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Abstract: Two-dimensional human pose estimation aims to equip computers with the ability to
accurately recognize human keypoints and comprehend their spatial contexts within media content.
However, the accuracy of real-time human pose estimation diminishes when processing images with
occluded body parts or overlapped individuals. To address these issues, we propose a method based
on the YOLO framework. We integrate the convolutional concepts of Kolmogorov–Arnold Networks
(KANs) through introducing non-linear activation functions to enhance the feature extraction capabil-
ities of the convolutional kernels. Moreover, to improve the detection of small target keypoints, we
integrate the cross-stage partial (CSP) approach and utilize the small object enhance pyramid (SOEP)
module for feature integration. We also innovatively incorporate a layered shared convolution with
batch normalization detection head (LSCB), consisting of multiple shared convolutional layers and
batch normalization layers, to enable cross-stage feature fusion and address the low utilization of
model parameters. Given the structure and purpose of the proposed model, we name it KSL-POSE.
Compared to the baseline model YOLOv8l-POSE, KSL-POSE achieves significant improvements, in-
creasing the average detection accuracy by 1.5% on the public MS COCO 2017 data set. Furthermore,
the model also demonstrates competitive performance on the CrowdPOSE data set, thus validating
its generalization ability.

Keywords: human pose estimation; Kolmogorov–Arnold networks; YOLOv8-pose; multi-scale
feature fusion

1. Introduction

Human pose estimation is a vital research area in the computer vision field, which
is focused on accurately identifying the spatial positions of key human joints in media
content. Real-time human pose recognition is essential in various fields, including motion
tracking, gesture recognition, motion analysis, and intelligent surveillance systems. It has
extensive applications in virtual reality, behavior recognition, sports training, and the film
and animation industries [1,2]. Achieving accurate 2D human pose estimation allows for
optimization of model architectures and feature learning, thereby enhancing the precision
and efficiency of pose estimation, ultimately leading to safer and more efficient services.

There are two types of tasks in the human pose recognition field: single-person pose
estimation and multi-person pose estimation. In single-person pose estimation, the model
focuses on identifying and regressing the keypoint information of the target person, which
includes keypoint categories, the relative positions of keypoints, and confidence levels.
In contrast, multi-person pose estimation involves simultaneously detecting and estimating
the keypoint information of multiple individuals. In these tasks, various degrees of joint
deformation occur during human activities (as illustrated in Figure 1a–c), and body parts
may be occluded by other objects or the individuals themselves (as shown in Figure 1d–f).
These factors can lead to the pose estimation algorithm either failing to obtain keypoint
information or only capturing a small amount, ultimately resulting in poor pose estimation
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outcomes. Therefore, this research aims to better address the challenges of capturing subtle
and complex features, regressing occluded keypoints, and detecting small targets in human
pose estimation tasks.

Figure 1. (a–c) demonstrate varying degrees of joint deformation that occur during human activities;
(d–f) highlight instances where body parts are obscured either by objects or the individual.

In recent years, with the continuous development of Deep Neural Networks (DNNs) [3],
Convolutional Neural Networks (CNNs) [4], Recurrent Neural Networks (RNNs) [5],
attention mechanisms [6], Transformers [7], and Kolmogorov–Arnold Networks (KANs) [8],
researchers have significantly enhanced the regression capability of models for keypoints.
They have achieved this through leveraging well-trained network architectures, making
structural modifications, and applying post-optimization processes. Moreover, various
strategies have been adopted to reduce the inference cost of networks, such as lightweight
network design [9,10], spatial pyramid pooling [11], and other techniques. Researchers
have also endeavored to integrate human pose estimation with object detection to address
a broader range of practical scenarios [12]. For example, Ghiasi et al. have proposed NAS-
FPN [13], which uses neural network structure search to discover a new feature pyramid
structure in a new scalable search space covering all cross-scale connections and can fuse
the input features of any two layers into the output features of one layer.

