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Abstract: The spike shape and morphometric characteristics are among the key characteristics of
cultivated cereals, being associated with their productivity. These traits are often used for the plant
taxonomy and authenticity of hexaploid wheat species. Manual measurement of spike characteristics
is tedious and not precise. Recently, the authors of this study developed a method for wheat spike
morphometry utilizing 2D image analysis. Here, this method is applied to study variations in spike
size and shape for 190 plants of seven hexaploid (2n = 6x = 42) species and one artificial amphidiploid
of wheat. Five manually estimated spike traits and 26 traits obtained from digital image analysis
were analyzed. Image-based traits describe the characteristics of the base, center and apex of the
spike and common parameters (circularity, roundness, perimeter, etc.). Estimates of similar traits
by manual measurement and image analysis were shown to be highly correlated, suggesting the
practical importance of digital spike phenotyping. The utility of spike traits for classification into
types (spelt, normal and compact) and species or amphidiploid is shown. It is also demonstrated
that the estimates obtained made it possible to identify the spike characteristics differing significantly
between species or between accessions within the same species. The present work suggests the
usefulness of wheat spike shape analysis using an approach based on characteristics obtained by
digital image analysis.
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1. Introduction

One of the most important crops is wheat (Triticum spp.). It accounts for more than
one fourth of the world’s total cereal crop production and is the main source of staple
foods for more than one fifth of the global population [1,2]. Breeding of new high-yielding
varieties and lines of wheat resistant to biotic and abiotic stresses will largely ensure food
security for a significant part of the world’s population. Productivity traits in wheat are
predominantly related to the spike size and shape, the number of grains per spike and their
weight [3,4]. It is these traits which ultimately determine the yield of a wheat plant.

The main characteristics of the wheat spike shape, size and productivity include length,
the number of spikelets, the width for the front and profile sides, the presence of awns
and their length and the spike density [5–9]. However, these parameters cannot always
reflect the peculiarities of the wheat spike shape. Therefore, several classifications have
been proposed to describe the spike shape. One approach is based on geometric description
and includes the following shape classes [10]:
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• Fusiform (the middle part of the spike is the widest, narrowing toward the apex and
partially toward the base);

• Elliptical (spikes of an elongated oval shape);
• Prismatic (spikes of nearly equal width along the entire length, with the exception of

the apical and basal parts);
• Cone-shaped (spikes narrowing to the apex from the base);
• Square-headed (spikes expanding toward the apex);
• Cylindrical (spikes having the same cross-section radius along the entire length).

A similar classification of spikes by shape (fusiform, oblong, clavate and elliptical) and
density (lax, middense, dense) was proposed by Clark et al. for description of the American
wheat varieties [11].

The classification of wheat spike shapes into three main types (compact, normal and
spelt) was proposed by Dorofeev [12] and has been successfully used to date [13]. The
compact type corresponds to a short, dense spike with a reduced number of spikelets;
the normal type corresponds to a spike with parallel sides and a relatively short, square
apex; and the spelt type is represented by a pyramidal spike with an elongated stem and
tenacious glumes. Despite the coarser description of the shape, this classification is more
relevant to the mechanisms of genetic control of spike morphology established as a result
of molecular studies [14–17].

Evaluation of the spike shape and size characteristics is the basis for the study of wheat
diversity [18] and its classification into species, landraces, varieties and cultivars [13,19].
Such analysis can include hundreds, thousands or tens of thousands of plants [20–23].
Evaluation of the phenotypic traits of wheat plants in most of these studies was performed
manually. The simplest way to assess spike characteristics is visual assessment (comparison
with a template by type), measuring the size with hand tools and manually counting the
grains in a spike and weighing them. This is a labor-intensive process. It should also be
taken into account that the results of such measurements are usually documented manually
and may contain errors.

Recently, high-throughput methods based on the analysis of 2D and 3D digital images
have been increasingly used for crop phenotyping [24–27]. They have been applied to
determine spike morphology in detail with high accuracy on the basis of 3D model recon-
struction [28–31], to count the number of spikelets in a spike [32,33] and to estimate spike
size [34,35] and glume pubescence [36] on the basis of 2D images. These works demonstrate
the effectiveness of digital methods for the analysis of wheat spike characteristics.

Previously, the authors of the present study proposed a method for estimating wheat
spike size and shape based on the analysis of digital 2D images obtained under laboratory
conditions [37]. This approach makes it possible to identify the spike region in an image,
separate its body from the awns and estimate the spike length, the area of its projection in
an image and the general shape characteristics (roundness, circularity, etc.). The method
allows representing the spike contour using a model of two quadrangles with a common
base: the axis of the spike. The parameters of the model quantitatively characterize its
shape. The motivation of this study was to provide a digital spike phenotyping method
for laboratory imaging and image processing, yielding a set of biologically meaningful
parameters describing a spike’s shape and size. The present work makes the following
contributions based on this method:

• The spike size and shape diversity in seven hexaploid wheat species and one am-
phidiploid (190 plants) are evaluated using a simplified (symmetrized) quadran-
gle model;

• Digital estimates of the spike characteristics are in agreement with the manually
measured parameters of the same biological meaning;

• Digitally estimated spike characteristics make it possible to classify spikes both by
species and by type with high accuracy through linear discriminant analysis (LDA),
where the classification performance increases when manually estimated spike param-
eters are added;
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• This method makes it possible to identify characteristics whose values differ not only
between representatives of different species but also between different accessions of
the same species.

2. Results
2.1. Spike Traits and Correlations between Them

First, a test for normality of the distribution of spike characteristics in a sample was
performed. The results are shown in Supplementary File S1. For the full set of plants,
only four traits followed the Gaussian distribution according to the Shapiro–Wilk test:
the area of the quadrilateral in the spike model (q_S), the perimeter of the spike contour
in the image (c_P), the spike contour area (c_SA) and the solidity for the spike contour
(c_So). The high proportion of traits with distributions differing from the norm can be
explained by the fact that the whole sample was characterized by a mixture of several
distributions corresponding to individual species and accessions. For each individual
species or accession, deviations from the normal distribution showed a significantly smaller
number of characteristics, especially if the species was represented by a single accession. For
example, Amphiploid speltiforme (ASP) was represented by one accession and demonstrated
reliable deviations from the normal distribution for nine traits. In Triticum macha (two
accessions) and Trtiticum yuannanese (one accession), five and seven traits deviated from
the normal distribution, respectively. First of all, these traits included the parameters
of the basal and apical parts of the spike, derived traits (normalized to the length) and
rugosity (c_Ru), which characterized the irregularity of the spike body border in the image.
Parameters such as the length, spike area, size of the central part and similar parameters
generally followed a normal distribution for a one- or two-accession sample.

