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Abstract: Sorting recyclable trash is critical to reducing energy consumption and mitigating environ-
mental pollution. Currently, trash sorting heavily relies on manpower. Computer vision technology
enables automated trash sorting. However, existing trash image classification datasets contain a
large number of images without backgrounds. Moreover, the models are vulnerable to background
interference when categorizing images with complex backgrounds. In this work, we provide a
recyclable trash dataset that supports model training and design a model specifically for trash sorting.
Firstly, we introduce the TrashIVL dataset, an image dataset for recyclable trash sorting encompassing
five classes (TrashIVL-5). All images are collected from public trash datasets, and the original images
were captured by RGB imaging sensors, containing trash items with real-life backgrounds. To achieve
refined recycling and improve sorting efficiency, the TrashIVL dataset can be further categorized
into 12 classes (TrashIVL-12). Secondly, we propose the integrated parallel attention module (IPAM).
Considering the susceptibility of sensor-based systems to background interference in real-world trash
sorting scenarios, our IPAM is specifically designed to focus on the essential features of trash images
from both channel and spatial perspectives. It can be inserted into convolutional neural networks
(CNNs) as a plug-and-play module. We have constructed a recyclable trash sorting network building
upon the IPAM, which produces an acuracy of 97.42% on TrashIVL-5 and 94.08% on TrashIVL-12.
Our work is an effective attempt of computer vision in recyclable trash sorting. It makes a positive
contribution to environmental protection and sustainable development.

Keywords: recyclable trash sorting; convolutional neural network; integrated parallel attention module

1. Introduction

In recent years, trash generation has continued to increase in line with economic and
social progress [1]. Accordingly, waste management has become a key factor in sustained
economic and social development. Manual trash sorting methods are labor-intensive and
time-consuming [2]. Therefore, the automated sorting and recycling of trash has become
an urgent issue.

With the rapid advancement of sensing, artificial intelligence, and computer vision
technology, the automatic identification of trash from images as a replacement for manual
sorting has become increasingly feasible. In industrial applications, most trash images
are acquired using RGB imaging sensors. For specific trash such as plastics and organics,
multispectral imaging sensors are sometimes employed for fine-level classification [3]. A
convolutional neural network (CNN) is a deep learning algorithm in the field of image pro-
cessing and computer vision [4,5]. The works [6–8] apply CNNs to trash sorting, achieving
promising results in classification. Works like [9,10] introduce attention mechanisms to
improve the model’s focus on key areas of the image. These methods enhance the model’s
ability to capture salient features, but they do not fully consider the contribution of indi-
vidual weights in the attention mechanism. This limitation may result in the suboptimal
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suppression of less important channels or pixels. Our approach addresses this gap by
incorporating weight contribution factors into the attention mechanism, which allows the
model to adaptively adjust feature importance and enhance trash sorting accuracy.

Along the development of computer vision technology, the demand for image datasets
is gradually rising [11]. However, there are few public and authoritative datasets in the
recyclable trash sorting field. Hence, it is imperative to develop a representative trash
image dataset to assess and advance the development of trash sorting methods.

In this work, we introduce the TrashIVL dataset dedicated to sorting recyclable trash.
The dataset consists of five categories of recyclable trash (TrashIVL-5), including clothes,
plastic, paper, metal, and glass. The images are collected from public trash datasets. When
building TrashIVL, we selectively screen out the trash images without background. In
addition, we subdivide TrashIVL into 12 classes (TrashIVL-12) to improve the recycling
efficiency and to achieve fine-sorting of recycling.

The background of trash images in TrashIVL varies, including grass, gravel roads,
fallen leaves, etc. These backgrounds may interfere with the classification decisions of
the CNNs. Focusing on this problem, we propose an integrated parallel attention module
(IPAM) to enhance the trash sorting capability of CNNs. IPAM is a normalization-based
attention module comprising a channel attention module (CAM) and a spatial attention
module (SAM). The normalized weights obtained store scaling factors, which enables the
adjustment of normalized features through scaling. These scaling factors allow the model to
adaptively learn the importance of different features, which enhances the representational
capacity of the model and improve the accuracy of trash sorting. To summarize, the main
contributions of this work are as follows:

• We introduce a recyclable trash image dataset named TrashIVL. It excludes images
without background found in public datasets, ensuring that the image backgrounds
are more representative of real-life scenarios.

• We propose the integrated parallel attention module (IPAM) to improve the sorting
ability of CNNs. IPAM acts as a plug-and-play module that can be inserted into different
CNNs. It leverages the normalized weights and parallel connection of CAM and SAM.

• We construct a recyclable trash sorting network based on IPAM. When comparing
different deep learning models of trash sorting, our network achieves the best classifi-
cation performance.

