Decision Tree
(DT), K-Nearest Neighbors (KNN), and Gradient Boosting (GB) were built for further
evaluation and identification of the best model. These models were generated with the
coefficient of determination in the training dataset (R2

train) and the validation dataset (R2
test)

parameters. Model acquisition was performed using Python (3.6.3) and implemented in
the Scikit-learn package [49]. The selection of variables was made with Genetic Algorithm
(GA), a robust tool for search and optimization in predictive modeling [50,51]. The variable
selection process using Genetic Algorithms (GA) begins with an initial population of
1000 random models. The evolutionary phase involved 9000 iterations, and a mutation
probability of 20% was applied.

2.4. Gradient Boosting Regressor Model Modeling and Validation

The Gradient Boosting Regressor model used several performance metrics, includ-
ing the coefficient of determination (R2) Equation (1), Root-Mean-Square Error (RMSE)
(Equation (2), and Mean Absolute Error (MAE) Equation (3). These metrics are commonly
employed to evaluate the effectiveness of the model [1,14,33]. In this context, yobs

i and ypred
i

refer to the actual and predicted values for each compound, while
∼
y

obs
i is the average of

the observed values. In this particular case, each ith compound is characterized by only
one observed value. To assess the model’s stability, we computed the Mean Absolute Error
of cross-validation (MAECV) in each iteration based on Equation (4). Similarly, we used
the Concordance Correlation Coefficient (CCC, Equation (5)) to gauge the goodness of fit.
Additionally, other metrics were incorporated to obtain a more comprehensive and precise
estimation of the models’ predictive capacity. The external predictability of the model was
assessed using metrics such as Q2F1, Q2F2, k, k’ [52].

R2 = 1 −
∑n

i=1

(
yobs

i − ypred
i

)2

∑n
i=1

(
yobs

i − ∼
y

obs
i

)2 (1)

RMSE =

√
∑n

i=1

(
yobs

i − ypred
i

)2

n
(2)

MAE =
1
n

n

∑
i=1

∣∣∣yobs
i − ypred

i

∣∣∣ (3)

MAECV =
1
n

n

∑
k=1

[
yobs

i − ypredcv
i

]
(4)

CCC =
2 ∑N obs

i=1

(
yobs

i − y−obs
)(

ypred
i − y−pred

)
∑n

i=1

(
yobs

i − y−obs
i

)2
+ ∑n

i=1

(
ypred

i − y−pred
)2

+ n
(
y−obs − y−pred

)2
(5)

2.5. Analysis of Descriptors in Models

The research attempts at overcoming the challenge of interpreting nonlinear models
by employing the ALE approach. This approach proves effective in comprehending the
impact of descriptors on the target variable [33,53]. Additionally, data normalization was
performed to ensure consistency in interpreting ALE effects, thereby ensuring a precise
understanding of how each descriptor (Table 2) influences the model’s predictions. The
Scikit-learn package [49] was utilized for normalizing the descriptors, and ALE Python
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package [33] to generate graphical representations that visualize the cumulative effects of
the descriptors on the predictions of the GB_A and GB_B models.

Table 2. Descriptors involved in the GBR models and their corresponding definition.

Descriptor GBR_A GBR_B Definition and Scope Descriptor Type

N% X percentage of N atoms Constitutional Indices

J_Dz(p) X Balaban-like index from Barysz matrix weighted
by polarizability

2D matrix-based
descriptors

P_VSA_e_3 X P_VSA-like on Sanderson electronegativity, bin 3 P_VSA-like descriptors

P_VSA_i_1 X P_VSA-like on ionization potential, bin 1 P_VSA-like descriptors

AVS_Coulomb X Average vertex sum from
Coulomb matrix

3D matrix-based
descriptors

TDB09m X X 3D Topological distance-based descriptors lag 9
weighted by mass 3D autocorrelations

HATS2p X leverage-weighted autocorrelation of lag
2/weighted by polarizability GETAWAY descriptors

MLOGP2 X X squared Moriguchi octanol–water partition coeff.
(logPˆ2) Molecular properties