The YOLO series models [14], which are popular in the field of computer vision, were
designed to predict the locations and categories of objects in an image through single-stage
propagation of the network, significantly improving their detection speed and efficiency.
YOLOv8, an advanced version of this series, has made several improvements in network
structure and training strategies, resulting in exceptional performance in both object detec-
tion and pose estimation tasks. YOLOv8 introduces new feature extraction modules and
more efficient anchor box designs, greatly enhancing the model’s detection accuracy and
speed. It supports multi-scale fusion and employs spatial pyramid pooling and cross-stage
partial networks for feature fusion, effectively capturing fine details in images. Further-
more, YOLOv8 integrates an efficient aggregation network and adopts more effective loss
functions and optimization strategies, enabling the model to converge faster during training
and achieve considerable detection accuracy. Despite numerous researchers having contin-
uously improved or proposed highly effective human pose estimation models, the field still
faces challenges such as partial joint loss due to arbitrary occlusion or complex backgrounds
and difficulties in detecting small targets. Given the aforementioned challenges, we propose
the KSL-POSE model based on YOLOv8l-POSE and inspired by the YOLO-POSE real-time
framework. Through incorporating KAN convolutions, we enhance the model’s feature
extraction capabilities. Moreover, we introduce the SOEP module and a self-developed
detection head, which help to improve its pose estimation performance for small target
detection, significantly enhancing the model’s performance in complex scenarios.
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Overall, the contributions of KSL-POSE are as follows:

• First, KSL-POSE improves the backbone of the YOLOv8l-POSE baseline. We integrate
the C2f feature extraction module with the KAN network, introducing non-linear activa-
tion functions to enhance the feature extraction capability of the convolutional kernels.

• Second, we introduce the small object enhance pyramid (SOEP) module, leveraging
the cross-stage partial (CSP) [15] concept to further optimize and enhance the detail
feature extraction performance on small targets.

• Finally, KSL-POSE combines the NAS-FPN concept and introduces a novel shared
convolutional detection head. Unlike NAS-FPN, this detection module is composed
of multiple shared convolutional layers and batch normalization (BN) layers, where
BN is calculated independently, thus improving the utilization efficiency of model
parameters and the cross-stage feature fusion capability.

2. Related Work
2.1. Top-Down Methods

Top-down human pose estimation methods involve locating instances through rect-
angular bounding boxes, then cropping these instances to obtain and detect keypoints
within them. Representative algorithms of this type include CPN, HRNet, and Hourglass.
Despite having specific applications in human pose estimation, top-down methods are
limited in practical use due to their high computational complexity, poor real-time per-
formance, strong dependency on bounding boxes, difficulty in handling multiple targets,
and insufficient utilization of contextual information. For example, handling multi-person
scenarios is challenging, especially when multiple bodies occlude or overlap each other.
As the keypoint localization process within each bounding box is usually independent,
the model cannot fully leverage global contextual information, leading to sub-optimal
performance in both bounding box detection and keypoint localization.

2.2. Bottom-Up Methods

Bottom-up methods first detect all possible keypoints, then combine these keypoints
into complete human poses through the use of clustering or matching techniques. The main
characteristic of these methods is building the overall pose from local features (keypoints)
incrementally. Representative methods include OpenPOSE, PersonLab, and HigherHR-
Net. While bottom-up methods are relatively effective in handling multi-person scenarios,
their practical application is limited by their complex post-processing, difficulty in key-
point association, high computational burden, insufficient robustness, and reliance on
global consistency.