2. Related Work

In this section, we first review the application of CNNs in trash sorting, and then
introduce common trash image classification datasets.

2.1. Trash Sorting

With the development of deep learning, CNNs have shown their potential in the
field of trash sorting. AlexNet [6] has been employed to categorize recyclable trash from
landfill trash objects. DenseNet169 with transfer learning [7] has been used for classifying
individual recyclable trash images. The optimized DenseNet121 [8] has leveraged genetic
algorithms to optimize the fully connected layers and classify the TrashNet dataset.

The attention mechanism enables CNNs to identify and process key information in
images more accurately by simulating human visual attention [12]. For example, AM-b
Xception [9] fuses the multi-branch Xception network with an attention mechanism, which
has been used to classify recyclable trash. Similarly, EfficientNet-B2 [10] has been applied
to classify different types of trash: bio, glass, metal and plastic, non-recyclable, other, paper,
and unknown. These methods dynamically select important regions in the image to focus
on through an attention module. However, these attention mechanisms focus on important
features by introducing additional convolutional and fully connected layers, overlooking
the fact that the weights themselves can inherently represent the importance of features. In
contrast, our approach leverages the inherent contribution of weights to adaptively adjust
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feature importance without the need for additional layers, thereby improving both the
efficiency and accuracy of trash sorting.

2.2. Trash Image Classification Datasets

At present, the number of public trash image classification datasets is still limited.
Table 1 shows the comparison of our TrashIVL and other trash image classification datasets.
TrashNet [13] has been widely used, while its limited classes hinder its ability to provide
finer recycling distinctions. Moreover, the presence of overlapping samples and unrefinable
classes within the dataset restrict its representativeness in practical applications. In the
Drinking waste classification [14], many of the images depict the same object captured from
various angles, potentially leading to data redundancy. Additionally, several public trash
datasets contain a significant number of images without backgrounds, deviating from real-
life scenarios (e.g., Waste pictures [15], Trashbox [16], Garbage dataset [17], Kaggle garbage
classification dataset [18], Huaweiyun garbage classify learning [19], and Garbage265 [20]).

Table 1. Comparison of TrashIVL and other trash image classification datasets. In the “With back-
ground” column, × indicates datasets with no background images, ⃝ indicates a mixture of images
with and without backgrounds, and ✓indicates datasets where all images have backgrounds.

Trash Image Classification Datasets Classes Sub Classes With Background Recyclable Trash

TrashNet [13] 6 × × ✓
Drinking waste classification [14] 4 × ⃝ ✓
Waste pictures [15] 34 × ⃝ ×
Trashbox [16] 7 ✓ ⃝ ×
Garbage dataset [17] 10 × ⃝ ×
Kaggle garbage classification dataset [18] 2 × ⃝ ×
Huaweiyun garbage classify learning [19] 40 × ⃝ ×
Garbage265 [20] 265 × ⃝ ×
TrashIVL (ours) 5 ✓ ✓ ✓

3. Proposed Dataset—TrashIVL

In this section, we introduce our proposed TrashIVL dataset. First, we describe the
source of TrashIVL. Next, we show how the categories in TrashIVL are subdivided.

3.1. Sources of TrashIVL

These datasets were originally created using RGB imaging sensors in various real-
world environments, capturing images with different backgrounds and lighting conditions.
The included datasets are as follows: Drinking waste classification [14], Waste pictures [15],
Trashbox [16], TACO [21], Garbage dataset [17], Kaggle garbage classification dataset [18],
Acqualtrash [22], Huaweiyun garbage classify learning [19], and Garbage265 [20].

As shown in Figure 1, we selectively collect images with backgrounds that closely
resemble real-life scenarios, such as grassy fields, lose leaves, floors, and roads. Images
without background as shown in Figure 2 are screened out. For detection datasets like
TACO and Acqualtrash, we select and crop the target garbage boxes for use in TrashIVL.
Table 2 shows the corresponding sample distributions of the public datasets that constitute
TrashIVL. There are relatively fewer images collected from Acqualtrash, Garbage dataset,
and Drinking waste classifications. This is because some of the data in the Acqualtrash
overlaps with TACO. Additionally, most of the trash images in the Garbage dataset and
Drinking waste classifications do not have backgrounds.
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Figure 1. Sample images and category distributions of TrashIVL. TrashIVL consists of five major categories
and 12 subcategories. The corresponding sample size is indicated in parentheses after each category.

Figure 2. Sample images without backgrounds of public trash datasets that are excluded in TrashIVL.

Table 2. The corresponding sample distributions of the public datasets constituting TrashIVL.

