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Abstract

In ophthalmology and otolaryngology, data collected from paired body parts are typically

reformatted into categorical bilateral data structures for subsequent research. This article

applies Donner’s equal correlation coefficient model and obtains nine simultaneous confi-

dence intervals (SCI) of proportion ratios under three asymptotic statistical methods and

three ways of multiplicity adjustment. The empirical coverage probability and mean interval

width are evaluated through Monte Carlo simulations. A real example is used to demon-

strate the proposed methods.

Introduction

In the fields of ophthalmology and otolaryngology, data collected from paired body parts are

typically reformatted into categorical bilateral data structures for subsequent research. For

instance, visual acuity and intraocular pressure are typically measured from both eyes of a

patient. The outcome would be bilateral responses, unilateral responses or no response. In this

situation, the outcomes from both eyes of each patient tend to be highly correlated. Failing to

consider intraclass correlation during data analysis can result in inaccurate findings.

Multiple methodologies and approaches have been developed over the last few decades to

address the issue of correlated data [1]. Rosner [2] proposed a constant R model, which

assumes the probability of a response on one side of the body part, given a response on the

opposite side, is proportional to the prevalence rate of the corresponding group in the research

study. Tang et al. [3] examined the performance of various methods for assessing the equality

of proportions, focusing on asymptotic and approximate unconditional approaches. Their

results indicated that the approximate unconditional score test performs well in general sce-

narios. Additionally, Tang [4] and Xue [5, 6] developed multiple test statistics to assess propor-

tion differences and proportion ratios, as well as to construct confidence intervals for these

parameters. Moreover, Wang and Shan [7] developed twelve exact methods for constructing

CIs for relative risk and odds ratio, which resulted in shorter interval lengths.

Dallal’s study [8] identified a limitation inherent in the constant R model, pointing out that

it doesn’t fit well when a characteristic displays high variability across different groups and

often occurs bilaterally. He addressed the issue by proposing that the model’s assumption of
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constant conditional probability is not proportional to the prevalence rate. Subsequently, Don-

ner [9] proposed an equal correlation coefficient model, also known as the ρmodel, predicated

on the assumption of a common correlation coefficient among paired body ports within each

group.

For the ρmodel, numerous studies have been proposed. For instance, Ma and Liu [10]

developed a common test to examine the equality of proportion among multiple groups, utiliz-

ing three statistical methods. They recommended the score test as the most reliable approach.

Beyond statistical tests, CI approaches offer a more straightforward alternative, providing a

range of values within which the true parameter value is likely to fall. Pei et al. [11] introduced

five asymptotic CIs approaches for measuring the proportion differences between two groups,

recommending the Wald-type CI with an assumption of dependence as the most robust

option. Afterward, Li and Ma [12], Shen [13] and Zhuang [14] developed a common test for

odds ratios; multiple CIs approaches to analyze odds ratios, proportion differences, and pro-

portion ratio in a two-group scenario.

In random clinical trials, there is a trend to include multiple treatment groups alongside a

control group. This design allows researchers to evaluate the collective effects of various treat-

ments simultaneously or to evaluate a new therapy against several established alternatives. For

instance, a multiple-dose study may be required to determine the bioavailability. In this con-

text, the use of simultaneous confidence intervals (SCIs) provides a methodology for many-to-

one comparisons. Yang [15] and Peng [16] introduce asymptotic SCIs for the proportion dif-

ferences and odds ratio based on the constant R model. Later, Yang [17] developed asymptotic

SCIs for the proportion difference based on the ρmodel.

In addition to proportion differences and odds ratios, proportion ratios are also crucial for

assessing the relative strength of associations between groups, especially when the correspond-

ing proportions are small. To address the need for further research, this article extends the dis-

cussion to asymptotic SCIs for proportion ratios in settings with g (where g� 2) groups based

on the ρmodel.

The rest of the article is structured in the following manner. The Methods section intro-

duces three methods for constructing SCIs (Wald-type SCI, profile likelihood SCI, and asymp-

totic score SCI) and the multiplicity adjustment methods. In the Simulation studies section,

simulation experiments are conducted to evaluate the performance of the proposed methods,

with comparisons made based on the empirical coverage probability and the mean interval

width. The Real case example section uses a real data example to illustrate the methodology

proposed in this article. Finally, the last section offers a discussion of the results.

Methods

Data structure

Suppose the object of this study is to evaluate the effectiveness and safety of multiple new treat-

ments for eye disease against a standard treatment or placebo. Letmli be the number of

patients in the ith group (i = 1,2,� � �, g) with l responses (l = 0,1,2), andmi be the total number

of patients in the ith group, which is assumed to be fixed. Let Sl be the total number of patients

with l responses. Let N be the total number of patients in the research study. The data structure

is summarized in Table 1.

According to the constant correlation coefficient model proposed by Donner [9], the dis-

ease rates are assumed to be the same in the same group.
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Let Zijk be the dummy variable of the response of the kth body part (eg. eye) (k = 1,2) of the

jth individual in the ith group (i = 1,2,� � �, g). Let ρ be the common correlation coefficient.