Researchers have made various improvements and innovations in the field of human
pose estimation. Zhang et al. [16] have proposed HF-HRNet, which enables enhanced multi-
scale spatial feature fusion through the use of a cascaded depth (CAD) module and multi-
scale context embedding (MCE) module, resulting in notable improvements in inference
speed and model accuracy. Yang et al. [17] have introduced TransPOSE, which leverages
Transformers and the self-attention mechanism to provide a similarity measure space
between positional pairs, enabling the correct association of keypoints to corresponding
human instances and effectively capturing long-term relationships. Qiu et al. [18] have
proposed DiffusionPOSE, a model that significantly improves the accuracy of identifying
human keypoints through utilization of noise heatmap generation, a progressive denoising
process, conditional supervision based on human structural information, and an efficient
architectural design. Liu et al. [19] have introduced LDCNet, which incorporates limb
direction cues (LDCs) to suppress uncertainties in keypoint positions, thus preventing
deep networks from overfitting uncertain keypoint locations. Moreover, researchers have
experimented with incorporating attention mechanisms into networks, such as LSKA [20],
DAttention [21], CA [22], and SA [23]. Notably, DAttention introduces a deformable self-
attention module that selects the positions of keys and values in a data-dependent manner,
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allowing the model to focus more effectively on relevant areas and reduce the influence of
irrelevant features.

The aforementioned algorithms have been shown to provide good inference efficiency
and competitive detection accuracy in the field of human pose estimation. However,
they still have shortcomings in addressing small target detection and arbitrary occlusion
problems. Therefore, it is necessary to develop a human pose estimation method that can
effectively address these issues.

3. Method
3.1. Overview

The KSL-POSE model builds upon the YOLOv8l-POSE real-time framework for hu-
man pose estimation. Specifically, we draw inspiration from the recent advancements in
Kolmogorov–Arnold Networks (KANs) and incorporate non-linear activation functions
based on the C2f module, which we refer to as the C2f_KAN module. Moreover, we
introduce the small object enhance pyramid (SOEP) module, which processes feature lay-
ers through SPDConv to extract feature information enriched with small object details,
and integrates this information into the corresponding feature layers. We also incorporate
a custom layered shared convolution with batch normalization detection head (LSCB). This
design improves the accuracy and efficiency of keypoint detection through multi-scale
feature fusion and shared convolutional layers. Through end-to-end training, KSL-POSE
can accurately localize human regions and regress keypoints in real-time for each body
part in an image. The overall framework is illustrated in Figure 2.

Figure 2. The overall framework of the KSL-POSE model.

3.2. C2f_KAN Module

In human pose estimation tasks, the use of standard convolution modules may lead
to insufficient utilization of computational resources due to a large number of redundant
features, as well as internal covariate shift issues during the training process, which can
result in inadequate image feature extraction. To address these problems, we introduce the
C2f_KAN module into the backbone part. This module incorporates the idea of instance
normalization and has significant advantages in feature extraction and information fusion,
making it particularly suitable for handling fine-grained features in human pose estimation.
Its structure is shown in Figure 3.
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Figure 3. C2f_KAN module diagram.

The introduction of the KAN caused a sensation. In contrast to traditional MLPs,
which use fixed activation functions at the nodes (“neurons”), a KAN implements learnable
activation functions along the edges (“weights”). Specifically, the weight parameters
in a KAN are replaced by univariate functions parameterized as spline curves, thereby
eliminating linear weights. This adjustment allows KANs to excel in small-scale AI and
scientific tasks, obtaining advances in both accuracy and interpretability. The underlying
mathematical principle can be written as follows:

f (x) = f (x1, · · · , xn) =
2n+1

∑
q=1

Φq(
n

∑
p=1

ϕq,p(xp)), (1)

where Φq,p : [0, 1]→ R and Φq : R→ R.
To optimize computation, KAN convolution incorporates a basis function, b(x), in the

design of the activation function. Therefore, the activation function ϕ(x) is the sum of
the basis function b(x) and the spline function spline(x). Specifically, their mathematical
formulas can be written as follows:

ϕ(x) = w(b(x) + spline(x)), (2)

b(x) = silu(x) = x/(1 + e−x), (3)

spline(x) = ∑
i

ciBi(x), (4)

where ω is a weight that can better control the overall size of the activation function, ci
denotes the coefficients that are optimized during training, Bi(x) is a B-spline basis function
defined on the grid, and the grid points define the interval where each basis function Bi(x)
is active, significantly affecting the shape and smoothness. During training, the parameters
ci of these splines (i.e., the coefficients of the basis function Bi(x)) are optimized to minimize
the loss function, thereby adjusting the shape of the spline to best fit the training data.