GATS2s X Geary autocorrelation of
lag 2 weighted by I-state 2D autocorrelations

Eig08_AEA (ri) X
Eigen value n. 8 from augmented edge adjacency

mat. weighted
by resonance integral

Edge adjacency indices

RTs+ X R maximal index/
weighted by I-state GETAWAY descriptors

WHALES60_Rem X WHALES Remoteness (Rem) (percentile 60) WHALES descriptors

3. Results and Discussion
3.1. Exploratory Data Analysis

Data visualization through histograms is a fundamental step in quantitative data
analysis [54]. In this study, histograms were used to illustrate the distribution of dielectric
permittivity in the dataset. Figure 1A shows the original dataset of 86 polymers. The X-axis
represents dielectric permittivity values, while the Y-axis shows the frequency of each
value or range. The taller the bar in the histogram, the more frequently those values appear
in the dataset [55]. Additionally, the blue lines represent density curves generated using
Kernel Density Estimation (KDE), which provide a smooth and continuous view of the data
distribution. These curves help highlight concentrations and central trends in the data [56].
In addition, Figure 1 reveals that most data points cluster around the center, with fewer at
the extremes, showing a right-skewed distribution [51]. The mean value (3.148) serves as
the central point, with a lower limit of −0.546 and an upper limit of 6.844, calculated by
subtracting and adding three times the standard deviation (1.232), respectively. Data points
beyond these limits were flagged as outliers, including Fumaronitrile (8.5), Vinyl Fluoride
(8.5), Vinylidene Fluoride (8.4), and Methylcellulose (6.8). After this step, the dataset was
reduced to 82 points. The updated graph (Figure 1B) shows a significant improvement in
the accuracy and reliability of the data analysis, ensuring a more precise representation of
the dataset and achieving a normal distribution.

Fitting data to a distribution curve through histograms is crucial for identifying general
patterns and detecting outliers that may influence the results, ultimately providing deeper
insight into the data’s behavior and trends [56].
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Figure 3

Figure 1. (A) The original dataset includes dielectric permittivity values for 86 polymers. (B) After
removing outliers, the dataset is reduced to 82 polymers. In both histograms, the x-axis represents
dielectric permittivity values, while the y-axis indicates the frequency of their appearance. The blue
lines, generated using Kernel Density Estimation (KDE), illustrate the data distribution and highlight
central trends.

3.2. Ensemble Model

After an initial preprocessing phase, a dataset of 82 polymers were split into training
and test datasets, containing 66 and 16 polymers, respectively. A total of 1273 descriptors
were generated for this dataset. Using these descriptors, various models were developed
using the following algorithms: Multi-Linear Regressor (MLR), Support Vector Machine
(SVM), Random Forests (RF), Decision Tree (DTR), K-Nearest Neighbors (KNN), and
Gradient Boosting (GB) (Figure 2). When analyzing several models for the predictive
performance, the coefficient of determination (R2) was assessed, aiming for the coefficient’s
value close to 1 [52]. Such models as MLR, SVM, and DTR achieved values close to 0.6.
However, models like RF demonstrated high training performance with values near 0.9,
but their validation performance significantly dropped to around 0.6. Similarly, the K-NN
model showed consistent performance in both training and validation sets, with values
close to 0.65 (Figure 2). Nevertheless, the GB models proved to be effective in predicting
dielectric permittivity, surpassing the other ML models. Two options were chosen that
performed better for the Gradient Boosting (GB) model. The first model (GB_A) consisted
of eight descriptors, and the second model (GB_B) consisted of six descriptors (Table 2).
Additionally, a hyperparameter optimization was conducted for each model (Table 1).
This optimization was crucial to significantly improve the predictive performance of the
model while reducing the risk of overfitting by simplifying its complexity [57]. Statistical
parameters of the model are presented in Table 3.

In the model, GB_A (R2
train) shows a good performance, indicating the model’s ability

to capture and explain 93.77% of the variations in the training data, showcasing its effective
adaptation and precise predictions within this specific set. As for the test set, the R2

test
value of 0.801 illustrates a very good model’s performance on the external set, which
was not used during the model training. This high performance in both training and test
sets highlights the model’s robustness, supporting its ability to generalize and provide
accurate predictions in future scenarios. In contrast, the GB_B model showed slightly
lower prediction ability for both the training set (R2

train): 0.822 and the test set (R2
test) 0.708.