Zijk ¼
1; eventðdiseaseÞ occur:

0; otherwise:

(

PrðZijk ¼ 1Þ ¼ pi; i ¼ 1; . . . ; g; j ¼ 1; . . . ;mi; 0 � pi � 1

CorrðZijk;Zijð3� kÞÞ ¼ r; 0 � r � 1

Each group of the data follows a multinomial distribution. The probability density function

of observation frequenciesmi = (m0i,m1i,m2i) is defined as follows,

f m0i;m1i;m2ið Þ ¼
mi!

m0i!m1i!m2i!
pm0i

0i p
m1
1i p

m2i
2i

Let pli be the corresponding probability for an individual in the ith group has exactly l events

(l = 0, 1, 2, i = 1, 2,� � �, g) happened,

p0i ¼ ð1 � piÞðrpi � pi þ 1Þ

p1i ¼ 2pið1 � rÞð1 � piÞ;

p2i ¼ p
2
i þ rpið1 � piÞ;

8
><

>:
ð1Þ

and p0i + p1i + p2i = 1 for any fixed i.

Without loss of generality, let the 1th group be the control, denotes the ratio of proportions

between any treatment groups and control group by δi = πi/π1(i = 2, . . ., g), and for all pairwise

comparisons by δij = πi/πj (i 6¼ j).

The corresponding log-likelihood function can be expressed as:

l1ðp1; � � � ; pg ; rÞ ¼
Xg

i¼1

½m2i logðpi
2 � pi r ðpi � 1ÞÞ

þ m1i logð2pi ðpi � 1Þ ðr � 1ÞÞ

þ m0i logð� ðpi � 1Þ ðpi r � pi þ 1ÞÞ� þ log C

ð2Þ

where C ¼
Qg

i¼1

mi!
m0i !m1i !m2i !

� �
is a constant.

Table 1. Data structure for the correlated bilateral data.

Number of responses(l) Group Total

1 2 � � � g

0 m01 m02 � � � m0g S0

1 m11 m12 � � � m1g S1

2 m21 m22 � � � m2g S2

Total m1 m2 � � � mq N

https://doi.org/10.1371/journal.pone.0311850.t001
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Substituting πi = π1 δi(i = 2, � � �, g) into l1, the log-likelihood function can be written as

l2ðdi; p1; � � � ; pg ; rÞ ¼
Xg

j¼1;j6¼i

½m2j logðpj
2 � pj r ðpj � 1ÞÞ

þm1j logð2pj ðpj � 1Þ ðr � 1ÞÞ

þm0j logð� ðpj � 1Þ ðpj r � pj þ 1ÞÞ�

þm2i log
�
ðp1diÞ

2
� p1di r ðp1di � 1Þ

�

þm1i logð2 p1di ðp1di � 1Þ ðr � 1ÞÞ

þm0i logð� ðp1di � 1Þ ðp1di r � p1di þ 1ÞÞ

ð3Þ

where δi(i = 2, � � �, g) is the parameter of interest, πj(j 6¼ i) and ρ are nuisance parameters.

Multiplicity adjustment

For the construction of SCIs, without considering multiplicity adjustment, the type I error rate

will increase, as well as false-positive errors. Based on the data structure mentioned previously,

there are g groups in total, one control group and g-1 treatment groups. The main purpose of

measuring the effectiveness of each treatment is to compare the proportion ratio between the

treatment and the control group. One method used in this paper to control multiplicity adjust-

ment is the Bonferroni correction, the quantile c = z1−α/2(g−1), where z denotes the standard

normal distribution.

Another method used in this paper is the Sidak correction [18], which represents a modifi-

cation of the Bonferroni correction. This correction involves the quantile c ¼ z
1� ð1� aÞ1=g , where

z denotes the standard normal distribution.

The other method used in this paper is based on Dunnett test. Piergorsch [19] proposed a

general method for constructing SCIs for pairwise proportion differences. let oi = log πi for the

= ith group, o2 − o1,. . .,og − o1 are simultaneously compared, the SCI of proportion ratio δi =

πi/π1 is obtained by exponentiating the previous outcome. The critical value c ¼ jzjag� 1;R equals

to 1-α/2 quantile of g − 1 variate normal distribution with mean equal to zero and correlation

matrix R = {ρij}, ρij = ωi ωj, and

oi ¼ 1þ
m1

mi

p̂ið1 � p̂iÞ

p̂ið1 � p̂iÞ

� �� 1=2

Wald-type interval

Ma and Liu [10] proposed a third-order polynomial and Fisher scoring method to derive the

maximum likelihood estimator (MLE) of (π1, . . ., πg; ρ). After that, we can derive the MLE of

proportion ratio (δ) through a simple linear transformation form log(πi) based on the invari-

ant property of MLE. Let β = (log(π1), . . ., log(πg), log(ρ)) and the corresponding MLE of β is

PLOS ONE Simultaneous confidence interval for many-to-one of proportion ratios

PLOS ONE | https://doi.org/10.1371/journal.pone.0311850 October 15, 2024 4 / 16

https://doi.org/10.1371/journal.pone.0311850


β̂ ¼ ðlogðp̂1Þ; . . .; logðp̂g Þ; logðr̂ÞÞ, then the MLE of log(δi) is logðd̂iÞ ¼ Ki β̂
T , where

Kðg� 1Þ�ðgþ1Þ ¼

� 1 1 0 . . . 0 0 0

� 1 0 1 . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

� 1 0 0 . . . 1 0 0

� 1 0 0 . . . 0 1 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

Ki means the ith row of the matrix K. The standard error of log(πi),i = 1,2,. . .,g, can be derived

from p̂i using delta method.