The C2f_KAN module, as shown in Algorithms 1–3, inspired by the KAN, retains
the efficient feature extraction capabilities of the original C2f module while significantly
enhancing its feature extraction and adaptability. Through integrating KAN convolution
and non-linear activation functions, this module strengthens the convolutional kernels,
enabling them to capture more intricate and subtle features. The C2f_KAN module is
utilized in the P4 and P5 layers of the backbone network.

To balance parameter reduction with feature extraction performance, multiple Bottle-
neck_KAN modules are used to progressively extract and refine features, ensuring that the
final output feature map is both rich and high in quality. Moreover, during the concate-
nation of features from different layers, 1× 1 convolution is applied for dimensionality
reduction and fusion, ensuring that the feature map’s dimensions and information content
are optimal for further processing. The convolution function in the C2f_KAN module can
be written as follows:

yi,j,k =
M

∑
m=1

N

∑
n=1

xi+m−1,j+n−1,l · wm,n,l,k + bk, (5)

where x represents the input feature map with dimensions H ×W × C (H is the height, W
is the width, and C is the number of channels), ω is the convolution kernel with dimensions
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M× N × C× K (M is the kernel height, N is the kernel width, C is the number of input
channels, and K is the number of output channels), bk (corresponding to the output channels
K) denotes the bias term, and yi,j,k is the output feature map (where i, j, and k are the indices
for the height, width, and channel dimensions of the output feature map, respectively) with
dimensions H′ ×W ′ × K′ (H′ and W ′ are the height and width of the output feature map,
and K′ is the number of output channels)

Algorithm 1 PyTorch-like Code for C2f_KAN Algorithm

1: Input: c1, c2, n, kan_method, shortcut, g, e
2: Output: Output tensor after processing through all Bottleneck_KAN layers
3: Initialize: super()
4: Create a list of Bottleneck_KAN modules: self.m ←

nn.ModuleList(Bottleneck_KAN(c1, c2, kan_method, shortcut, g, k = (3, 3), e =
1.0) for in range(n))

5: for each layer in self.m do
6: x ← layer(x)
7: end for
8: Return x

Algorithm 2 PyTorch-like Code for Bottleneck_KAN Module

Input: c1, c2, kan_method, shortcut, g, k, e
2: Output: Output tensor after applying bottleneck operations

Initialize: super()
4: Compute: c←int(c2× e)

Define: self.cv1← choose_kan(kan_method, c1, c,k[0])
6: Define: self.cv2← choose_kan(kan_method, c,c2, k[1])

Compute: self.add← shortcut and c1 == c2
8: if not self.add then

Return self.cv2(self.cv1(x))
10: else

Return x + self.cv2(self.cv1(x))
12: end if

Algorithm 3 PyTorch-like Code for choose_kan Function

Input: name, c1, c2, k
Output: Selected KAN convolutional layer

3: if name == ’FastKANConv2DLayer’ then
kan← FastKANConv2DLayer(c1, c2, kernel_size = k, padding = k//2)

else if name == ’KANConv2DLayer’ then
6: kan← KANConv2DLayer(c1, c2, kernel_size = k, padding = k//2)

else if name == ’KALNConv2DLayer’ then
kan← KALNConv2DLayer(c1, c2, kernel_size = k, padding = k//2)