The statistical relationship between the used spike parameters in the examined samples
was evaluated (5 manually estimated parameters and 26 parameters estimated from image
analysis). The results are summarized in Figure S1 (Supplementary File S2). The figure
shows the presence of a large number of pairs of traits whose values were closely related.

First of all, the relationship between manually measured and image-derived traits
should be considered. The strongest relationship was observed between the spike length
(SL) and spike model parameters such as the length estimate (q_L; Figure 1a) and central
segment length (q_x2s). For these trait pairs, the correlation coefficients were the highest
(0.76). The spike contour perimeter (c_P) had the second highest correlation coefficient with
the SL parameter (0.59). The spike length (SL) was negatively correlated with the spike
density index (SDI) (r = −0.78), and accordingly, this parameter had negative correlation
coefficients with spike characteristics obtained from the image, namely q_L, q_x2s and c_P
(−0.61, −0.68 and −0.51, respectively).

The spike frontal width (SFW) showed high values for its correlation coefficients
with the traits characterizing the spike width in the image q_ym (0.76; Figure 1b) and
y_2s (0.56). A high value for the correlation coefficient was also observed between the
SFW and the traits of the spike area, namely the quadrangle area (q_S) and spike contour
area (c_SA). Since the side width (SSW) showed a positive relationship with the width of
frontal projection, the above mentioned traits (q_ym, y_2s, q_S and q_SA) showed high
correlation coefficients with this trait as well. Thus, the obtained results demonstrated that
the estimates of such spike parameters as the length and width, obtained manually and
based on the analysis of digital images, showed a significant statistical relationship.

The statistical relationship between numerical traits in most cases reflected the fact
that some traits were derived from others. The former included normalized traits, such as
the length of the central segment (q_x2s) and the same value normalized to the spike length
(q_x2ns; Figure 1c). High values for the correlation coefficients were also observed between
the spike size and area characteristics in the quadrangle model (q_L and q_S, q_x2s and
q_S2, etc.). Significant correlations were also found between different estimates of the same
spike characteristic, such as the area (q_S and c_SA; Figure 1d) or shape (c_CI and c_R).
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the area of the quadrangle and therefore estimated half the area of the spike. A linear 
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Figure 1. Scatter plots for some pairs of traits with high values for correlation coefficients: (a) SL and
q_L; (b) SFW and q_ym; (c) q_x2s and q_x2ns and (d) c_SA and q_S. Units are given next to the axis
names, and the parameter q_x2ns is dimensionless. Red lines show the straight line of regression.
The correspondence of the marker shape and color to the wheat species or amphidiploid is shown in
the top right.

It should be noted that the absolute values of the traits also agreed well. For example,
the model parameter q_ym can be interpreted as an estimate of half of the spike width. (It
is the ratio of the quadrangle area to the length of the spike.) In this case, a linear regression
of the spike width SFW and quadrangle width q_ym (Figure 1b) yielded a slope estimate of
0.38 (close to 0.5) and a bias of −0.12 (close to 0). The parameter q_S characterized the area
of the quadrangle and therefore estimated half the area of the spike. A linear regression
of q_S and c_SA (Figure 1d) yielded a slope estimate of 0.5. The intercept value of −21.8,
however, indicates a bias for these two parameters, where q_S was systematically smaller
due to the fact that the edges of the quadrangle approximated the contour of the spike. For
the parameters SL (x) and q_L (y), the regression yielded estimates of 0.8 (close to 1) for the
slope and 22.8 for the intercept. This also indicates a systematic bias; the estimates obtained
by image analysis were ~2–3 cm higher compared with the manual estimate of the spike
length. This may be a consequence of the fact that the manual measurement identified the
positions of the spike apex and base by eye, while the computer analysis identified these
positions as the outermost pixels of the contour.

The similarity of the features to each other, evaluated on the basis of the Pearson
correlation coefficients and hierarchical clustering by the unweighted pair group method
with an arithmetic mean, is demonstrated in the form of a tree in the diagram in Figure 2.
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Figure 2. Tree diagram of the similarity of 31 wheat spike traits based on their Pearson correlation
coefficients in a sample of 190 plants. Brackets above the tree show five main clusters, and their
generalized classifications are given. The similarity axis of the traits is given on the left.

Five large clusters can be identified in the resulting tree (Figure 2). The first cluster
(from left to right) includes the characteristics of the spike apex size and area (third segment)
as well as the spike contour rugosity (c_Ru). The second cluster includes characteristics
of the basal part of the spike (first segment). The third cluster includes the general shape
characteristics: roundness (c_R), circularity (c_CI), density index (SDI) and spike base
width (q_y1s). The fourth cluster includes traits related to the spike width. The fifth cluster
includes traits related to the spike length and size (SL, q_L, c_SA and c_P), characteristics
of the central (second) segment (q_x2s, q_S2, q_x2ns and q_S2S) and, interestingly, the
number of manually counted spikelets (SSC).

Thus, in the proposed model, the spike shape was characterized by three main seg-
ments: the base, central part and apex. Within each segment, the parameters showed high
statistical dependence. The clusters of these parameters may reflect both the peculiarities of
genetic control of the spike shape and the specificity of the model for describing its shape.
The other two clusters reflect the general shape parameters (size, elongation, roundness
and area of awns, etc.).

2.2. Diversity of Wheat Spikes in Size and Shape

The mean values and standard deviations of some basic characteristics were estimated
for each of the studied species and for the amphidiploid. The obtained estimates for the
whole sample and individual species as well as the amphidiploid are summarized in
Table 1.

Table 1 shows the wide variation in spike traits among the species. For example, the
manually estimated spike length (SL) ranged from a minimum of 35 mm in T. sphaerococcum
(TSH) to a maximum of 94 mm in T. spelta (TSP). Parameters such as the quadrangle length
q_L, central segment length q_x2s and roundness c_R were also extreme in these species.
The spike width SFW and its digital estimate q_ym were maximal in T. compactum and
minimal in T. macha (TMA) and T. spelta (TSP). These extreme differences were also observed
in these species for the parameter c_Ci. The spike areas in the model (q_S) and for the spike
contour (c_SA) were maximal in T. compactum (TCO) and minimal in T. sphaerococcum (TSH).
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Table 1. Number of spikes analyzed (n), mean values and standard errors for the main spike
parameters, characterizing its size and shape. The maximum values among all species are shown in
bold, and the minimum values are shown in bold and italics.