Dataset Clothes Plastic Paper Metal Glass

Drinking waste classification [14] - 41 - 20 13
Waste pictures [15] - 41 53 108 154
TACO [21] - 233 199 - 56
Garbage dataset [17] - 15 36 23 3
Trashbox [16] - 319 733 152 505
Kaggle garbage classification dataset [18] 3044 52 486 161 330
Acqualtrash [22] - 16 7 5 6
Huaweiyun garbage classify learning [19] 116 1092 - 287 729
Garbage256 [20] 234 292 55 416 -

3.2. Subdivision of TrashIVL

TrashIVL comprises five classes of recyclable trash (TrashIVL-5): clothes, plastic, paper,
metal, and glass. To achieve precise recycling processes and promote resource reuse, we
have further subdivided these five major classes into 12 classes (TrashIVL-12). Specifically,
we have subdivided clothes into pants, skirt, and upper garment; plastic into plastic bag,
plastic bottle, and plastic basin; and paper into cardboard, carton, newspaper, and paper cup.
Metals are typically found in the form of cans, while glass primarily exists in the form of
glass bottles. They can be recycled multiple times without compromising their quality [23,24].
Given their practical implications, TrashIVL does not make a further subdivision of metal
and glass. Figure 1 shows the sample quantities and category distributions. Our dataset is



Sensors 2024, 24, 6434 5 of 15

substantial in size and abundant in samples, and thus provides large data support for training
deep learning models.

4. Proposed Method

In this section, we first introduce the proposed method for recyclable trash sorting,
and then describe IPAM by detailing its CAM, SAM, and connectivity.

4.1. Establishment of a Recyclable Trash Sorting Network

The specific trash sorting process in this work unfolds as follows: (1) Input the
TrashIVL dataset. (2) Perform data augmentation, whereby trash images are uniformly
cropped to 224 × 224, randomly flipped, normalized, and rotated up to 15 degrees for
improved model robustness. (3) Insert the IPAM into various CNN backbones. (4) Output
the corresponding labels of the trash categories in TrashIVL.

To improve the accuracy of trash sorting, we select ResNeXt50 [25] as the best backbone
through comparison (see Section 5.3 for details) and build a recyclable trash sorting network
based on IPAM. The structure of the proposed network is shown in Figure 3a. The ResNeXt
block is the core of the ResNeXt modelling component, which enhances feature representation
through its multi-branch structure. The structure of the IPAM+ResNeXt block is given in
Figure 3b. It starts with a 1× 1 convolution layer with Cin kernels. Following this, the 3× 3
group convolution serves for feature extraction. The grouping helps to increase the width of
the model and thus improves its representation of the features. A 3 × 3 group convolution
extracts the representation of the input features. The insertion of channel–spatial attention
after this helps to introduce more information on top of the feature abstraction and to mine and
process the features more deeply. Therefore, we insert IPAM after a 3× 3 group convolution.
Next, the 1× 1 convolution raises the channel dimension to Cout. Finally, the features learned
from each branch are fused together using element-wise addition.

Figure 3. The architecture of recyclable trash sorting. (a) The recyclable trash sorting network, (b) the
structure of the IPAM+ResNeXt block (Cin, Cout), where Cin and Cout represent the number of convolutional
kernels, and GConv denotes group convolution with a group number of 32, (c) channel attention module
(CAM) of IPAM, (d) the structure of IPAM, and (e) spatial attention module (SAM) of IPAM.
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4.2. Integrated Parallel Attention Module (IPAM)

Employing an attention module enables the model to highlight specific aspects of
the trash, which helps to recognize trash images. Among previous attention modules,
the normalization-based attention module (NAM) achieves better accuracy in image clas-
sification tasks [12]. Additionally, NAM avoids the addition of convolutional and fully
connected layers compared to widely used attention modules such as convolutional block
attention module (CBAM) [26] and squeeze-and-excitation (SE) [27]. Nevertheless, we find
that there are two problems: (1) It generally adopts a sequential connection. This approach
may result in the interference between the spatial and channel attention. (2) It uses batch
normalization (BN) to compute the attention weights. During training, BN computes the
mean and variance based on the current training batch, which helps normalize the data
according to the batch’s specific distribution. However, during the testing phase, the mean
and variance used are pre-computed from the training data [28]. Since the distribution of
the testing data may differ from that of the training data, these pre-computed values may
not accurately represent the characteristics of the testing data.

Taking these issues into account, we have developed the integrated parallel attention
module (IPAM). IPAM is a channel–spatial attention module. It parallelizes channel at-
tention with spatial attention, which allows each to independently focus on the channel
and spatial information. The structure of IPAM is depicted in Figure 3d. Inspired by
NAM, we use adaptive normalization parameters to discern critical information interplay
among features. Layer normalization (LN) [29] and instance normalization (IN) [30] are
independent of batch dimension. Hence, we establish the channel attention module (CAM)
and the spatial attention module (SAM) of IPAM based on LN and IN, respectively.