Therefore, we could assume that having more descriptors might allow the model to capture
more details and subtle relationships in the data, potentially improving the accuracy of
predictions; however, this improvement could introduce a higher complexity to the model.
In Figure 3, the relationship between predicted and experimental values for the dielectric
constant is illustrated, comparing models GB_A (Figure 3A) and GB_B (Figure 3B). It can
be observed that residual errors are small for model GB_A, in contrast to model GB_B.
Additionally, the black line represents the regression line associated with the data points,
where residual errors are evident.
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Figure 1

Figure 2

Figure 3

Figure 2. Comparison of the predictive performance of various machine learning models in estimating
the dielectric permittivity of polymers. The graph displays the coefficients of determination (R2) for
each model across both training and test sets.

Table 3. Statistical parameters of Gradient Boosting model.

Model R2

(Train)
RMSE
(Train)

MAE
(Train) MAECV R2

(Test)
RMSE
(Test)

MAE
(Test)

CCC
(Test) Q2F1 Q2F2 k k′

GBR_A 0.938 0.123 0.100 0.261 0.802 0.256 0.212 0.869 0.805 0.802 1.035 0.961
GBR_B 0.822 0.208 0.155 0.273 0.704 0.313 0.213 0.787 0.710 0.704 0.101 0.980

Insects 2024, 15, 0 8 of 20

Figure 1

Figure 2

Figure 3Figure 3. Plots of experimental vs. predicted values of the dielectric constant for (A) GBR_A and
(B) GBR_B models.

Without prejudice to the statistics discussed above, other important performance
parameters that should also be considered for the selection of good predictive models are
the mean-root-quadratic error (RMSE) and Mean Absolute Error (MAE) [52]. In our study,
when comparing the GB_A and GB_B models, the highest R2 values for training and test
sets were consistently correlated with lower RMSE and MAE values. Thus, model GB_A
highlights the ability of the model to make better predictions that are quite close to real
values. Furthermore, the data were assessed in a cross-validation set (CV) for Models A
and B, resulting in a similar MAECV of 0.2605 and 0.2725, respectively. This indicates that
the models’ predictions during cross-validation have an average absolute error of around
0.27 units compared to the actual values.

Previous research [1] reported a QSPR model that utilized GA-MLR analysis. The
models developed were generated from 71 polymers, achieving an (R2

train) of 0.905 on
the training set and an external (R2

test) of 0.812 on the test set. This dataset served as
the main starting point for our study, to which an additional set of polymers was added.
It is crucial to highlight that despite of our study employing a gradient boosting model,
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the consistency of the results between this model and the one developed earlier suggests
the robustness of this methodology. This approach demonstrates its effective ability to
capture the relationship between predictor variables and the response variable, even when
considering an expanded dataset with the inclusion of additional polymers.

In a similar study, Bicerano [7] crafted a QSPR model achieving an (R2) of 0.958 and
(s) of 0.087, aiming to establish a correlation between (ε) and 32 descriptors related to the
structure of 61 polymers. However, this model’s complexity initiates from an abundance
of descriptors, potentially leading to issues like overfitting. The decision to augment
the descriptor count may have enhanced results, yet it introduces complexity affecting
the model’s reliability. Moreover, the model in the discussed paper lacks an external
validation, i.e., no test set is utilized. In a similar way, Xu et al. [18] employed a dataset
comprising 57 polymers. Instead of using simple repetitive units, they utilized cyclic
dimers to represent polymer structures, providing a more accurate capture of the chemical
environment’s impact. In total, nine descriptors related to composition, connectivity,
charges, and topological indices were selected in the model discussed. The QSPR model
yielded (R2

train) of 0.938 and standard error (s) of 0.087, using the MLRA. Furthermore, the
model underwent the external validation on a test set of 12 polymers, achieving notable
results with an (R2

test) of 0.969.
While these studies have produced high predictions, the limited dataset limits poly-

mer diversity and the scope of predictions. The gradient boosting model provides greater
flexibility compared to the MLR model. This model refines an additive model by opti-
mizing regression trees and minimizing the loss function. The “additive nature” means
that the model gradually builds complexity, improving its accuracy progressively. The
tree-based approach involves constructing decision trees, allowing the model to capture
nonlinear relationships between input and output variables, and adept at handling complex
patterns in the data. This approach offers versatility in modeling various aspects, includ-
ing interactions between variables, capturing discontinuities, and effectively handling
non-monotonous effects present in the dataset [25].