Let γ = (π1, � � �, πg, ρ), under regularity conditions, the asymptotic distribution of γ is given

by

ffiffiffi
n
p
ðĝ � gÞ!

d Nð0; I� 1Þ

where I is the Fisher information matrix of γ. See S1 Appendix for detail.

By delta method,

ffiffiffi
n
p
ðb̂ � bÞ!

d Nð0; gI� 1gTÞ

where g ¼ Diagð 1

p1
; . . . ; 1

pg
; 1

r
). The 100(1-α)% SCI for log(δi) is given by

Kiβ̂
T � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ki½g ^I� 1gT�KT
i

q

The 100(1-α)% SCI for δi is given by

expðKi β̂
T�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ki ½g

^I� 1 gT �KT
i

p
Þ

where c is the critical value. If Bonferroni method is used, c = z1−α/2(g−1), where z denotes the

standard normal distribution. If Sidak method is used, α0 = 1 − (1 − α)(1/g), c = z1−α0/2, where z
denotes the standard normal distribution. If Dunnett method is used, c = jzjag� 1;R, where |z|
denotes 1-α/2 quantile of g − 1 variate normal distribution described in the previous section.

Profile likelihood confidence interval

The asymptotic profile likelihood SCI for each proportion ratio (δi, i = 2, . . ., g), can be con-

structed by inverting the likelihood ratio test of hypothesisH0 : δi = δ0 vs.Hα : δi 6¼ δ0, i = 2,

. . ., g. To simplify the explanation, we first set i = 2, when constructing the SCI, we start by cal-

culating the CI for the ratio (δ2 = π2/π1) between the 2nd group and the control group.

Let (~d2; ~p1; ~p3; :::; ~pg ; r̂) denotes the constrained MLEs of (δ2, π1, π3, . . ., πg, ρ) under the

null hypothesis, and (d̂2; p̂1; p̂3; . . . ; p̂g ; r̂) denotes the unconstrained MLEs under the alterna-

tive hypothesis. The likelihood ratio test statistic is given by

TL ¼ 2
h
l2ðd̂2; p̂1; p̂3; . . . ; p̂g ; r̂Þ � l2ð~d2; ~p1; ~p3; . . . ; ~pg ; ~rÞ

i
:
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By solving the equations:

@l2
@pi

�
�
�
�
d2¼d0

¼ 0; ði ¼ 1; 3; . . .; gÞ

@l2
@r

�
�
�
�
d2¼d0

¼ 0

(~p1; ~p3; . . . ; ~pg ; ~r) can be computed given the constraints that δ2 = δ0. Since there is no closed-

form solution, we adopt the Fisher-scoring method [14].

p
ðtþ1Þ

1

p
ðtþ1Þ

3

..

.

pðtþ1Þ
g

rðtþ1Þ

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

¼

p
ðtÞ
1

p
ðtÞ
3

..

.

pðtÞg

rðtÞ

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

þ I� 1 p
ðtÞ
1 ; p

ðtÞ
3 ; . . . ; pðtÞg ; r

ðtÞ
� �

@l2
@p1

@l2
@p3

..

.

@l2
@pg

@l2
@r

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
ðpi¼p

ðtÞ
i ;r¼rðtÞÞ

where I
�
p
ðtÞ
1 ; p

ðtÞ
3 ; . . . ; pðtÞg ; r

ðtÞ
�

is the g × g Fisher information matrix estimated under the con-

dition of (π1, π3, . . ., πg, ρ) = (p
ðtÞ
1 ; p

ðtÞ
3 ; :::; p

ðtÞ
g ; r

ðtÞ). See S1 Appendix for detail. The test statistic

follows a chi-square distribution with one degree of freedom, the 100(1 − α)% profile likeli-

hood SCI for proportion ratio(δi) satisfies

2
�
l2ðd̂2; p̂1; p̂3; . . . ; p̂g ; r̂Þ � l2ðd0; ~p1; ~p3; . . . ; ~pg ; ~rÞ

�
� w2

1� a=2ðg� 1Þ
;

where w2
1� a=ðg� 1Þ

is the 1 − α/2(g − 1) quantile of the chi-square distribution with one degree of

freedom with Bonferroni multiplicity adjustment, since w2
1� a=ðg� 1Þ

¼ ðz1� a=2ðg� 1ÞÞ
2
. Similarly,

Sidak method can be applied bu substituting the critical value w2
1� a=ðg� 1Þ

with χ1−α0, where α0 = 1

− (1 − α)(1/g). Dunnet’s multiplicity adjustment method can be applied by substituting the criti-

cal value z1−α/2(g−1) with jzjag� 1;R.