4.2.1. Channel Attention Module (CAM)

LN normalizes each sample instance, aiming to capture the dependency between
different channels. This approach makes the representation of each channel more stable
during training and helps accelerate convergence. As shown in Figure 3c, we build the
CAM based on LN.

For the input feature map, Fin ∈ RH×W×C, where H, W, and C represent its height,
width, and number of input channels, respectively. We apply LN to Fin as follows:

FLN ≜ LN(Fin) = λ
Fin − µ

σ
+φ, (1)

where µ and σ are the mean and standard deviation of Fin, respectively. Both λ and φ
are trainable affine transformation factors used to control scaling and shifting operations,
continuously adjusted through the learning process of the model. λ serves as the scaling
factor from the LN, which is used to gauge the variance of the samples and signify their
significance. Greater variance indicates a more diverse sample with abundant information
that signifies its greater importance. Conversely, a sample with smaller variance contains
less information and is less important.

Then, we compute the the sample-based attention weights as

WLN = ω ⊙ FLN, (2)

where ⊙ denotes element-wise multiplication. ω = [ω1, ω2, · · · , ωC] is an attention vector,
in which ωi (1 ≤ i ≤ C) is computed as

ωi =
λi

∑C
j=1 λj

, (3)

where λi represents the scaling factor of the i-th channel obtained from LN. From Equation (3),
ω can be interpreted as a weight value for each feature dimension that signifies the adjustment
of the importance of each feature dimension after normalization.
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To capture the global channel information, we derive the channel statistics FC through
channel-based average pooling:

FC = AvgPool(Fin). (4)

By multiplying WLN with FC and constraining their product to the range (0, 1) using a
sigmoid function, we have

EC = Sigmoid(WLN ⊙ FC). (5)

EC can effectively represent the relative channel-based importance.

4.2.2. Spatial Attention Module (SAM)

Instance normalization (IN) performs independently on each channel, assisting the
model to focus more on local features at each location. It assesses the importance of different
regions based on the local features of the image. This motivates our design of SAM. As
shown in Figure 3e, the principle of SAM resembles that of CAM.

For the input feature map Fin, IN can be represented as

FIN ≜ IN(Fin) = ρ
Fin − µti

σti
+ τ, (6)

where µti and σti are the mean and standard deviation of the i-th channel of the t-th sample,
respectively. ρ scales the normalized features, enabling the network to learn the significance
of specific sample instances. τ introduces an offset to the normalized features so that the
model can shift to different sample instances and thereby preserve some aspects of the
original feature representation.

The sample instance-based attention weight WIN is computed as

WIN = γ ⊙ FIN, (7)

where γ = [γ1, γ2, · · · , γN ] is an attention vector, whose element is calculated as

γi =
ρi

∑N
j=1 ρj

, (8)

where ρi is the scaling factor of the i-th sample. IN normalizes the features along the H ×W
dimensions, leading to WIN becoming 1 × 1 in spatial dimensions, and the number of
channels remains as C.

Spatial-based average pooling generates global spatial information FHW as

FHW = AvgPool(Fin), (9)

and then the relative importance EHW based on spatial pixel points is computed as

EHW = Sigmoid(WIN ⊙ FHW). (10)

4.2.3. Parallel Connection

Channel attention and spatial attention, respectively, target the channel and spatial
dimensions of the feature map. The parallel connection enables the model to concurrently
regulate the feature maps from both the channel and spatial perspectives, which enhances
the richness of the feature representations. Consequently, IPAM uses channel attention and
spatial attention in parallel to comprehensively learn the relationships between features.
The output feature map Fout of IPAM is

Fout = EC ⊙ EHW ⊙ Fin. (11)
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5. Experiments
5.1. Implementation Details

All experiments are conducted using PyTorch 1.10.2 and Python 3.6 on a 3090 GPU.
We use the Adam optimizer with a learning rate of 0.00001. After pre-conditioning, the
epoch and batch size are set to 80 and 16, respectively. The training and testing set are
divided in an 8:2 ratio.

5.2. Evaluation Metrics

We apply accuracy, recall, kappa coefficient, precision, and F1-Score to comprehen-
sively evaluate the sorting performance of the models. All evaluation metrics are recorded
as (mean value± standard deviation), obtained from the five-fold cross-validation. Accu-
racy measures the model’s ability to correctly categorize trash. It indicates the percentage
of samples correctly predicted by the model out of the total samples:

Accuracy =
TP + TN

TP + FP + TN + FN
, (12)

where true positive (TP) denotes the number of positive cases correctly predicted as positive,
true negative (TN) represents the number of negative cases correctly predicted as negative,
false positive (FP) indicates the number of negative cases incorrectly predicted as positive,
and false negative (FN) is the number of positive cases incorrectly predicted as negative.