3.3. ML-QSPR Models Explanation

Molecular descriptors are essential in cheminformatics [58], as they enable models to
identify patterns that influence the dielectric permittivity of polymers [1]. By converting
molecular structures into numerical values, these descriptors allow for the efficient analysis
of factors such as geometry, atomic arrangement, bonding patterns, molecular size, and elec-
tronic properties [59]. This encoding helps predictive models assess how these structural
factors affect dielectric permittivity [1]. According to Table 2, the GB_A model comprises
eight descriptors, and the GB_B model comprises six descriptors. These models share two
descriptors: TDB09m (spatial 3D molecular geometry and atomic properties of polymeric
structures) [59] and MLOGP2 (squared Moriguchi octanol–water partition coefficient, a
descriptor of lipophilicity indicating a molecule’s affinity for non-polar environments based
on molecular characteristics such as hydrophobicity, ring structures, hydrogen bonds,
etc.) [60]. MLOGP2 is described as a descriptor that could negatively influence dielectric
permittivity as its values increase. In polymers such as poly(4-methyl-1-pentene), with a
dielectric permittivity of 2.13 and an MLOGP2 of 12.363 (Figure 4B), its high lipophilic-
ity reduces polarizability, thereby lowering the permittivity. In contrast, nylon 6, with an
MLOGP2 of 0.315 and a permittivity of 3.50, exhibits greater polarity, which facilitates better
molecular orientation under an electric field. This suggests that lower MLOGP2 values are
associated with higher dielectric permittivity due to more effective polymer polarization.
This descriptor could suggest that polymers based on repeating units with low MLOGP2
values (highly polar) are likely to exhibit high dielectric permittivity. This could be due
to the fact that molecular chains distort and orient easily in response to an electric field.
Contrary to the previous descriptor, the TDB09 descriptor has a different effect, whereby
an increase in the values of this descriptor has a positive impact on dielectric permittivity.
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This could imply that polymers with larger structures or higher atomic mass may have a
greater capacity to respond to an electric field, thus improving their dielectric performance.

Insects 2024, 15, 0 9 of 20

Figure 4 Figure 4. (A) Accumulated Local Effect (ALE) plots for the descriptors in the GB_A model, illustrating
the influence of each descriptor on the prediction of dielectric permittivity. (B) Chemical compounds
highlighting the positive or negative impact on the descriptors.

Additionally, the GB_A model includes the descriptor HATS2p, and the GB_B model
includes the descriptor RTs+, where both belong to the GETAWAY type; this type of
descriptor is related to 3D molecular geometry using atomic weights, like atomic mass,
polarizability, van der Waals volume, electronegativity, and unit weights [61]. Therefore,
these descriptors could capture molecular interactions based on distances and atomic
weights, directly influencing how the molecules respond to an electric field.

Among the selected descriptors in each model, the GB_A model has descriptors related
to the type of constitutional indices. For example, N% (percentage of nitrogen atoms)
quantifies the proportion of nitrogen atoms in the polymers of the data [59], the presence
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of functional groups in polymers, such as amino (-NH2) or cyanide (-CN), which could
determine the behavior of this descriptor towards the property in a positive correlation,
where more functional groups lead to higher permittivity.

The descriptors P_VSA_e_3 and P_VSA_i_1 are directly related to the van der Waals
surface area (VSA), showing a specific characteristic in a defined area [62,63], where the
contribution of these interactions is influenced by Sanderson electronegativity for the first
descriptor and ionization potential for the second descriptor, showing a positive trend in
both cases, until the descriptor values reach their medium values. Another descriptor is
J_Dz(p), which belongs to the 2D type descriptors based on topological representation. It
represents a Balaban type index of the polarity-weighted Barysz matrix [59,64]. Finally,
AVS Coulomb provides a measure of the mean electrostatic interactions between atoms in
a 3D molecular structure, taking into account both repulsion and nuclear charge effects,
which require 3D coordinates for all atoms, including hydrogen atoms [65].

The GB_B model also includes GATS2s descriptors, which are capturing the similarity
between pairs of atoms in the molecule separated by a certain topological distance or
lag [66]. This descriptor is related to important properties in dielectric permittivity, such as
electronegativity and polarizability, and includes effects of atomic mass and volume, for
fragments that have 2 or more bonds (lag2). Another descriptor, Eig08_AEA (ri), belongs to
the Edge Adjacency Indices type, based on the edge adjacency matrix of a graph, providing
the sum of all edge entries in the graph’s adjacency matrix [67]. Lastly, the descriptor
WHALES60_Rem belongs to the WHALES type.