9: else if name == ’KACNConv2DLayer’ then
kan← KACNConv2DLayer(c1, c2, kernel_size = k, padding = k//2)

else if name == ’KAGNConv2DLayer’ then
12: kan← KAGNConv2DLayer(c1, c2, kernel_size = k, padding = k//2)

end if
Return kan

3.3. SOEP Module

Detecting small targets during human pose estimation on the P3, P4, and P5 layers can
be challenging. Traditional methods often add an extra detection layer before the P3 layer to
enhance the detection of small targets. However, this can lead to increased computational
complexity and longer post-processing times. To address these challenges, we improved
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upon the CSP approach and OmniKernel [24] through creating the CSPOmniKernel, which
we refer to as the small object enhance pyramid (SOEP). We apply depthwise convolu-
tions with kernel size of K× K to pursue a large receptive field and use 1× K and K× 1
depth convolutions to obtain context information. To avoid introducing a large amount
of computational overhead, we place the module in the neck part. Then, we explore the
possibility of using maximal convolutions for image restoration by gradually increasing k,
and reasonably expand the convolution kernel (receptive field) to the feature size while
avoiding a large number of parameters. Instead of adding a detection layer, we process
the data through SPDConv, which extracts features enriched with small target information.
These features are then integrated into the P3 layer. This approach effectively learns feature
representations from global to local scales, ultimately improving the detection performance
for small targets. The structure of this method is illustrated in Figure 4.

Figure 4. CSP-OmniKernel module diagram.

3.4. LSCB Module

The layered shared convolution with batch normalization (LSCB) detection head is
designed to receive feature maps from different scales (P3, P4, P5) using a multi-scale
feature fusion method. By merging multi-scale features, it processes the feature maps
from different scales to include information of varying granularity, thus capturing more
contextual information. This helps the model to more accurately locate keypoints. Moreover,
the LSCB module achieves the goal of reducing the number of parameters and improving
computational efficiency through the use of shared convolutional layers, ensuring the
real-time performance of the model. The resulting diagram is shown in Figure 5.

Figure 5. LSCB module diagram. Shared convolutional layers are filled in blue.

High-precision keypoint detection is essential for human pose estimation tasks. In the
LSCB module, the keypoint feature processing layers consist of a 1× 1 convolution layer,
a 3× 3 convolution layer, and another 1× 1 convolution layer. These layers are designed to
handle feature maps at different scales and to extract keypoint features effectively. The LSCB
module processes multi-scale (P3’, P4’, P5’) features utilizing shared convolution layers,
thereby capturing more contextual information from various scales of feature maps. Given
the statistical differences between features at different levels, normalization is necessary.
Directly incorporating batch normalization (BN) in the shared parameter detection head
can cause errors due to moving average discrepancies. While group normalization (GN)
can mitigate this issue, it increases the computational overhead during inference. Therefore,
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we independently calculate BN for each shared convolution layer, avoiding the moving
average errors associated with shared BN. This approach significantly reduces the number
of parameters. Moreover, to handle the inconsistent target scales detected by each detection
head, we employ a Scale layer to adjust the features, ensuring that each detection head can
adapt to different target scales. Specifically, after the three feature layers output from the
neck enter the detection head, each branch first passes through a 1× 1 convolution layer to
adjust the number of channels, unifying the number of channels of the three input feature
layers to the number of channels in the middle layer. Then, all feature layers are gathered
into a shared convolution module for feature extraction. The convolution kernel size is
3× 3. The use of shared convolution can reduce the number of parameters and calculations
of the model. Finally, the regression branch and the classification branch are separated.
In the regression branch, a 1× 1 convolution layer is used to predict the coordinate offset
of the bounding box. However, when there are objects with significant differences in size
and shape within a scene, shared convolution may not fully adapt to targets of varying
scales and shapes, potentially leading to insufficient representational capacity of the feature
map. To compensate for its limitations in integrating multi-scale features, architectures
like Feature Pyramid Networks (FPNs) or Path Aggregation Networks (PANs) can be
introduced on top of shared convolution. These techniques help the model capture features
of different scales without significantly increasing the number of parameters. Specifically,
in LSCB, to address the issue of inconsistent target scales detected by each detection head,
the output of the regression branch utilizes the Scale layer to scale the features and adjust
the target scale, thereby enabling the localization of targets of different sizes. A similar
mechanism can be observed in architectures like FPN, where multi-scale feature fusion
improves detection performance for objects of various sizes. The introduction of the Scale
layer is a further optimization of existing multi-scale fusion methods, adding flexibility
and controllability. This enhances the applicability of shared convolution in multi-scale
target detection and mitigates its negative impact on the quality of feature maps.