Recall is the proportion of actual positive cases (trash correctly identified) that the
model correctly identified:

Recall =
TP

TP + FN
. (13)

Precision represents the proportion of predicted trash cases that are actually correct:

Precision =
TP

TP + FP
. (14)

F1-Score is the harmonic mean of precision and recall:

F1 =
2 × Precision × Recall

Precision + Recall
. (15)

The kappa coefficient takes into account the consistency between the classification
results and the randomized classification results:

Kappa =
Accuracy − pe

1 − pe
, (16)

where pe denotes the probability that the classification result randomly matches the true case.

5.3. Construction of the Proposed Network

To determine the most suitable backbone and construct our recyclable trash sorting
network, we employ several superior pre-tained classification models (ResNet50 [31],
EfficientNet-B7 [32], DenseNet121 [33], Xception [34], and ResNeXt50 [25]) as backbones
and insert IPAM into them. All these backbones are pre-trained models. Their compar-
ative performance is detailed in Table 3. Notably, ResNeXt50 demonstrates the highest
performance. When sorting five classes of recyclable trash, ResNeXt50 achieves an accuracy
of 96.25%, a recall of 95.72%, a kappa coefficient of 95.13%, a precision of 95.82%, and an
F1-Score of 95.76%. Furthermore, it excels in fine recycling with an accuracy of 92.16%. The
unique ability of ResNeXt50 to form multiple branches during the feature learning process
proves instrumental. This diversity empowers the network to comprehensively understand
and learn the intricacies of the input data, enhancing the capability to characterize complex
features in trash sorting tasks. When IPAM is inserted into the backbones, performance
improves across all models. For example, on TrashIVL-5, ResNet50 with IPAM shows a
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slight improvement in accuracy from 96.13% to 96.22% and recall from 95.57% to 96.02%.
DenseNet121 experiences a larger boost, with accuracy rising from 96.01% to 97.08% and
F1-Score from 94.83% to 96.52%. Xception also sees a significant increase in precision,
from 95.75% to 96.90%. The improvement can be attributed to IPAM’s effectiveness in
extracting more meaningful features by applying both channel and spatial attention. This
dual attention allows models to focus on key features and spatial details simultaneously.
Based on the experiment, we select ResNeXt50 as the backbone and insert IPAM into it for
constructing our network. ResNeXt50+IPAM not only performs well without IPAM but
also shows significant gains with its inclusion, which achieves the best balance of feature
representation and classification accuracy for our recyclable trash sorting task.

Table 3. Comparison of different backbones with and without IPAM for trash sorting.

Datasets Models Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)

TrashIVL-5

ResNet50 [31] 96.13 ± 0.18 95.57 ± 0.11 94.97 ± 0.23 95.65 ± 0.21 95.61 ± 0.16
ResNet50+IPAM 96.22 ± 0.12 96.02 ± 0.26 95.09 ± 0.18 95.68 ± 0.26 96.02 ± 0.08
EfficientNet-B7 [32] 95.12 ± 0.07 94.40 ± 0.12 94.47 ± 0.05 94.57 ± 0.02 93.55 ± 0.11
EfficientNet-B7+IPAM 95.35 ± 0.18 94.89 ± 0.14 94.22 ± 0.23 94.65 ± 0.28 94.68 ± 0.17
DenseNet121 [33] 96.01 ± 0.12 95.52 ± 0.10 95.80 ± 0.15 95.46 ± 0.08 94.83 ± 0.12
DenseNet121+IPAM 97.08 ± 0.15 96.80 ± 0.17 96.08 ± 0.19 96.55 ± 0.15 96.52 ± 0.09
Xception [34] 96.24 ± 0.04 95.54 ± 0.04 95.02 ± 0.05 95.75 ± 0.14 95.64 ± 0.07
Xception+IPAM 97.36 ± 0.11 96.82 ± 0.19 96.38 ± 0.15 96.90 ± 0.20 96.85 ± 0.12
ResNeXt50 [25] 96.25 ± 0.07 95.72 ± 0.12 95.13 ± 0.09 95.82 ± 0.19 95.76 ± 0.06
ResNeXt50+IPAM 97.42 ± 0.14 96.88 ± 0.09 96.36 ± 0.18 97.12 ± 0.16 96.99 ± 0.11