Trait ASP TAE TAN TCO TMA TSP TSH TYU

N 9 50 10 63 9 14 18 8
SL 90.44 ± 6.06 74.64 ± 2.25 39.70 ± 1.35 51.56 ± 0.89 84.22 ± 3.46 94.71 ± 5.02 35.83 ± 1.17 87.00 ± 3.76
SFW 8.22 ± 0.40 9.12 ± 0.25 8.70 ± 0.15 11.65 ± 0.24 6.33 ± 0.33 6.46 ± 0.19 8.22 ± 0.32 7.38 ± 0.46
SSW 6.33 ± 0.33 7.52 ± 0.24 6.90 ± 0.18 8.29 ± 0.20 6.22 ± 0.36 5.96 ± 0.13 6.61 ± 0.24 7.00 ± 0.46
SSC 19.22 ± 1.19 15.60 ± 0.41 17.60 ± 0.37 16.51 ± 0.41 18.78 ± 0.66 15.36 ± 0.39 14.89 ± 0.27 17.13 ± 1.06
SDI 20.25 ± 0.71 19.88 ± 0.51 42.61 ± 2.11 30.48 ± 0.92 21.29 ± 0.90 15.58 ± 0.75 39.30 ± 1.19 18.46 ± 0.55
q_x1s 31.70 ± 5.46 30.72 ± 2.07 23.70 ± 5.08 29.60 ± 2.21 22.29 ± 4.70 27.42 ± 4.33 24.31 ± 3.02 16.27 ± 4.76
q_x2s 59.96 ± 8.20 45.00 ± 2.99 19.55 ± 2.57 33.07 ± 1.52 55.31 ± 4.03 65.68 ± 4.11 13.60 ± 2.05 61.96 ± 9.47
q_x3s 9.75 ± 3.85 10.98 ± 1.51 6.36 ± 2.46 6.78 ± 0.61 10.28 ± 2.48 14.48 ± 3.36 8.46 ± 1.84 6.17 ± 2.59
q_y1s 3.36 ± 0.31 3.71 ± 0.23 3.60 ± 0.51 4.69 ± 0.26 3.32 ± 0.29 2.80 ± 0.55 3.42 ± 0.61 3.06 ± 0.51
q_y2s 2.81 ± 0.80 3.98 ± 0.22 3.51 ± 0.46 6.53 ± 0.25 2.10 ± 0.18 2.72 ± 0.63 4.41 ± 0.60 3.17 ± 0.59

q_L 101.41 ± 4.70 86.71 ± 2.58 49.61 ± 4.28 69.46 ± 2.26 87.88 ± 3.32 107.58 ±
4.62 46.37 ± 4.75 84.40 ± 11.30

q_S1 55.54 ± 9.96 60.98 ± 5.66 45.44 ± 11.10 78.29 ± 7.19 37.20 ± 7.11 42.36 ± 7.38 32.58 ± 4.53 28.74 ± 9.19

q_S2 163.10 ±
28.25

164.01 ±
11.17 65.08 ± 8.66 178.79 ± 8.70 152.42 ±

19.25
143.95 ±

11.23 44.34 ± 5.74 210.22 ±
50.08

q_S3 17.33 ± 7.35 26.92 ± 5.32 15.65 ± 6.36 25.49 ± 3.22 13.55 ± 3.97 26.38 ± 8.32 19.90 ± 4.97 12.25 ± 6.02

q_S 235.97 ±
23.19

251.91 ±
10.84

126.17 ±
10.37

282.56 ±
9.20

203.17 ±
19.44

212.69 ±
16.60 96.82 ± 7.26 251.22 ±

53.24
q_ym 2.30 ± 0.15 2.89 ± 0.09 2.64 ± 0.21 4.15 ± 0.12 2.29 ± 0.18 1.95 ± 0.09 2.27 ± 0.18 2.75 ± 0.35

c_P 253.73 ±
15.06 246.19 ± 5.29 153.73 ±

8.11 235.90 ± 0.02 207.76 ±
11.16

274.77 ±
11.41 176.49 ± 8.16 232.49 ±

19.01

c_SA 489.51 ±
41.04

545.65 ±
20.10

272.73 ±
12.30

599.75 ±
0.02

430.03 ±
43.58

453.96 ±
28.00

261.87 ±
13.62

558.06 ±
96.85

c_AA 5.38 ± 1.18 21.82 ± 1.81 7.18 ± 0.76 96.73 ± 0.02 46.64 ± 10.77 57.14 ± 15.20 11.12 ± 1.09 78.24 ± 17.77
c_CI 0.11 ± 0.01 0.15 ± 0.01 0.21 ± 0.03 0.23 ± 0.01 0.15 ± 0.01 0.09 ± 0.01 0.20 ± 0.03 0.15 ± 0.01
c_R 0.07 ± 0.00 0.10 ± 0.00 0.16 ± 0.03 0.17 ± 0.00 0.07 ± 0.00 0.06 ± 0.00 0.18 ± 0.03 0.09 ± 0.01
c_So 0.68 ± 0.03 0.71 ± 0.01 0.70 ± 0.03 0.75 ± 0.02 0.85 ± 0.02 0.63 ± 0.03 0.64 ± 0.03 0.79 ± 0.04
c_Ru 1.18 ± 0.03 1.26 ± 0.03 1.23 ± 0.03 1.25 ± 0.02 1.07 ± 0.01 1.26 ± 0.08 1.29 ± 0.05 1.21 ± 0.09

In general, T. spelta, T. compactum and T. sphaerococcum can be referred to as the most
extreme species in terms of spike characteristics. The first one demonstrated the most
elongated loose spike, the second one was characterized by the most rounded and compact
spike, and the third one had the spike of the smallest size. The smallest number of parameter
values reaching the extremum in the considered sample was observed in T. aestivum (TAE),
T. antiquorum (TAN), T. macha (TMA) and Amphiploid speltiforme (ASP).

Regarding awns, the maximum value of the awn area was observed in T. compactum,
and the minimum value was observed in the amphidiploid.

A visual graphical representation of the averaged parameters of the spike models for
seven species and the amphidiploid is presented in Figure 3a. This visualization clearly
shows not only differences in the length and size of the spikes but also in the shape of their
segments. Thus, in T. compactum and T. sphaerococcum the apical segments were broader
than the basal ones, while in Amphiploid speltiforme and T. macha, the opposite was true. In
T. yuannanese and T. aestivum, the sizes of the apical and basal segments were approximately
the same.