Figure 4 shows that the descriptors HATS2p and N% do not show a significant effect
on dielectric permittivity. However, P_VSA_e_3 and P_VSA_i_1, up to values close to
0.25, have a positive influence on model predictions. For the first descriptor, the molecule
Poly(2,2-(m-phenylene)-5,5-bibenzimidazole) (Figure 4B) could be involved in P_VSA_e_3
due to its high electronegativity. This molecule contains nitrogen atoms, which are highly
electronegative, facilitating significant charge distribution within the polymer structure.
This behavior aligns with Sanderson’s electronegativity represented by P_VSA_e_3, con-
tributing to increased polarization, a crucial factor in enhancing dielectric permittivity in
response to an electric field [7]. However, the molecule Poly (diallyl phenyl phosphonate)
could be involved in the P_VSA_i_1 descriptor due to the presence of atoms like phospho-
rus, which impact the material’s ionization potential. P_VSA_i_1 is linked to the ionization
capacity of the molecule, suggesting that compounds with such functional groups can
improve the polymer’s responsiveness to an electric field, thus enhancing its polarization
and dielectric permittivity [7,68,69].

The descriptor TDB09m shows similar behavior to the two previous descriptors.
Polymers with heavier structures, such as Poly (bisphenol A carbonate) and Poly(1,4-
cyclohexylidene dimethylene terephthalate), tend to exhibit higher dielectric permittivity
due to their greater mass and structural complexity. These attributes enable better polar-
ization in response to an electric field, thereby enhancing their energy storage capacity.
In contrast, lighter polymers like Poly(propylene) and Poly(isobutylene) have less mass
and simpler structures, which limit their ability to polarize effectively, resulting in lower
dielectric permittivity and reduced energy storage efficiency (Figures 4B and 5B).

On the other hand, the descriptor MLOGP2 shows a negative effect until values close
to 0.65. As for the descriptor AVS_Coulomb, it shows a significant positive effect within
values of the approximate range of 0.25 to 0.50. Finally, the descriptor J_Dz(p) also shows a
subtle negative trend around the values close to 0.25; this descriptor potentially correlates
with dielectric permittivity, as it captures aspects of molecular structure associated with
polarity and electronic distribution [59,64]. In general, when analyzing the trends of several
descriptors for the GB_A model, we could infer that values close to 0.25 can mean a remark-
able turning point in how descriptors influence the prediction of dielectric permittivity.
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Figure 5 Figure 5. (A) Accumulated Local Effect (ALE) plots for the descriptors in the GB_B model, illustrating
the influence of each descriptor on the prediction of dielectric permittivity. (B) Chemical compounds
highlighting the positive or negative impact on the descriptors.

The ALE graphs for the GB_B model provide important information on the factors
influencing the dielectric constant in investigated polymers. The descriptor RTs+ does not
have a significant impact on dielectric permittivity for most of the part of values, except
smallest ones, close to 0. Nevertheless, for the two shared descriptors, in the two TDB09m
and MLOGP2 models, it should be noted that they behave similarly, showing strong positive
and negative trends, respectively. Therefore, we can conclude that these descriptors play a
crucial role in determining dielectric permittivity in our models. However, in the GB_B
model, the descriptor TDB09m has a more pronounced positive effect when its values
increase beyond 0.65. In the same way, the descriptor WHALES60_Rem also shows a
positive effect when its values are around 0.25, but for higher values, a constant behavior is
observed. This descriptor belongs to the WHALES type of descriptors, and based on 3D
structure considering all atoms and bonds, along with distances between them and other
important properties, such as electronegativity [70].

4. Conclusions

In this work, two models were developed to predict the dielectric constants (ε)
for various polymers providing a detailed explanation from a mechanistic perspective.
The study introduced QSPR models developed by applying the Gradient Boosting al-
gorithm. The GB_A model, having eight descriptors, showed better performance with
(R2

train) = 0.938 and (R2
test) = 0.802, while the GB_B model, which has six descriptors,
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showed (R2
train) = 0.822 and (R2