TrashIVL-12

ResNet50 [31] 91.62 ± 0.42 90.86 ± 0.42 90.57 ± 0.47 89.58 ± 0.85 90.04 ± 0.61
ResNet50+IPAM 92.22 ± 0.36 91.85 ± 0.39 91.28 ± 0.40 90.09 ± 0.58 91.12 ± 0.48
EfficientNet-B7 [32] 91.55 ± 0.08 91.78 ± 0.44 91.54 ± 0.24 90.29 ± 0.10 90.73 ± 0.09
EfficientNet-B7+IPAM 92.10 ± 0.20 92.02 ± 0.18 91.89 ± 0.26 91.08 ± 0.32 91.96 ± 0.29
DenseNet121 [33] 90.57 ± 0.45 89.90 ± 0.76 89.99 ± 0.59 88.42 ± 0.62 89.38 ± 0.50
DenseNet121+IPAM 91.68 ± 0.26 90.06 ± 0.39 90.28 ± 0.44 90.06 ± 0.50 90.88 ± 0.38
Xception [34] 91.93 ± 0.22 91.12 ± 0.35 91.65 ± 0.28 90.38 ± 0.30 90.15 ± 0.38
Xception+IPAM 93.20 ± 0.16 92.88 ± 0.20 92.59 ± 0.28 92.02 ± 0.16 91.68 ± 0.28
ResNeXt50 [25] 92.16 ± 0.47 91.54 ± 0.36 91.17 ± 0.52 90.41 ± 0.72 90.82 ± 0.51
ResNeXt50+IPAM 94.08 ± 0.11 93.69 ± 0.08 93.80 ± 0.14 94.01 ± 0.22 93.32 ± 0.30

5.4. Arrangement of Channel and Spatial Attention

In both CBAM [26] and NAM [12], channel attention and spatial attention are con-
nected in a serial manner. Initially, channel attention is employed to focus on the channel-
based features of the image. Subsequently, the feature map obtained after channel attention
is used as input for spatial attention. In contrast, the approach of using channel atten-
tion followed by spatial attention (CAM-SAM) offers distinct advantages compared to
the serial connection of spatial attention followed by channel attention. This sequential
process allows the model to first concentrate on integrating and selecting the features in
the channel dimension. It then proceeds to weigh and integrate the features in the spatial
dimension. This sequence better aligns with the hierarchical representation of features and
the integration process.

Table 4 compares ResNeXt50+IPAM (CAM-SAM in parallel) with the CAM and SAM
of IPAM connected serially (CAM-SAM). As shown, the parallel connection yields superior
results compared to the serial connection. By employing CAM and SAM in parallel, the
model gains a more comprehensive understanding of feature relationships. This diversity
may assist the model in better adapting to various types of features, which ultimately
enhances the generalization ability of the model.

Table 4. Connection of channel and spatial attention.

Datasets Backbone Connection Arrangement Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)

TrashIVL-5 ResNeXt50 CAM-SAM 94.50 ± 0.20 93.85 ± 0.35 93.89 ± 0.28 93.96 ± 0.30 92.87 ± 0.22
CAM-SAM in parallel 97.42 ± 0.14 96.88 ± 0.09 96.36 ± 0.18 97.12 ± 0.16 96.99 ± 0.11

TrashIVL-12 ResNeXt50 CAM-SAM 92.24 ± 0.20 91.15 ± 0.25 91.43 ± 0.26 91.86 ± 0.18 91.25 ± 0.28
CAM-SAM in parallel 94.08 ± 0.11 93.69 ± 0.08 93.80 ± 0.14 94.01 ± 0.22 93.32 ± 0.30
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5.5. Performance of Channel Attention and Spatial Attention

To validate the effectiveness of CAM and SAM in IPAM, we use the ResNeXt50 backbone
and compare CAM and SAM in CBAM [26], NAM [12], and IPAM on TrashIVL-5 and
TrashIVL-12. CBAM is a widely used attention mechanism. It serves as a foundational
approach by applying channel–spatial attention. NAM improves upon this by using BN to
compute attention weights across both dimensions. Our proposed IPAM builds on NAM by
incorporating LN and IN to further refine both channel and spatial attention. While all three
methods utilize channel and spatial attention, their internal architectures differ. CBAM follows
a more traditional approach, NAM introduces BN, and IPAM enhances the mechanism with
LN and IN to improve overall performance. Therefore, we compared the performance of these
three attention mechanisms in terms of their channel and spatial attention methods, which
helps to assess their respective strengths and improvements. Table 5 shows that CAM in IPAM
outperforms both CBAM and NAM in trash sorting on TrashIVL-5 and TrashIVL-12. The
improvement in performance can be attributed to LN’s ability to enhance the representation
of each channel, allowing the model to better focus on important channel-specific features
and accelerating convergence. Similarly, Table 6 demonstrates that SAM in IPAM achieves
better results than SAM in CBAM and NAM. The use of IN in IPAM allows SAM to focus
more effectively on spatial details, improving the model’s ability to capture relevant spatial
information while minimizing interference from less important regions. In conclusion,
the experimental results demonstrate that IPAM’s combination of LN and IN enables the
model to better capture and process both channel and spatial features, leading to superior
performance in trash sorting tasks compared to CBAM and NAM.