Figure 3b clearly demonstrates the diversity of the spike shapes in individual plants
of Amphiploid speltiforme and T. antiquorum accession k-56397. This demonstrates that for
different plants of the same genotype, there was diversity in both the length and width of
the spikes and the shape of their various segments.

In the spelt spikes, differences in the spike length (the longest one was found for
T. spelta) were observed, but at the same time, the ratios of the spike widths at the base
and apex differed among them. For example, in T. spelta, the base was narrower. For
normal spikes (T. aestivum and T. yuannanense), their shape and size were similar, but in
T. yuannanense, the spike at the base was wider than that at the apex. The compact spikes
(T. sphaerococcum, T. antiquorum and T. compactum) were club-shaped but varied greatly in
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length and width. In addition, in T. antiquorum, the lateral sides of the spike were practically
parallel, unlike the spikes of the other two species.
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Figure 3. Visualization of spike quadrangle models. (a) Models derived from mean parameter values
for 7 wheat species and the amphidiploid. (b) Models derived for individual spikes of Amphiploid
speltiforme and sample k-56397 of T. antiquorum (thin blue lines) as well as for their mean values (red
lines). Vertical and horizontal size scales are shown next to the diagrams. The vertical scale was
multiplied to visualize the spike shape more clearly.

Analysis of variance (ANOVA) was performed for the relationship between the species
and spike characteristics. It revealed a number of parameters statistically significantly
different when comparing the mean values in spikes of different species. These results
were also confirmed using Levene’s and Kruskal–Wallis tests (Table 2).

Table 2 demonstrates that most of the mean values of the spike shape parameters
differed significantly among the wheat species. The exceptions were the characteristics of
the base and apex lengths and contour rugosity (q_x1s, q_x3s, q_S3 and c_Ru). Interestingly,
Table 2 demonstrates concordance in the statistical tests between the spike traits measured
manually and digitally (SL and q_L; SFW and q_y). Thus, the quadrangle model made
it possible to identify spike traits for which reliable differences between different species
were observed.

Similar ANOVA and other tests were performed to compare the mean values of
the parameters in plants with different spike types: compact, normal and speltoid. The
results are summarized in Table S1 (Supplementary File S2). In this case, it can be seen
that in addition to the characteristics of the base and apex, the traits with no significant
differences between spikes of different types were related to the area (q_S, q_S2 and c_SA).
At the same time, the mean values of the length, width, roundness and circularity were
significantly different.
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Table 2. Results of one-factor analysis of variance, Levene’s test and the Kruskal–Wallis test to
assess the similarity of spike characteristics in seven wheat species and the amphidiploid. Significant
differences (p < 0.05) are shown in bold.

Trait ANOVA Levene’s Test from
Medians

Kruskal–Wallis Test for
Equal Medians

F p p Hc
(Tie Corrected) p

SL 63.07 1.797 × 10−45 4.961 × 10−9 141.3 2.66 × 10−27

SFW 9.482 5.01 × 10−10 0.0002302 57.16 5.554 × 10−10

SSW 27 3.081 × 10−25 0.0005318 103.7 1.896 × 10−19

SSC 5.649 0.000006414 0.00002497 39.41 1.63 × 10−6

SDI 55.53 5.242 × 10−42 0.00002992 138.8 9.156 × 10−27

q_x1s 1.346 0.2311 0.2123 9.921 0.1931
q_x2s 22.74 5.17 × 10−22 0.0001098 91.23 6.925 × 10−17

q_x3s 1.851 0.07999 0.05528 9.437 0.2228
q_y1s 3.028 0.00491 0.02729 24.66 0.000872
q_y2s 15.4 8.629 × 10−16 0.2018 79.47 1.769 × 10−14

q_L 19.35 3.015 × 10−19 0.3375 80.42 1.132 × 10−14

q_S1 3.741 0.0008219 0.001609 23.95 0.001161
q_S2 11.25 7.933 × 10−12 0.00008505 62.04 5.894 × 10−11

q_S3 0.7227 0.6529 0.3255 8.768 0.2697
q_S 15.95 2.753 × 10−16 0.003657 72.27 5.138 × 10−13

q_ym 50.81 1.138 × 10−39 0.004768 131 3.922 × 10−25

c_P 13.39 6.557 × 10−14 0.8333 62.96 3.853 × 10−11

c_SA 16.74 5.364 × 10−17 0.004782 74.08 2.208 × 10−13

c_AA 18.07 3.666 × 10−18 3.871 × 10−16 116.1 4.92 × 10−22

c_CI 10.1 1.158 × 10−10 0.01301 84.56 1.613 × 10−15

c_R 10.09 1.192 × 10−10 0.000001117 87.43 4.161 × 10−16

c_So 6.757 3.934 × 10−7 0.1106 38.11 0.000002887
c_Ru 1.457 0.1854 0.3295 27.68 0.0002516

2.3. Linear Discriminant Analysis of Spikes Based on Shape Characteristics

The results obtained above demonstrate that most of the spike size and shape parame-
ters were significantly different among different species and spike types. The feasibility of
using traits measured manually and digitally for plant classification into both species and
types based on LDA was evaluated.

The analysis was performed for the trait sets estimated manually and digitally, both
individually and jointly. Additionally, taking into account that not all traits had a normal
distribution, they were regularized using the Box–Cox method, and LDA was performed
for the data modified in this way. Two types of classification were performed: (1) into
species and amphidiploid and (2) by spike shape type. As a measure of accuracy, the
proportion of spikes classified correctly was evaluated. The results are summarized in
Table 3. Confusion matrices are presented in Tables S2 and S3 (Supplementary File S2).

Table 3. Percentage of correctly predicted spike classes using LDA for different sets of traits and
classification classes.

Traits Set/Data
Transformation Percentage of Correctly Classified Spikes

Species or Amphidiploid,
8 Classes Spike Type, 3 Classes

Manually estimated (5 traits) 67.89 88.95
Digitally estimated (26 traits) 78.42 83.16

Combined (31 traits) 87.89 92.11
Manually estimated/Box–Cox 68.42 90.52
Digitally estimated/Box–Cox 82.11 85.26

Combined/Box–Cox 88.42 93.16
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The performance of the classification into species by traits obtained digitally was
greater than that with manually estimated traits (~10% difference). However, a combination
of both sets of traits improved performance by another ~10% (up to 87.9%). Additionally,
the Box–Cox transform systematically improved the classification accuracy for all trait sets
by 1–3% on average.