To compute the confidence interval and establish the lower and upper bounds, the follow-

ing algorithm could be utilized to identify two roots:

To obtain the larger root, which is the upper bound of the CI.

1. Initiate parameters: Calculate the unconstrained MLEs (d̂2; p̂1; p̂3; . . . ; p̂g ; r̂) as the initial

value ðd
ð0Þ

2
; p
ð0Þ

1 ; p
ð0Þ

3 ; . . . ; pð0Þg ; r
ð0ÞÞÞ. Set initial value flag = 1, and stepsize = 0.1.

2. Update estimates: Updating d̂2
ð1Þ ¼ d

ð0Þ

2
þ flag � stepsize. And compute the constrained

MLEs ð ~p1
ð1Þ; ~p3

ð1Þ; . . . ; ~pg
ð1Þ; ~rð1ÞÞ with d2 ¼ d̂2

ð1Þ.

3. Evaluate the test statistics:

If 2� flag �
h
l2ðd̂2; p̂1; p̂3; . . . ; p̂g; r̂Þ � l2ðd̂

ð1Þ

2 ; p̂
ð1Þ

1 ; p̂
ð1Þ

3 ; . . . ; p̂ð1Þg ; r̂
ð1ÞÞ
i
< flag � w2

1� a=ðg� 1Þ
,

return to step 2. Updating d̂2
ðtþ1Þ ¼ d̂2

ðtÞ þ flag� stepsize. Otherwise decrease the stepsize
to 0.1 × stepsize and set flag = −flag.

4. Check for Convergence: If the stepsize is small enough (eg. 10−5), indicating convergence,

return d̂
ðtþ1Þ

2 as the upper bound of CI and stop iterating.
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To obtain the smaller root, which is the lower bound of the CI, repeat steps 1–4, with the

initial value flag = -1.

Asymptotic score confidence interval

Under hypothesisH0 : δi = δ0 vs.Hα : δi 6¼ δ0, i = 2, . . ., g, the asymptotic score test statistic can

be derived as

T2

S ¼ UI
� 1UTjH0

:

To simplify the explanation, we continue use the setting i = 2, where the score vector:

U ¼
@l2
@d2

;
@l2
@p1

;
@l2
@p3

; . . . ;
@l2
@pg

;
@l2
@r

 !

;

and I is the Fisher information matrix for (δ2, π1, π3, . . ., πg, ρ)T. Since δ2 is the parameter of

interest, and πi, ρ are nuisance parameters, the score test statistic can be rewritten as:

T2

S ¼
@l2
@d2

� �2

I� 1ð1; 1Þ

�
�
�
�
di¼d0

;

I(1, 1) denotes the (1, 1)th element of I. See S1 Appendix for detail. TS is asymptotically distrib-

uted as a chi-square distribution with one degree of freedom. The 100(1-α)% SCI for propor-

tion ratio (δi) satisfies

T2

S ¼
@l2
@d2

� �2

I� 1ð1; 1Þ

�
�
�
�
di¼d0

� w2

1� a=2ðg� 1Þ
:

In a similar manner, the CI of the ratio needs to be determined using the iterative method

described in the previous section. For each iteration, score test statistic is updated with a new

Fisher information matrix, I ¼ I
�
d̂2
ðtÞ; p̂1

ðtÞ; p̂3
ðtÞ; . . . ; p̂g

ðtÞ; r̂ðtÞ
�

. To address multiplicity, we

use Bonferroni and Dunnett methods, as outlined in the previous section.

Simulation studies

The performance of the proposed methods for constructing confidence intervals is evaluated

through Monte Carlo simulation studies, utilizing empirical coverage probability (ECP) and

mean interval width (MIW) as evaluation metrics. Both balanced (allmi’s are equal) and

unbalanced (mi’s are different) designs are considered. The study’s parameter configurations

are presented in Table 2.

Table 2. Parameter configuration setting for a simulation study.

group ρ π1, π2, � � �, πg m1, m2, � � �, mg

g = 3 0.3,0.5,0.7 a. (0.4,0.4,0.4) I. (50,50,50)

b. (0.25,0.375,0.5) II. (30,50,80)

III. (30,100,500)

g = 4 a. (0.4,0.4,0.4,0.4); I. (50,50,50,50)

b. (0.25,0.375,0.425,0.5) II. (30,50,80,100)

III. (30,50,100,500)

g = 5 a. (0.4,0.4,0.4,0.4,0.4) I. (50,50,50,50,50)

b. (0.25,0.375,0.425,0.5,0.54) II. (30,45,60,75,90)

III. (30,50,100,200,500)

https://doi.org/10.1371/journal.pone.0311850.t002
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Table 3. The empirical coverage probability (ECP) and the mean interval width (MIW) of 95% CI for proportion ratio (g = 3).