Table 5. Quantitative evaluation of different channel attention methods. The "Attention" column
refers to the attention mechanism used (CBAM, NAM, or IPAM), each with its unique channel
attention structure. The “Models” column represents the ResNeXt50 model with the respective
channel attention module inserted.

Dataset Attention Models Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)

TrashIVL-5
CBAM [26] ResNeXt50+CAM 96.20 ± 0.12 95.62 ± 0.14 95.06 ± 0.16 95.74 ± 0.14 95.90 ± 0.16
NAM [12] ResNeXt50+CAM 96.26 ± 0.06 95.75 ± 0.10 95.14 ± 0.08 95.84 ± 0.07 95.97 ± 0.10
IPAM ResNeXt50+CAM 96.33 ± 0.15 95.84 ± 0.15 95.24 ± 0.19 95.87 ± 0.18 95.92 ± 0.25

TrashIVL-12
CBAM [26] ResNeXt50+CAM 93.72 ± 0.15 92.78 ± 0.31 92.92 ± 0.17 92.71 ± 0.29 92.67 ± 0.13
NAM [12] ResNeXt50+CAM 93.78 ± 0.14 93.46 ± 0.20 92.99 ± 0.16 92.85 ± 0.12 93.09 ± 0.10
IPAM ResNeXt50+CAM 93.98 ± 0.13 93.39 ± 0.35 93.21 ± 0.14 93.33 ± 0.32 93.43 ± 0.52

Table 6. Quantitative evaluation of different spatial attention methods. The "Attention" column refers
to the attention mechanism used, and the "Models" column indicates ResNeXt50 with the respective
spatial attention module inserted.

Dataset Attention Models Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)

TrashIVL-5
CBAM [26] ResNeXt50+SAM 96.12 ± 0.15 95.62 ± 0.17 94.96 ± 0.19 95.63 ± 0.20 95.66 ± 0.25
NAM[12] ResNeXt50+SAM 96.28 ± 0.26 95.76 ± 0.34 95.78 ± 0.33 95.83 ± 0.32 95.17 ± 0.33
IPAM ResNeXt50+SAM 96.31 ± 0.21 95.74 ± 0.27 95.21 ± 0.27 95.83 ± 0.26 95.96 ± 0.24

TrashIVL-12
CBAM [26] ResNeXt50+SAM 93.71 ± 0.26 93.00 ± 0.38 92.91 ± 0.29 92.71 ± 0.11 92.81 ± 0.23
NAM [12] ResNeXt50+SAM 93.98 ± 0.30 93.44 ± 0.46 93.21 ± 0.34 93.28 ± 0.41 93.22 ± 0.41
IPAM ResNeXt50+SAM 94.01 ± 0.11 93.53 ± 0.37 93.24 ± 0.11 93.40 ± 0.07 93.22 ± 0.12

5.6. Different Attention Modules Inserted into ResNeXt50

To validate the effectiveness of IPAM, we insert SE [27], efficient channel attention
(ECA) [35], CBAM [26], and NAM [12] into ResNeXt50 for recyclable trash sorting and
compare them with our proposed recyclable trash sorting network (ResNeXt50+IPAM).
The results are presented in Table 7. Since these attention modules are plug-and-play,
to ensure a fair comparison, we inserted all of them in the same position as IPAM, as
illustrated in Figure 3b. In TrashIVL-5, IPAM improves the sorting ability of ResNeXt50 by
1.17%. As depicted in Figure 4a, the accuracy of ResNeXt50+IPAM stabilizes at around 97%
after 65 epochs, surpassing other attention modules. In TrashIVL-12, ResNeXt50+IPAM
achieves the finest-grained recycling with a classification accuracy of 94.08%, a recall of
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93.69%, a kappa coefficient of 93.80%, a precision of 94.01%, and an F1-Score of 93.32%.
As observed in Figure 4b, the accuracy curve of ResNeXt50+IPAM demonstrates greater
stability compared to other models. This may be attributed to our special design that the
CAM and SAM of IPAM are computed using LN and IN, respectively. LN and IN are
independent of batch statistical information, allowing them to maintain normalization even
in cases of small batch training or inference. The stable normalization capability contributes
to the consistent performance of the recyclable trash sorting network built on IPAM.