The results of classifying spikes by shape type showed that the manually estimated
traits yielded better performance in comparison with the digitally estimated traits alone.
However, combining two groups of traits again improved the classification performance
(by ~3%). The Box–Cox transform systematically improved the classification performance
for all trait sets by 1–3% on average as well.

Thus, the use of digitally estimated spike characteristics made it possible to effectively
classify them into species and by spike type with high accuracy. Combining sets of traits
estimated digitally and manually increased classification performance, as did the use of
data regularization.

A visualization of the results of the LDA spike classification into species is shown in
Figure 4.

Figure 4 shows that such species as T. spelta, T. compactum and Amphiploid speltiforme
were separated quite well. In this diagram, overlapping polygons can be observed between
the spikes of T. aestivum, T. macha and T. yannanense and between T. antiquorum and T. sphae-
rococcum. This agrees well with the model representations in Figure 3; the spike shapes of
species with overlapping polygons were quite similar.

As for the traits which contribute to interspecific classification, the greatest variation
was observed for such characteristics as the spike length (SL) and spike density (SDI). They
were aligned with the line along which T. spelta was located on one side and T. compactum on
the other (Figure 4). Spikes of these species also had the most extreme values for their traits
(Table 1). It is interesting to note the division of compact spikes into clusters of T. compactum
and T. antiquorum or T. sphaerococcum. They were separated along a line which was almost
parallel to the projection of trait of the awn area c_AA. This demonstrates the contribution
of the presence of awns to the differences between spikes with compact shapes.
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the markers. Blue lines and the traits’ short names show projections for the most important traits in
the diagram.
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The confusion matrix (Table S3, Supplementary File S2) also shows that the highest
number of misclassifications occurred between species whose spikes were similar in shape,
and their polygons overlapped in Figure 4.

The diagram of plant classification by spike type is shown in Figure S2 of Supplemen-
tary File S2. The figure shows that the plants with compact spikes formed an area which
weakly overlapped with the polygons for normal and spelt spikes. At the same time, the
greatest overlap was observed for the last two types of spikes. This is consistent with the
confusion matrix for classification by type (Table S3, Supplementary File S2). The highest
number of misclassified spikes was observed between the spelt and normal classes.

The diagram of plant classification by spike type (Figure S2, Supplementary File S2)
also shows that, for the classification by species, the most significant contribution was made
by the spike length, width and density index parameters.

2.4. Comparison of the Spike Characteristics of Different Accessions of the Same Species

Regarding the ability of our method to identify differences in the characteristics of
spikes from different accessions of the same species, spikes of T. compactum and accessions
WAG 8326 and k1709 were analyzed. Example images of these spikes are shown in
Figure 5a. The figure shows that there were some notable differences between the spikes.
The spikes of WAG 8326 were shorter and had longer awns compared with those of k1709.
Manual estimates of the spike length demonstrated significant differences between the
two accessions (Figure 5b). However, the use of the quadrangle model made it possible
to identify more detailed differences between these accessions. They had a significant
difference in awn area in the image (c_AA, Figure 5b). This is consistent with the visual
assessment. However, the spikes also differed in shape. Significant differences were
observed in the width of the basal segment (q_y1s, Figure 5b) and a number of other
characteristics measured either manually or digitally (Table 4).
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Figure 5. Differences in the morphometric characteristics of the spike in T. compactum accessions
WAG 8326 and k1709. (a) Examples of images of two spikes at the same scale. (b) Box and whisker
plots for the distribution of spike traits in two accessions (spike length, awn area and basal segment
width). (c) Visual representation of the spike quadrangle models for individual WAG 8326 and k1709
spikes (thin blue lines) and average model parameters (red lines). Vertical and horizontal scales are
shown in the upper left part of the panel.
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Table 4. Results of spike characteristic similarity evaluation in wheat accessions WAG 8326 and k1709
and species T. compactum. Number of spikes (n), mean value, variance, p values for the t-test for mean
equality, F-test for variance equality and Mann–Whitney test results are given. Significant differences
(p < 0.05) are shown in bold.

WAG 8326, n = 8 k1709, n = 9 t-Test F-Test Mann–Whitney

Trait Mean Variance Mean Variance p (Same Means) p (Same
Variances) p (Equal)

SL 43.25 13.36 60.44 13.78 8.5048 × 10−8 0.98 0.0006
SWF 14.00 5.14 12.11 1.11 0.04 0.05 0.02
SSW 8.25 4.21 8.89 0.86 0.41 0.04 0.35
SSC 19.88 7.84 20.44 1.53 0.59 0.03 0.92
SDI 43.59 25.59 32.25 5.81 2.3532 × 10−5 0.05 0.0006
q_x1s 15.44 84.86 36.65 433.88 0.02 0.04 0.06
q_x2s 26.60 79.64 41.15 201.29 0.02 0.24 0.03
q_x3s 4.65 16.85 6.63 9.47 0.28 0.44 0.16
q_y1s 7.46 3.16 3.24 4.23 0.0004 0.71 0.002
q_y2s 5.54 5.21 7.34 1.52 0.06 0.11 0.09
q_L 46.69 191.99 84.43 95.06 9.0908 × 10−6 0.35 0.0006
q_S1 56.75 1350.90 79.90 6046.60 0.45 0.06 0.96
q_S2 174.05 4175.40 216.74 4848.20 0.21 0.86 0.27
q_S3 13.62 140.08 26.81 185.19 0.05 0.73 0.05
q_S 244.42 4942.00 323.44 1492.70 0.01 0.12 0.005
q_ym 5.28 0.65 3.88 0.47 0.001 0.65 0.003
c_P 252.60 1860.20 262.74 524.53 0.55 0.10 0.74
c_SA 527.99 16,810.00 691.58 4882.80 0.005 0.10 0.003
c_AA 220.86 2343.60 124.17 2159.90 0.0008 0.90 0.002
c_Ci 0.33 0.03 0.18 0.00 0.03 1.9949 × 10−5 0.04
c_R 0.34 0.02 0.12 0.00 0.0003 0.005 0.001

According to the t-test, significant differences in the means were observed for 13 traits
out of 21. These were, first of all, the characteristics of the spike length (manual estimate
SL, digital estimate q_L and perimeter c_P), shape (density index SDI, circularity c_Ci and
roundness c_R), basal segment parameters (q_x1s and q_y1s), width (SWF and q_ym), area
(q_S) and awn area (c_AA). Note that in addition to 3 of the 5 characteristics measured
manually, 10 of the 16 characteristics estimated digitally demonstrated significant differ-
ences for two accessions. Most of them were biologically highly relevant but hard or even
impossible to estimate with the manual approach: the spike area (q_S, c_SA), circularity
(c_Ci), roundness (c_R) and segment parameters (q_x1s, q_x2s and q_y1s).

