Skip to main content
. 2024 Sep 26;16(19):2731. doi: 10.3390/polym16192731

Table 1.

Runtime parameters for Gradient Boosting Regressor.

Model
Type
Common Values Unique Values
Gradient Boosting Regressor_A alpha: 0.9; ccp_alpha: 0.0; criterion:friedman_mse; init: None; learning_rate: 0.2; loss: squared_error; max depth: 4;
n estimators: 10
max_features: None; max_leaf_nodes: None; min_impurity_decrease: 0.0; min_samples_leaf: 1;
Gradient Boosting Regressor_B min_samples_split: 2; min_weight_fraction_leaf: 0.0; n_iter_no_change: None; random_state: 42; max depth’: 2;
n estimators: 13
subsample: 1.0; ‘tol’: 0.0001; validation_fraction: 0.1; verbose: 0; warm_start: False.