In the classification branch, a 1× 1 convolution layer is used to predict the probability
of each category. The convolution layer weights of the two branches are independent,
such that the model can learn the positioning and classification tasks separately. Finally,
the predicted keypoint features are decoded into actual keypoint coordinates, ensuring the
accuracy of keypoint locations and improving detection precision.

Overall, the shared weight parameter design can effectively reduce the number of
parameters and calculations, thus improving the running speed of the model, and allows
for the processing of features of different scales at the same time, capturing information of
various sizes in the image, which helps the model to better understand the relationships
between objects in the image, thus improving the recognition accuracy.

4. Experiment

We evaluated the proposed model on both the COCO-POSE 2017 data set and the
CrowdPOSE data set. In addition, we conducted ablation experiments to analyze the
effects of various modules. These experiments were conducted on the Ubuntu 22.04.4 LTS
operating system, utilizing an NVIDIA RTX 3090 GPU for acceleration. The KSL-YOLO
model was constructed based on Pytorch 2.3.1 and Cuda 11.5.

4.1. Data Sets

The COCO-POSE 2017 data set [14] is an invaluable and widely utilized resource that
has significantly advanced human pose estimation technology. It comprises 250,000 im-
ages annotated with keypoints, where each human instance in an image is marked with
17 keypoints. These keypoints provide the coordinates of major human joints, with each
keypoint accompanied by a visibility flag indicating its visibility in the image. This data set
supports researchers and developers in creating and evaluating advanced computer vision
algorithms, thereby facilitating various application scenarios.
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The CrowdPOSE data set [25] was specifically designed for multi-person pose esti-
mation tasks, addressing the unique challenges of pose estimation in densely populated
scenes. Developed by researchers from the University of Science and Technology of China,
Peking University, and SenseTime, this data set serves as a benchmark for high-quality pose
estimation in crowded environments. The CrowdPOSE data set consists of 20,000 images,
with each human instance annotated with 14 keypoints. It encompasses complex scenarios
such as overlapping human instances, partial or complete occlusion by other individuals or
objects, and varying degrees of joint deformation. This data set provides a comprehensive
and challenging benchmark for pose estimation in dense crowds.

4.2. Evaluation Metrics and Training Configuration

To evaluate the model’s performance, this study primarily compares the average
precision (AP) and average recall (AR) based on different Object Keypoint Similarity (OKS)
thresholds; for example, the average precision at an OKS threshold of 50% (AP50), average
recall at an OKS threshold of 50% (AR50), and mean average precision (mAP50-95) across
all OKS thresholds from 50% to 95% (in 5% increments). These metrics allowed for a
comprehensive evaluation of the model’s accuracy and robustness in detecting keypoints
across varying degrees of precision and recall.

KSL-POSE is based on the YOLOv8l-POSE framework, and does not use Automatic
Mixed Precision (AMP) training. The model uses the Adam optimizer, with a batch size
of 16, an input image size of 640× 640, an initial learning rate of 0.03, and is trained for
350 epochs.

4.3. Evaluation Results

We compared KSL-POSE with other models on the COCO-POSE 2017 data set, as de-
tailed in Table 1.

Table 1. Comparison of various real-time pose estimation methods on the COCO-POSE 2017 data set.