test) = 0.704. The validity of the models was additionally en-
sured by various statistical verification methods, such as MAE and RMSE. The contribution
of each descriptor to dielectric permittivity was discussed by applying the Accumulated
Local Effect (ALE) approach. This approach worked well in analyzing the individual influ-
ence of each descriptor on dielectric permittivity predictions. Both developed QSPR-GBR
models have five common descriptors that showed strong positive effects on dielectric
permittivity, while one common descriptor (MLOGP2) showed a negative effect. It is impor-
tant to note that TDB09m was also involved in these two models, having a positive effect.
In conclusion, this study demonstrated an appropriate approach to guide the prediction of
dielectric constants in a wide range of polymers, using nonlinear models. The ability to
predict the dielectric constant through models, with relationship-related interpretations in
ALE plots, not only optimizes the design of polymers with specific electrical properties but
also accelerates the development of polymeric materials for practical applications, reducing
the need for costly and lengthy experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16192731/s1, Table S1. Experimental data representing the
dielectric constant of the polymers used in the experiments; Figure S1. Machine Learning prediction
of polymers at different frequencies.
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Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach. Toxics 2022, 10, 746. [CrossRef] [PubMed]

34. Friedman, J.H.; Meulman, J.J. Multiple additive regression trees with application in epidemiology. Stat. Med. 2003, 22, 1365–1381.
[CrossRef] [PubMed]

35. Chan, M.C.; Pai, K.C.; Su, S.A.; Wang, M.S.; Wu, C.L.; Chao, W.C. Explainable Machine Learning to Predict Long-Term Mortality
in Critically Ill Ventilated Patients: A Retrospective Study in Central Taiwan. BMC Med. Inform. Decis. Mak. 2022, 22, 75.
[CrossRef]

36. Welchowski, T.; Maloney, K.O.; Mitchell, R.; Schmid, M. Techniques to Improve Ecological Interpretability of Black-Box Machine
Learning Models: Case Study on Biological Health of Streams in the United States with Gradient Boosted Trees. J. Agric. Biol.
Environ. Stat. 2022, 27, 175–197. [CrossRef]

37. Angelini, M.; Blasilli, G.; Lenti, S.; Santucci, G. A Visual Analytics Conceptual Framework for Explorable and Steerable Partial
Dependence Analysis. IEEE Trans. Vis. Comput. Graph. 2024, 30, 4497–4513. [CrossRef]

https://doi.org/10.1021/am502002v
https://doi.org/10.1016/S0079-6700(00)00043-5
https://doi.org/10.1002/adma.201100792
https://doi.org/10.1021/cm102419z
https://doi.org/10.1295/polymj.32.57
https://doi.org/10.1021/cr200066h
https://www.ncbi.nlm.nih.gov/pubmed/22251444
https://doi.org/10.1002/polb.24602
https://doi.org/10.1016/j.polymer.2021.123495
https://doi.org/10.1002/minf.201800150
https://doi.org/10.1002/pen.22016
https://doi.org/10.1002/polb.24117
https://doi.org/10.1016/j.eurpolymj.2006.12.029
https://doi.org/10.1007/BF02174528
https://doi.org/10.1111/j.2044-8317.1975.tb00547.x
https://doi.org/10.3390/s22145434
https://www.ncbi.nlm.nih.gov/pubmed/35891113
https://doi.org/10.1016/j.eswa.2022.119134
https://doi.org/10.1016/j.mlwa.2021.100243
https://doi.org/10.1021/acsomega.2c02554
https://doi.org/10.1021/acs.jcim.1c01031
https://doi.org/10.3390/polym16010115
https://doi.org/10.1097/INF.0000000000003919
https://doi.org/10.1016/j.compbiolchem.2021.107619
https://doi.org/10.3390/ijerph192416844
https://www.ncbi.nlm.nih.gov/pubmed/36554720
https://doi.org/10.3390/toxics10120746
https://www.ncbi.nlm.nih.gov/pubmed/36548579
https://doi.org/10.1002/sim.1501
https://www.ncbi.nlm.nih.gov/pubmed/12704603
https://doi.org/10.1186/s12911-022-01817-6
https://doi.org/10.1007/s13253-021-00479-7
https://doi.org/10.1109/TVCG.2023.3263739


Polymers 2024, 16, 2731 15 of 16

38. Zha, J.W.; Zheng, M.S.; Fan, B.H.; Dang, Z.M. Polymer-based dielectrics with high permittivity for electric energy storage:
A review. Nano Energy 2021, 89, 106438. [CrossRef]

39. Ho, J.S.; Greenbaum, S.G. Polymer Capacitor Dielectrics for High Temperature Applications. ACS Appl. Mater. Interfaces 2018, 10,
29189–29218. [CrossRef]
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