ρ,π,m Wald-Bonferroni Wald-Sidak Wald-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9569 0.9418 0.9419 0.8882 0.9524 0.9281

II 0.9583 1.0908 0.9453 1.0276 0.9525 1.0592

b I 0.9628 2.0614 0.9477 1.9439 0.9576 2.0119

II 0.9618 2.4924 0.9513 2.3563 0.9548 2.3979

III 0.9667 2.3562 0.9538 2.2607 0.9538 2.2185

0.5 a I 0.9570 1.0242 0.9416 0.9653 0.9535 1.0090

II 0.9595 1.1948 0.9472 1.1256 0.9531 1.1603

b I 0.9599 2.2388 0.9451 2.1103 0.9533 2.1840

II 0.9632 2.6767 0.9520 2.5401 0.9552 2.5843

III 0.9651 2.5449 0.9549 2.4221 0.9520 2.4009

0.7 a I 0.9605 1.1034 0.9446 1.0394 0.9569 1.0867

II 0.9612 1.2941 0.9469 1.2182 0.9552 1.2558

b I 0.9617 2.4003 0.9468 2.2706 0.9549 2.3487

II 0.9654 2.8283 0.9541 2.6911 0.9581 2.7390

III 0.9664 2.6919 0.9549 2.5712 0.9533 2.5323

ρ,π,m Profile-Bonferroni Profile-Sidak Profile-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9499 0.9608 0.9641 1.0312 0.9465 0.9462

II 0.9516 1.1539 0.9681 1.2474 0.9447 1.1169

b I 0.9552 2.1503 0.9694 2.3126 0.9493 2.0944

II 0.9595 2.6749 0.9715 2.8638 0.9485 2.5696

III 0.9621 2.5320 0.9698 2.7370 0.9492 2.3723

0.5 a I 0.9488 1.0466 0.9630 1.1246 0.9445 1.0304

II 0.9497 1.2723 0.9656 1.3768 0.9423 1.2297

b I 0.9510 2.3327 0.9659 2.5038 0.9439 2.2735

II 0.9570 2.8481 0.9697 3.0402 0.9468 2.7478

III 0.9570 2.7368 0.9677 2.9060 0.9410 2.5651

0.7 a I 0.9500 1.1291 0.9650 1.2140 0.9460 1.1110

II 0.9518 1.3884 0.9652 1.5054 0.9419 1.3400

b I 0.9510 2.5059 0.9650 2.6879 0.9448 2.4445

II 0.9540 2.9896 0.9682 3.1835 0.9431 2.8884

III 0.9491 2.8411 0.9601 3.0821 0.9361 2.6989

ρ,π,m Score-Bonferroni Score-Sidak Score-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9517 0.9456 0.9660 1.0125 0.9486 0.9317

II 0.9560 1.1183 0.9711 1.2023 0.9503 1.0846

b I 0.9583 2.0711 0.9708 2.2193 0.9516 2.0217

II 0.9618 2.5332 0.9730 2.7063 0.9536 2.4393

III 0.9692 2.4075 0.9773 2.5826 0.9540 2.2554

0.5 a I 0.9504 1.0254 0.9642 1.0983 0.9470 1.0101

II 0.9549 1.2215 0.9694 1.3126 0.9486 1.1840

b I 0.9513 2.2410 0.9687 2.3938 0.9460 2.1861

II 0.9609 2.7047 0.9724 2.8749 0.9528 2.6115

III 0.9644 2.5568 0.9790 2.7477 0.9508 2.4270

(Continued)
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The study generate 10,000 replications for each configuration setting and construct 95%

confidence intervals. All tests are conducted at a 5% significance level. The ECP is the propor-

tion of sample replicates generated under the null hypothesis (H0) where the true value of the

ratio (δ) is contained within the constructed CI. The MIW is the average of all widths of the

SCIs across all replicates. A CI method is considered conservative when the ECP is signifi-

cantly greater than the pre-specified nominal level of 1-α, liberal when the ECP is significantly

less than 1-α, and recommended when the ECP is approximately at 1-α.

Tables 3–5 provide the ECPs and MIWs for group g = 3, 4, and 5, respectively. The ECP of

the Score-Dunnett method closely aligns with the pre-specified nominal level (0.95) across all

configurations. Although the Wald-Sidak method demonstrates a competitive advantage

across all configurations, the Sidak adjustment method does not perform well when combined

with the profile likelihood and the score method. The Wald-Dunnett, Profile-Bonferroni, Pro-

file-Dunnett, and Score-Bonferroni methods have ECPs approximately equal to 0.95 in most

configurations. The Wald-Bonferroni method is conservative since its ECP is greater than 0.95

across most configurations. Similarly, the Profile-Sidak method and Score-Sidak method also

show conservative behavior, with their ECPs consistently above 0.95 in various settings. The

Profile-Dunnett method reveals a tendency toward liberal behavior in some configurations.

Additionally, in balanced cases, ECP is typically closer to the nominal level, with a shorter

MIW. In general, the Dunnet method achieves better performance than the Bonferroni

method in multiplicity adjustment. Therefore, SCI produced from the Score method with

Dunnet multiplicity adjustment is strongly recommended.

An extensive simulation study is conducted for group g = 3, 4, 5 with balanced designs hav-

ing sample sizemi = 20, 40, 80, 500. In this part of the study, 1000 sets of~p ¼ ðp1; p2; � � � ; pgÞ

and ρ are randomly generated from the uniform distribution U (0,1) subject to the condition

that each corresponding response probability adhered to the formula (1). The values of πi are

sorted in increasing order, ensuring that the ratios between each ith group (i = 2, � � �, g) and the

1st group are consistently greater than 1. This arrangement facilitates a straightforward com-

parison of the MIW.