Method AP AP50 AP75 APM APL AR

Hourglass [26] 63.0 85.7 68.9 58.0 70.4 -
HGG [27] 67.6 85.1 73.7 62.7 74.6 -

OpenPOSE [28] 61.8 84.9 67.5 57.1 68.2 66.5
HRNet 64.5 86.2 71.7 59.2 73.5 -

HigherHRNet [29] 70.5 89.6 76.9 65.1 76.9 -
YOLOv5m6-rlepose [30] 67.6 89.2 74.5 - 73.8 74.0
YOLOv8-PoseBoost [31] - 85.4 59.1 60.1 74.2 -

YOLOv8l-POSE 67.6 90.0 74.6 63.3 75.7 74.9
SDPose-T [32] 69.2 90.2 76.8 65.7 75.2 -

YOLOv8x-POSE 71.7 91.5 78.4 68.2 78.3 77.9
Diffusion RegPose [33] 72.5 89.9 79.5 66.8 80.5 -

Ours 69.1 90.9 75.5 65.2 76.6 76.7

The human pose estimation performance of KSL-POSE on the COCO-POSE 2017-val
data set is shown in Figure 6.

Moreover, we also conducted comparisons on the CrowdPOSE data set, and the results
are detailed in Table 2.
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Figure 6. Results on the COCO-POSE 2017-val data set. The red boxes depict pedestrians of varying
scales and the content in red boxes represent the accuracy of recognition, we have marked the
keypoints with different colors.

Table 2. Comparison of various real-time pose estimation methods on the CrowdPose data set.

Method AP AP50 AP75 APE APM APH

OpenPOSE 48.0 61.5 53.7 62.7 48.7 32.3
Mask-RCNN [34] 57.2 83.5 60.3 69.4 57.9 45.8
SDPose-S-V2 [32] 64.5 - - - - -

HrHRNet-W48 [29] 67.6 87.4 72.6 75.8 68.1 58.9
OpenPifPaf [35] 70.5 89.1 76.1 63.8 78.4 72.1

Diffusion
RegPose [33] 72.7 91.1 79.3 79.3 73.3 64.9

ViTPOSE-B [36] 73.4 91.8 77.9 78.8 75.1 64.5
Ours 68.3 89.6 74.9 77.2 70.5 60.8
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The human pose estimation performance of KSL-POSE on the CrowdPOSE-val data
set is shown in Figure 7.

Figure 7. Results on the CrowdPOSE-val data set. The red boxes depict pedestrians of varying scales
and the content in red boxes represent the accuracy of recognition; we have marked the keypoints
with different colors.

The experimental results show that KSL-POSE improved the average precision on the
COCO-POSE 2017-val set by 1.5% and AR by 2.2%, compared to the baseline YOLOV8l-
POSE. The overall performance was not significantly different from that of YOLOv8l-POSE.
Meanwhile, it also demonstrated competitive performance on the CrowdPOSE data set.

KSL-POSE performed well on both the COCO-POSE 2017-val and CrowdPOSE-val
data sets, with its human pose estimation results shown in Figures 6 and 7, respectively.
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When dealing with scenarios such as dense crowds, occluded body parts, and individual
intersections, KSL-POSE maintained the accuracy of pose estimation. Moreover, it accu-
rately identified and estimated the poses of most small targets, regardless of their relative
positions in the image.

In summary, KSL-POSE presented good adaptability, robustness, and generalization
in various practical application scenarios.

4.4. Ablation Experiments

To further evaluate the contribution of each module within the overall network struc-
ture, we conducted ablation experiments to assess the impact of each module on the entire
network. We evaluated the effectiveness of each module through comparing the AP, AP50,
and AP75. The ablation experiments were conducted on the COCO-POSE 2017-val set,
and the specific experimental results are detailed in Table 3.

Table 3. Ablation study of the proposed real-time pose estimation method on the CrowdPose data set.