The model features are visualized in Figure 5c. The diagram demonstrates that the
spikes of WAG 8326 were shorter and had a wider base. As for the apical segment, its
shape and size were about the same in the two accessions. Thus, the quadrangle model
representation of the spike shape can be useful in distinguishing the differing traits in two
accessions of the same species.

3. Discussion

Digital morphometry of plants has recently been actively developed and used to solve
the problems of studying the biological diversity, classification and taxonomy of plants
and the search for genes controlling the size and shape of various plant organs [38–42]. To
characterize the complex shapes of objects, methods based on landmarks [43], quantitative
indices [44], numerical description of contour curves parametrically [45] and nonparamet-
rically [46] and elliptic Fourier descriptors [47] are used.

Recently, the authors of this study proposed a method of parametric description of
the spike contour line with a geometric model using digital images [37]. This approach is
based on image processing techniques [38]. It provides a number of digital descriptors for
the ear size and shape, including those using a geometric model. These parameters can be
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used to solve spike analysis problems in the “shallow learning” approach [48] (see Figure 4
and [34,37,49]). Recently, however, deep learning methods based on a multilayer neural net-
work architecture have become increasingly popular in analyzing plant images [48,50,51].
They allow automatic extraction of image characteristics for image segmentation and classi-
fication and object detection. The accuracy of these methods is quite high. However, as a
rule, the obtained digital characteristics (feature vectors) cannot be interpreted from the
point of view of biology. Moreover, they are hidden inside the network architecture. On the
other hand, it is important for a biologist to have quantitative descriptions of plant features
which complement classical ones. These can be used for a more detailed characterization
of plants in collections. These descriptors aim to digitalize traits and thus quantify them
into understandable, determinable and measurable attributes convergent to genomics [52].
With this in mind, the proposed method [37] is plausible. It yielded a visually relevant
spike model (Figure 3) which was fairly easy to interpret (Figure 2). This may be important
for finding genes which control the spike shape and size traits in the future.

In terms of the phenotyping problem, the previously developed spike phenotyping
method [37] can be classified as using a laboratory platform based on a digital RGB
camera and machine learning algorithms [24]. It does not allow the assessment of the
physiological state of a plant, cannot be applied to field studies and is not fully automated
or robotized. Its main field of application is the study of large collections of plants and
their systematic characterization [52,53]. This area of phenotyping has become increasingly
relevant recently [54–57]. The aim is large-scale germplasm phenotypic characterization.
These data, in association with the genotyping information, will be a primary component
for all crop-breeding programs [58].

Here, the spike characteristics for seven different hexaploid wheat species were com-
pared using this method. The obtained results demonstrated the high accuracy of the
method. Digital estimates of the spike length and width based on this method were
consistent with those made manually.

The high accuracy of LDA classification by wheat species and by spike type indicates
the usefulness of the proposed numerical metrics. For the classification of spikes into
three types, the manually derived features yielded ~5% higher accuracy compared with
the numerical ones. However, for the classification into types (eight classes), the method
based on numerical features outperformed it. In any case, using the two types of features
jointly made it possible to achieve higher classification performance. This is consistent
with the conclusions from the work by Conejo-Rodriguez et al., in which it was shown that
the combination of a plant’s digital and classical descriptors increased the accuracy of the
classification of the Phaseolus and Arachis genbank accessions [52].

Note that the accuracy obtained in this study is comparable—and in some cases
exceeded—the accuracy of solving similar problems using machine learning methods.
Earlier, the authors of the study used geometric model features and a random forest
algorithm to predict the spike type and obtained a proportion of correctly predicted types
of 83.73% (314 out of 375), which is close to the results of the present work (83.16% with
digitally estimated parameters; Table 3). Bi et al. [34] used eight spike characteristics
estimated from 2D images and a neural network to classify 240 images into four wheat
varieties. Their method yielded 88% correctly identified spikes. This is higher than using
LDA and 26 spike parameters to classify them into eight species in this work (78% with
digitally estimated parameters only; Table 3). However, the combined set of manually and
digitally estimated traits and regularization of the data led to a close result (88.42%).

Spike classification into five classes by shape using the length of three segments
estimated from digital images was performed by Bi et al. [49], yielding a precision of 93%.
In the present work, spikes were classified by shape type into three classes, and the best
performance result was slightly above 93% (Table 3).

In the analysis, the characteristics of the spikes for a single projection image were used
(“table” protocol). The previous results demonstrated that using multiple projections of the
spike (“pin” and “table” protocols) improved their classification accuracy [36,37]. The LDA
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results indicate, however, that estimates of spike characteristics from only one projection
are sufficient for practical purposes while being less labor-intensive for phenotyping.

The results show that the proposed model can be used to detect detailed differences
in the spike shape between species as well as between accessions of the same species.
Moreover, it proves to be functional at a more general level of shape description and
separates the spikes of different species well into compact, normal and spelt spikes.

The proposed approach [37], however, has some limitations. First, there is a systematic
bias in the digital estimates of some parameters. For example, the spike length estimates
obtained using image analysis were higher than those obtained by manual measurement.
Similar trends were observed in the work of Bi et al. [59]. For parameters such as the spike
length, this can be explained by differences in which points on the spike were used for
estimation when ruler and image analysis were used. Nevertheless, it should be taken into
account that the proposed method did not provide estimates which were exactly the same
as the expert estimates. Some differences may arise from errors in image segmentation
and spike contour identification and, to some extent, from digital straightening of the
bent spikes.

The second limitation is that the proposed method does not estimate such an important
trait for the breeder as the number of spikelets per spike, unlike approaches specifically
developed for this task [32,33]. However, the authors of this study have previously shown
that by using spike model parameters and machine learning, it is possible to predict its
density [37]. Similarly, Li et al. demonstrated that spike parameters such as the length and
area in an image could be used to estimate the number of grains [35].

The third limitation is that it cannot describe correctly the shape of branching spikes,
the analysis of which may be of interest in studying the processes of spike develop-
ment [60,61].

At present, the hierarchical subordination of wheat species is artificial and quite
subjective [13,62–64]. At the same time, the introduction of modern experimental methods
in wheat systematics, including genetic, molecular-biological and digital image analysis,
will make it possible to construct a real phylogeny of the genus.