For each configuration setting, 10,000 replications are generated, and 95% confidence inter-

vals are constructed. The ECP and MIW are calculated for each method to assess their perfor-

mance. Additionally, boxplots are created to enable visual comparisons among different

methods.

Figs 1 and 2 illustrate the overall distribution of ECP and MIW for all SCIs methods.

Among all the proposed methods, the Score method with Dunnett multiplicity adjustment

performed best, achieving an average ECP closest to the pre-specified nominal level and the

shortest MIW. As shown in Fig 1, as the sample size increases, the ECP of the Profile and Score

methods does not show any obvious pattern, while the Wald method approaches the nominal

Table 3. (Continued)

0.7 a I 0.9518 1.0993 0.9656 1.1778 0.9486 1.0827

II 0.9569 1.3185 0.9697 1.4178 0.9491 1.2777

b I 0.9508 2.3924 0.9655 2.5539 0.9448 2.3407

II 0.9585 2.8388 0.9706 3.0014 0.9475 2.7512

III 0.9644 2.7373 0.9787 2.9108 0.9504 2.5607

a: π = (0.4,0.4,0.4); b: π = (0.25,0.375,0.5).

I: m = (50,50,50); II: m = (30,50,80); III: m = (30,100,500).

https://doi.org/10.1371/journal.pone.0311850.t003
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Table 4. The empirical coverage probability (ECP) and the mean interval width (MIW) of 95% CI for proportion ratio (g = 4).

ρ,π,m Wald-Bonferroni Wald-Sidak Wald-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9632 1.0088 0.9417 0.9368 0.9571 0.9875

II 0.9659 1.1546 0.9476 1.0707 0.9555 1.0992

b I 0.9654 2.2043 0.9484 2.0467 0.9571 2.1262

II 0.9724 2.6947 0.9594 2.5069 0.9623 2.5233

III 0.9712 2.6441 0.9535 2.4566 0.9576 2.4446

0.5 a I 0.9639 1.0981 0.9441 1.0189 0.9589 1.0745

II 0.9648 1.2620 0.9503 1.1691 0.9556 1.2001

b I 0.9679 2.4001 0.9486 2.2298 0.9598 2.3169

II 0.9730 2.8915 0.9583 2.7005 0.9607 2.7212

III 0.9683 2.8376 0.9557 2.6435 0.9524 2.6327

0.7 a I 0.9689 1.1838 0.9477 1.0975 0.9623 1.1578

II 0.9673 1.3687 0.9526 1.2670 0.9588 1.3004

b I 0.9702 2.5835 0.9506 2.4002 0.9617 2.4916

II 0.9713 3.0647 0.9591 2.8643 0.9606 2.8860

III 0.9693 3.0029 0.9575 2.7802 0.9540 2.7847

ρ,π,m Profile-Bonferroni Profile-Sidak Profile-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9551 1.0328 0.9646 1.0803 0.9496 1.0100

II 0.9539 1.2366 0.9606 1.2997 0.9387 1.1600

b I 0.9575 2.3173 0.9674 2.4291 0.9487 2.2249

II 0.9657 2.9145 0.9729 3.0552 0.9508 2.7300

III 0.9631 2.8617 0.9671 2.9897 0.9468 2.6504

0.5 a I 0.9543 1.1270 0.9641 1.1798 0.9491 1.1015

II 0.9482 1.3615 0.9600 1.4340 0.9336 1.2834

b I 0.9595 2.5194 0.9688 2.6395 0.9498 2.4234

II 0.9639 3.1285 0.9720 3.2662 0.9514 2.9301

III 0.9547 3.0884 0.9625 3.2011 0.9383 2.8308

0.7 a I 0.9569 1.2189 0.9669 1.2769 0.9506 1.1905

II 0.9488 1.4926 0.9628 1.5742 0.9369 1.4047

b I 0.9587 2.7223 0.9682 2.8468 0.9478 2.6213

II 0.9609 3.2946 0.9671 3.4351 0.9422 3.1173

III 0.9467 3.2144 0.9538 3.3409 0.9310 3.0552

ρ,π,m Score-Bonferroni Score-Sidak Score-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9568 1.0155 0.9667 1.0604 0.9514 0.9938