Method AP AP50 AP75 FLOPs

YOLOv8l-POSE 67.6 90.0 74.6 168.6
+KAN+SOEP+LSCB 69.1 90.9 75.5 198.9

+KAN+SOEP 69.8 91.1 76.1 236.4
+SOEP+LSCB 68.8 89.7 73.4 187.7
+KAN+LSCB 67.2 88.8 72.3 130.1

+KAN 68.4 89.6 73.8 168.6
+SOEP 70.2 91.2 75.9 225.4
+LSCB 68.7 89.4 71.6 117.3

The ablation experiments indicated that KSL-POSE, compared to the baseline model,
improved the average detection accuracy while only increasing the processing time by
30.3 ms. Specifically, AP50 and AP75 were improved by 0.9% and 1.1%, respectively. With
the addition of the LSCB detection head, we effectively reduced the Floating Point Opera-
tions (FLOPs) and improved the model’s computational speed. Although incorporating
this module slightly decreases recognition accuracy, as shown in Table 3, a comparison
between the methods “+KAN+SOEP+LSCB” and “+KAN+SOEP” reveals that we can
reduce the FLOPs by 37.5B while only sacrificing 0.7% in accuracy. This enhances the
model’s computational efficiency and speed. On the other hand, when the LSCB module
is not included, compared to the baseline model YOLOv8l-POSE, although the recogni-
tion accuracy increases, the FLOPs increase by 67.8B, significantly reducing the model’s
computational efficiency. Overall, KSL-POSE gained significantly enhanced human pose
estimation performance through innovatively combining the efficient feature extraction
module C2f_KAN, the detail feature enhancement module SOEP, and the refined keypoint
detection head LSCB.

Moreover, we visualize the results of the YOLOv8l-POSE and KSL-POSE methods in
Figure 8, highlighting the areas where the former failed to accurately recognize keypoints
with green circles, while the red boxes depict pedestrians of varying scales and the content
in red boxes represent the accuracy of recognition. YOLOv8l-POSE could not accurately
identify keypoints or small targets when processing images with occluded body parts and
overlapped individuals. However, through small target monitoring and shared convolu-
tional layer methods, KSL-POSE can regress human pose positioning and corresponding
skeletons in real-time and achieve precise and accurate recognition. The obtained results
demonstrate that KSL-POSE provides an effective solution for human pose estimation.
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Figure 8. A visual comparison of YOLOv8l-POSE and KSL-POSE, with differences highlighted in
green circles.

5. Conclusions

In this study, we proposed an enhanced human pose estimation model, called KSL-
POSE, based on YOLOv8l-POSE. Compared with other pose estimation methods, we are
more concerned with solving the problems that occur when keypoints are not prominent or
occluded. Therefore, we drew inspiration from KAN and introduced non-linear activation
functions and instance normalization ideas to handle fine-grained features in human pose
estimation. As shown in Table 3, KSL-POSE increased the AP value of the model by 0.8%.
In addition, we also introduced SOEP and LSCB modules to optimize the quality of the
corresponding generated keypoints through small target detection, multi-scale feature
fusion, and shared convolutional layer methods, in order to better adapt to local occlusion
in the human pose recognition task and improve the model’s ability to determine human
joint points. With these modifications, Table 3 demonstrates a 1.5% improvement in the
model’s AP. Through introducing the C2f_KAN module, SOEP module, and POSE_LSCB
detection head, KSL-POSE achieves significant improvements in both keypoint detection
accuracy and computational efficiency.

KSL-POSE was thoroughly evaluated on the COCO-POSE 2017 and CrowdPOSE
human pose estimation data sets. The results indicate that this model surpasses the
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existing YOLOv8l-POSE model, in terms of average precision (AP) and average recall (AR).
Although KSL-POSE showed a slight increase in FLOPs, and increased model complexity,
it can capture more feature information, thus performing better in handling occluded
targets and small object detection. Overall, KSL-POSE can efficiently perform real-time
human pose estimation tasks. Future research will focus on further optimizing the KSL-
POSE model to make it more lightweight, aiming to reduce the number of parameters and
computational cost while maintaining its accuracy, thereby enhancing its adaptability to
various environments and tasks.
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