In the future, the proposed method and similar approaches can be used for a wide
class of tasks for describing the morphology of wheat spikes in genetic collections, in the
study of wheat diversity and in breeding and genetic research.

4. Materials and Methods
4.1. Plant Material

Plants from the collection of Dr. N.P. Goncharov were analyzed. The sample included
plants of seven species of hexaploid wheat and one amphidiploid. Plants were grown in a
hydroponic greenhouse under individual isolation and standard conditions of humidity,
temperature and light for several seasons. Spikes were annotated manually by Fu Hao
and S.R. Tumanyan. The spike structure (length, front and side width, density index and
spikelet number) was analyzed according to standard methods.

The list of species examined, along with the number of accessions and plants, is given
in Table 5. More detailed information on the accessions and the number of plants is given
in Table S4 in Supplementary File S1. In total, the sample included 19 accessions and
190 plants.

A brief characterization of the species studied is given below.



Plants 2024, 13, 2736 14 of 21

Table 5. Wheat species and the amphidiploid used to analyze the diversity of spike characteristics.

Wheat Species or
Amphidiploid Abbreviation Number of

Accessions
Number of

Plants

T. aestivum L. TAE 5 50
T. spelta L. TSP 3 14

T. antiquorum Heer ex
Udach. TAN 2 20

T. compactum Host TCO 5 63
T. macha Dekapr. et

Menabde TMA 2 9

T. sphaerococcum Perc. TSH 2 18
T. yunnanense King TYU 1 7

Amphiploid speltiforme ASP 1 9

T. aestivum is a bread wheat characterized by dense, narrow spikes with a brittle rachis
and long awns. The spikes are usually five-flowered and of a normal type. Bread wheat is
the leading food crop in a large number of countries in the world. It is the most widespread
crop throughout the globe, is highly plastic and includes more than 100 varieties. The spikes
are awned with short awns of a uniform length all over or only on the upper spikelets; few
forms are awnless. Spikes are determinate, square-headed in cross-sections, dense or lax
and 4–18 cm long (excluding awns) [13].

T. spelta and its subspecies belong to the so-called spelt wheat, a group of species with
filmy grain and brittle spikes [65]. It has been cultivated since the 5th millennium BC. The
spikes are relatively long (10–15 cm), lax, straight or slightly curved, white, red, gray-blue
or blue-black and determinate, awned or awnless [13].

T. macha, a hulled hexaploid wheat, is endemic to the Caucasus area. In Georgia, it has
stable yields in different climatic conditions and high resistance to various diseases [66]. It
has a filmy spike which is more compact in shape than bread wheat but less compact than
that of T. compactum [12].

T. antiquorum is distinguished from other species on the basis of spike compactness, a
rounded grain shape and its winter and spring lifestyle [67]. It is believed to be one of the
first hexaploid wheat species cultivated by humans [68,69].

T. compactum is a wheat species adapted to low-moisture growing conditions. T. com-
pactum resembles bread wheat (T. aestivum), and thus it is often considered a subspecies
of T. aestivum ssp. compactum. It can be distinguished by its more compact spike due to
its shorter stem segments, which gave it its common name [18]. Kihara suggested that
bread wheat originated from a cross between T. spelta and T. compactum [70]. However, it
is now believed that T. compactum is a younger species [71]. In addition, the authors of
this study have shown that the genes determining the spike shape of T. compactum and
T. sphaerococcum are non-allelic [69].

T. sphaerococcum Perc. is sphaerococcum wheat, a narrowly endemic species of
hexaploid wheat formerly distributed in northwestern India. It is a spring crop adapted to
a dry climate under irrigation conditions [13]. It has attracted the attention of breeders due
to a complex of valuable traits: spherical grain shape, resistance to lodging, heat resistance,
non-sprouting and high baking qualities.

T. yunnanense was discovered in 1938 in the Yunnan province in China and named
by Shanbao King in 1959 [72]. It is endemic and still continues to be grown in remote
and hilly areas. Yunnan wheat is a primitive hexaploid, but it differs considerably from
T. spelta and T. macha. Yunnan wheat has a spindle-shaped spike, the double-rowed side is
slightly wider than the single-rowed side, and the spike is covered with wax. The spike is
9–12 cm long and can reach 16 cm, and the number of spikelets in the spike varies from
16 to 29. The average number of grains per spike is between 40 and 60 or is rarely near
80. Incredibly stiff and fragile spike glumes cover the spikelets tightly, and the grains are
difficult to thresh [73].
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Amphiploid speltiforme is an amphidiploid of T. dicoccoides × Ae. Speltoides which differs
from T. spelta and from T. aestivum in its spike shape. The participation of T. dicoccoides in
the formation of hexaploid wheat species is also doubtful, according to the results of its
karyotype study. According to Badaeva [71], the species carries a number of rearrangements
which are not characteristic of other polyploid wheat species. In addition, it has a different
form of genetic control of the spike spelt phenotype [74].

Thus, the studied sample represents a wide genetic diversity, diversity in origin and
growth habits as well as diversity in shape, spike size and the presence of awns.

4.2. Spike Imaging

Spike images were obtained under laboratory conditions using a “table” protocol
as described in previous works [37,75]. The spike was placed onto a transparent sample
stage on a table with a blue background. The camera was mounted above the transparent
sample stage on a tripod with a boom arm. Two pulsed light sources—Falcon DE-300 (flash
intensity of 1.0 and 1.4) and Falcon 60 × 60 soft boxes as light modifiers—and a Canon 600D
digital camera with an EF-S 28–135 mm f/3.5–5.6 lens were used. The shooting settings
were a shutter speed of 1/160; aperture of 10; ISO of 200 and focal lens of 112 mm in RAW
format. The white balance was set according to the ColorChecker white background when
developing a RAW file. The distance from the camera to the object was 70 cm, while that
from the light sources to the object was 60 cm, the table height was 60 cm, and the height
of the transparent sample stage (the distance from the object to the blue background) was
20 cm. One image per spike using this protocol was obtained.

Examples of spike images for seven wheat species and one amphidiploid are shown
in Figure 6. The spikes are shown at the same scale. The figure demonstrates the diversity
of spike shapes and sizes for the wheat samples studied.
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names of the species and amphidiploid are given above the images, and the name of the sample or
variety is separated by a comma.