II 0.9610 1.1928 0.9698 1.2490 0.9497 1.1329

b I 0.9588 2.2174 0.9692 2.3175 0.9500 2.1387

II 0.9714 2.7438 0.9788 2.8645 0.9572 2.5690

III 0.9705 2.6988 0.9758 2.8097 0.9541 2.4823

0.5 a I 0.9564 1.1033 0.9661 1.1525 0.9506 1.0795

II 0.9634 1.3038 0.9711 1.3658 0.9515 1.2371

b I 0.9608 2.4036 0.9702 2.5079 0.9514 2.3198

II 0.9712 2.9329 0.9771 3.0464 0.9586 2.7590

III 0.9686 2.8768 0.9764 2.9656 0.9503 2.6843

(Continued)
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level. The Wald method, when paired with Sidak adjustment method, yields results closer to

the pre-specified nominal level (0.95), indicating greater reliability compared to the other two

adjustment methods. However, the Sidak correction does not yield an improvement when

combined with the profile likelihood and score methods. Meanwhile, Fig 2 demonstrates that

the MIW becomes shorter as the sample size increases since asymptotic methods tend to per-

form better with larger sample sizes. The MIW exhibits a slight increase as the number of

group increases, which is an expected trend. This happens because the MIW is calculated as

the average of all SCIs. Given that the πi are sorted in ascending order and the ratios between

group (i = 2, � � �, g) and the 1st group are consistently greater than one and increasing, the addi-

tion of more intervals as the number of groups grows leads to a slightly larger MIW.

Additionally, the MIW does not exhibit an obvious difference when comparing the Bonfer-

roni and Dunnett multiplicity adjustments. However, the ECP showes a distinct difference. As

expected, the Bonferroni method is more conservative, while the Dunnett method, although

computationally more demanding, is justified for its benefits. Overall, score SCI with Dunnett

multiplicity adjustment is highly recommeded.

Real case example

The dataset used for this analysis is sourced from Rosner [2]. It includes information on 218

patients aged 20–39, who were diagnosed with retinitis pigmentosa (RP) and were seen at the

Massachusetts Eye and Ear Infirmary from 1970 to 1979. The patients were divided into four

groups based on their genetic type: autosomal dominant RP (DOM), autosomal recessive RP

(AR), sex-linked RP (SL), and isolated RP (ISO). To simplify the analysis, each patient was

associated with a unique family and then randomly selected for the study. The Snellen visual

acuity (VA) of an eye was considered affected if it was 20/50 or worse, and normal if it was 20/

40 or better. For this analysis, a subgroup of 216 individuals was selected from a total of 218, all

of whom had complete VA information for both eyes. Detail information is presented in

Table 6.

According to Liu and Ma [20] and Tang et al. [21], following a goodness-of-fit test, the

equal correlation coefficient model (ρmodel) is found appropriate for analyzing this dataset.

In the ρmodel, the MLE p̂i values are similar to the sample proportion, indicating a strong fit

to the model. The estimated values for the parameters are: r̂ ¼ 0:6416, p̂ISO ¼ 0:4658,

p̂DOM ¼ 0:3625, p̂AR ¼ 0:5455, and p̂SL ¼ 0:7926. When calculating the SCI, ISO is considered

the control group based on evidence suggesting that RP may occur as an isolated sporadic dis-

order, without genetic links [22]. The 95% SCI between DOM, AR, SL, and ISO are presented

in Table 7.

Confidence intervals are relatively straightforward to interpret and apply in statistical analy-

sis. According to prior simulation results, the Score method with Dunnett adjustment has

Table 4. (Continued)

0.7 a I 0.9578 1.1863 0.9687 1.2394 0.9533 1.1603

II 0.9633 1.4088 0.9715 1.4763 0.9530 1.3373

b I 0.9594 2.5762 0.9694 2.6903 0.9498 2.4867

II 0.9676 3.0907 0.9743 3.2139 0.9518 2.9080

III 0.9660 3.0436 0.9756 3.1695 0.9492 2.8051

a: π = (0.4,0.4,0.4,0.4); b: π = (0.25,0.375,0.425,0.5).

I: m = (50,50,50,50); II: m = (30,50,80,100); III: m = (30,50,100,500).

https://doi.org/10.1371/journal.pone.0311850.t004
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Table 5. The empirical coverage probability (ECP) and the mean interval width (MIW) of 95% CI for proportion ratio (g = 5).

ρ,π,m Wald-Bonferroni Wald-Sidak Wald-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9632 1.0600 0.9388 0.9777 0.9546 1.0331

II 0.9663 1.2296 0.9510 1.1370 0.9545 1.1639

b I 0.9699 2.4150 0.9532 2.2238 0.9597 2.3024

II 0.9724 2.9981 0.9546 2.7789 0.9558 2.7808

III 0.9743 2.9189 0.9628 2.6869 0.9558 2.6206

0.5 a I 0.9656 1.1536 0.9442 1.0589 0.9588 1.1238

II 0.9666 1.3493 0.9478 1.2449 0.9543 1.2758

b I 0.9727 2.6408 0.9549 2.4382 0.9624 2.5194

II 0.9738 3.2094 0.9561 2.9882 0.9576 2.9969

III 0.9723 3.1119 0.9592 2.8945 0.9535 2.8277

0.7 a I 0.9676 1.2367 0.9409 1.1516 0.9606 1.2043

II 0.9667 1.4642 0.9445 1.3480 0.9556 1.3821

b I 0.9714 2.8503 0.9460 2.6266 0.9603 2.7193

II 0.9686 3.4006 0.9556 3.1580 0.9553 3.1733

III 0.974 3.3101 0.9619 3.0778 0.9562 3.0001

ρ,π,m Profile-Bonferroni Profile-Sidak Profile-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9526 1.0882 0.9608 1.1225 0.9448 1.0591

II 0.9528 1.3236 0.9644 1.3774 0.9402 1.2426

b I 0.9618 2.5504 0.9698 2.6284 0.9501 2.4237

II 0.9634 3.2611 0.9698 3.3636 0.9470 3.0198

III 0.9768 3.1854 0.9771 3.2860 0.9506 2.8588

0.5 a I 0.9546 1.1875 0.9647 1.2207 0.9450 1.1550

II 0.9508 1.4679 0.9599 1.5284 0.9345 1.3743

b I 0.9635 2.7837 0.9712 2.8910 0.9517 2.6500

II 0.9664 3.4799 0.9711 3.5792 0.9484 3.2241

III 0.9711 3.4271 0.9762 3.5346 0.9467 3.0511

0.7 a I 0.9530 1.2770 0.9607 1.3352 0.9436 1.2413

II 0.9520 1.6120 0.9587 1.6767 0.9330 1.5042

b I 0.9586 3.0100 0.9620 3.0943 0.9467 2.8648

II 0.9581 3.6429 0.9645 3.7517 0.9396 3.4234

III 0.9637 3.5429 0.9712 3.6957 0.9432 3.2936

ρ,π,m Score-Bonferroni Score-Sidak Score-Dunnet

ECP MIW ECP MIW ECP MIW

0.3 a I 0.9542 1.0689 0.9638 1.1010 0.9467 1.0415

II 0.9608 1.2731 0.9726 1.3199 0.9508 1.2020

b I 0.9634 2.4310 0.9707 2.5053 0.9523 2.3167

II 0.9677 3.0540 0.9721 3.1466 0.9516 2.8265

III 0.9773 2.9760 0.9807 3.0692 0.9539 2.6676

0.5 a I 0.9566 1.1612 0.9671 1.1918 0.9485 1.1310

II 0.9619 1.3988 0.9682 1.4478 0.9488 1.3193

b I 0.9643 2.6418 0.9708 2.7265 0.9538 2.5198

II 0.9694 3.2419 0.9741 3.3346 0.9528 3.0321

III 0.9746 3.1572 0.9794 3.2316 0.9498 2.8805

(Continued)
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been identified as the most effective approach. Additionally, the Wald method with Sidak cor-

rection also demonstrates a competitive advantage, particularly in terms of computational effi-

ciency. In simple terms, we examine whether the confidence interval includes the value 1,

given that the statistical measure of interest in this context is a ratio. If the confidence interval

does not contain 1, it indicates a statistically significant difference. On the other hand, if 1 is

included within the confidence interval, it suggests that there is no statistically significant dif-

ference. The results show that the CI between DOM and ISO, AR, and ISO contained 1, indi-

cating no significant difference. However, the affected rate in the SL group is significantly

greater than in ISO, as the lower bounds of the CIs are greater than 1.

Discussions

In this study, nine asymptotic SCIs are derived for the ratio of proportions, with these methods

being better suited for large sample sizes. To ensure robustness for smaller sample sizes, exact

Table 5. (Continued)

0.7 a I 0.9545 1.2413 0.9616 1.2944 0.9462 1.2087

II 0.9588 1.5114 0.9652 1.5663 0.9464 1.4246

b I 0.9559 2.8322 0.9597 2.9083 0.9455 2.7023

II 0.9570 3.4054 0.9617 3.5069 0.9413 3.1633

III 0.9684 3.3396 0.9754 3.4821 0.9467 2.9993

a: π = (0.4,0.4,0.4,0.4,0.4); b: π = (0.25,0.375,0.425,0.5,0.54).

I: m = (50,50,50,50,50); II: m = (30,45,60,75,90); III: m = (30,50,100,200,500).

https://doi.org/10.1371/journal.pone.0311850.t005

Fig 1. Boxplots of Empirical Coverage Probabilities (ECP).

https://doi.org/10.1371/journal.pone.0311850.g001
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methods are planned for future research. To control the Type I error rate, this study also com-

pared different multiplicity adjustment methods, specifically focusing on the Bonferroni,

Sidak and Dunnett methods, with the latter demonstrating better performance. The Bonfer-

roni method has been criticized for its conservative nature, leading to consideration of alterna-

tive approaches, such as the Holm method and modified Bonferroni method [23]. However,

since these multiplicity adjustment methods are not well-suited to our current computational

algorithm, the development of new algorithms may be necessary for future research.

As the group size increases, combining the Dunnett method with an iteration method can

become quite time-consuming. However, with advancements in computing technology, a

broader range of methods can be explored. Future research could consider a wider range of

multiplicity adjustment methods to find the most suitable SCIs.

Furthermore, the asymptotic SCIs proposed in this article are suitable for bilateral data. A

potential further research could involve combining unilateral and bilateral data to develop

more appropriate SCIs.

Fig 2. Boxplots of Mean Intercal Width (MIW).

https://doi.org/10.1371/journal.pone.0311850.g002

Table 6. Number of affected eyes per person in each group.

Number of affected eyes Genetic type

ISO DOM AR SL

0 67 15 7 3

1 24 6 5 2

2 57 7 9 14

https://doi.org/10.1371/journal.pone.0311850.t006
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