4.3. Simplified Representation of the Spike Contour Model

Using the previously developed phenotyping method [37], the spike images were
segmented into the background, spike body and awns. Awns were characterized by their
area in the image (c_AA). The WERecognizer program estimated a number of morphometric
characteristics of the spike from the image. It used the model of two quadrangles with
a common base, which was the spike rachis (Figure 7a). The parameters of the two
quadrangles were estimated independently and may have differed. The quadrangle in this
model is described by independent parameters: three segment lengths of the quadrilateral
base (xu1, xu2 and xu3 for the top quadrangle, where their sum yields the length of the spike)



Plants 2024, 13, 2736 16 of 21

and two heights (yu1 and yu2). Other parameters (areas of the model segments, angles of
inclination of the edges, etc.) could be derived from these parameters.
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Figure 7. Quadrangle models used to describe the shape and size of the wheat spike. The spike is
shown on its side, where its rachis is horizontal with the stem to the left and apex to the right of the
figure. The spike body contour curve is shown in brown. Green straight lines show two quadrangles
approximating the upper and lower parts of the spike. (a) The full model and its parameters described
by the WERecognizer program [33]. (b) Symmetrical quadrangle model. All parameters for the upper
and lower quadrangles are identical. The basal, central and apical segments of the model are filled
with different colors.

In this study, the number of parameters of the spike shape model was reduced
(Figure 7b). First of all, this model was made symmetric about the spike axis. The pa-
rameter values of the upper and lower quadrangles were identical. In this approximation,
the parameters were calculated as the average values of the upper and lower quadrangles.
For example, q_x1s = (xu1 + xb1)/2 (Figure 7). This coarsens the description of the spike
shape if the spike shape is asymmetric, but it simplifies the data analysis. Second, parame-
ters characterizing the angles of the quadrangle edges in the current model were not used.
Thus, for the model presented in Figure 7b, 26 parameters based on image analysis were
estimated. These were five independent parameters: the lengths of the basal, central, and
apical segments (q_x1s, q_x2s and q_x3s; q_x1s + q_x2s + q_x3s = q_L) and two quadrangle
heights (q_y1s and q_y2s) approximating the widths of the basal and apical segments.
There were also 15 derived parameters (normalized lengths, segment areas, etc.) and
6 common characteristics of the shape (circularity, perimeter and others; see Figure 7b). All
characteristics describing the linear dimensions of the spike were measured in millimeters,
and the areas were measured in square millimeters.

In addition, during the annotation of the spike by an expert, the characteristics of its
shape and size were measured manually: spike length (SL), front width (SFW), side width
(SSW), number of spikelets per spike (SSC) and spike density index (SDI). The spike linear
dimensions were measured manually in centimeters and converted to millimeters for the
consistency of the analysis. With this in mind, the SDI parameter was calculated by the
following formula [10]:

SDI =
(SSC − 1) ∗ 100

SL
,
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where SL is measured in millimeters.
A complete list of used spike characteristics, their descriptions and units of measure-

ment are summarized in Table 6.

Table 6. Description of the spike characteristics used for morphometry. The characteristic abbrevia-
tions, names and units are given. See also Figure 7b.

Trait No. Abbreviation Name Measurement Units

Manually estimated parameters

1 SL Spike length mm
2 SFW Front width mm
3 SSW Side width mm
4 SSC Spikelet number dimensionless
5 SDI Density index dm−1

Independent parameters for the quadrangle model

6 q_x1s Length of the basal spike segment mm
7 q_x2s Length of the central spike segment mm
8 q_x3s Length of the apical spike segment mm
9 q_y1s Width of the basal segment mm
10 q_y2s Width of the apical segment mm

Derived parameters for the quadrangle model

11 q_L Spike length (q_x1s + q_x2s + q_x3s) mm
12 q_S1 Area of the basal spike segment mm2

13 q_S2 Area of the central spike segment mm2

14 q_S3 Area of the apical spike segment mm2

15 q_S Area of the quadrangle for half a spike mm2

16 q_ym Width index (q_S/q_L) mm

17 q_x1ns Normalized length of the basal spike
segment (q_x1s/q_L) dimensionless

18 q_x2ns Normalized length of the central spike
segment (q_x2s/q_L) dimensionless

19 q_x3ns Normalized length of the apical spike
segment (q_x3s/q_L) dimensionless

20 q_y1ns Normalized width of the basal spike
segment (q_y1s/q_L) dimensionless

21 q_y2ns Normalized width of the apical spike
segment (q_y2s/q_L) dimensionless

22 q_S1S Normalized area of the basal spike
segment (q_S1/q_S) dimensionless

23 q_S2S Normalized area of the central spike
segment (q_S2/q_S) dimensionless

24 q_S3S Normalized area of the apical spike
segment (q_S3/q_S) dimensionless

General size and shape parameters for the spike contour

25 c_P Perimeter mm
26 c_SA Spike body projection area mm2

27 c_AA Awn area mm2

28 c_Ci Circularity dimensionless
29 c_R Roundness dimensionless
30 c_So Solidity dimensionless
31 c_Ru Rugosity dimensionless

4.4. Statistical Analysis

Statistical analysis was performed in the program Past v 4.17 [76]. To visualize the
spike model, scripts in the Python language were developed.
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5. Conclusions

The diversity of spike shapes and sizes was evaluated for seven hexaploid wheat
species and one amphidiploid using the geometric quadrangle model. The shape of the
wheat spike could be characterized by three main segments—the base, the central part and
the apex—using the quadrangle model. Within each of these segments, the parameters
exhibited a high degree of statistical dependence. These parameter groups may reflect both
the genetic control of the spatial shape and the specific characteristics of the model used to
describe it.

The parameters obtained digitally from the wheat spike model had a high correlation
with manually measured spike parameters. They allowed for successful differentiation
between plant species and spike types using LDA. The results of such analysis showed
that spikes from the wheat T. aestivum and T. compactum species, T. spelta species and
T. antiquorum and T. sphaerococcum species were successfully separated by the obtained
parameters. The spelt species of T. spelta and Amphiploid speltiforme, which have a different
genetic basis controlling their spelt phenotype, also differed from each other. The model
also made it possible to identify spike characteristics differing significantly between species
or between accessions within the same species. These results demonstrate the validity of
the proposed spike model.

There are, however, several limitations of the current method. It gives systematic
bias for some spike parameter estimates, likely due to inherent image analysis errors, it
cannot be used directly in spikelet counting or spike density determination, and it does not
provide shape analysis for branched spikes.

In the future, the proposed and similar approaches with some improvements can be
used for a wide class of tasks related to wheat spike morphometry and the study of genetic
control of the spike shape and size.
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