Figure 5 shows the Grad-CAM images using ResNeXt50 and ResNeXt50+IPAM, re-
spectively. Grad-CAM is a technique aiding in comprehending the decision-making process
of the network. It generates heat maps illustrating the image regions the neural network
prioritizes [36]. These highlighted regions represent the features extracted by the network,
signifying the areas of focus during classification. Notably, in scenarios with complex
backgrounds such as falling leaves, grass, and sky, these backgrounds can disrupt the clas-
sification task, leading ResNeXt50 to concentrate on the background during classification.
Nevertheless, with the insertion of IPAM, ResNeXt50+IPAM effectively directs its focus to
the trash itself.

Figure 4. Accuracy curve of different attention modules inserted into ResNeXt50. (a) Accuracy curve
based on TrashIVL-5. (b) Accuracy curve based on TrashIVL-12.

Figure 5. Trash feature maps generated by Grad-CAM. Samples of clothes, plastic, paper, metal,
and glass were randomly chosen for illustration. (a) Original samples, (b) the Grad-CAM images of
ResNeXt50, and (c) the Grad-CAM images of ResNeXt50+IPAM.
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Table 7. Comparison of different attention modules inserted into ResNeXt50.

Dataset Models Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)

TrashIVL-5

ResNeXt50 96.25 ± 0.07 95.72 ± 0.12 95.13 ± 0.09 95.82 ± 0.19 95.76 ± 0.06
ResNeXt50+SE [27] 96.35 ± 0.17 95.87 ± 0.36 95.27 ± 0.22 96.02 ± 0.16 95.84 ± 0.24
ResNeXt50+ECA [35] 96.27 ± 0.20 95.80 ± 0.27 95.17 ± 0.26 95.79 ± 0.21 95.79 ± 0.24
ResNeXt50+CBAM [26] 96.26 ± 0.17 95.78 ± 0.25 95.15 ± 0.23 95.82 ± 0.21 95.82 ± 0.22
ResNeXt50+NAM [12] 96.40 ± 0.15 95.85 ± 0.29 95.33 ± 0.19 96.06 ± 0.08 95.94 ± 0.15
ResNeXt50+IPAM 97.42 ± 0.14 96.88 ± 0.09 96.36 ± 0.18 97.12 ± 0.16 96.99 ± 0.11

TrashIVL-12

ResNeXt50 92.16 ± 0.47 91.54 ± 0.36 91.17 ± 0.52 90.41 ± 0.72 90.82 ± 0.51
ResNeXt50+SE [27] 93.78 ± 0.19 93.14 ± 0.42 92.99 ± 0.21 92.86 ± 0.46 92.93 ± 0.26
ResNeXt50+ECA [35] 94.02 ± 0.14 93.32 ± 0.39 93.25 ± 0.16 93.36 ± 0.25 93.25 ± 0.23
ResNeXt50+CBAM [26] 93.87 ± 0.24 93.31 ± 0.27 93.09 ± 0.27 93.19 ± 0.28 93.18 ± 0.18
ResNeXt50+NAM [12] 93.84 ± 0.15 93.21 ± 0.17 93.05 ± 0.17 92.99 ± 0.25 93.04 ± 0.18
ResNeXt50+IPAM 94.08 ± 0.11 93.69 ± 0.08 93.80 ± 0.14 94.01 ± 0.22 93.32 ± 0.30

5.7. Performance of Trash Sorting Models

In previous research, various networks, including AlexNet [6], DenseNet169 [7],
EfficientNet-B2 [10], optimized DenseNet121 [8], and AM-b Xception [9], have been em-
ployed for trash sorting. We investigate the sorting performance of the proposed recyclable
trash sorting network (ResNeXt50+IPAM), compared to the networks used in previous
studies. Table 8 lists the results on the public dataset TrashNet and our TrashIVL-5 and
TrashIVL-12. Although TrashNet has certain limitations, such as the absence of background
in its images, it remains a widely used benchmark dataset for validating trash sorting
algorithms in previous studies. By conducting experiments on TrashNet, we ensure a fair
and consistent comparison with prior work, allowing us to validate the effectiveness of our
proposed method. Deeper networks typically yield more robust feature representations
and are adept at learning abstract and complex features. Specifically, DenseNet169 and
optimized DenseNet121 are deep and exhibit strong learning capabilities. However, they
may face limitations in handling image background interference. In practical applications
such as trash sorting, it is essential to consider the influence of image background on
the classification models. The insertion of an attention mechanism assists the network
in highlighting image regions relevant to the classification task. EfficientNet-B2, AM-b
Xception, and ResNeXt50+IPAM all have inserted attention modules. In comparison, our
ResNeXt50+IPAM demonstrates superior performance.

The classification performance of models on the TrashIVL-12 dataset is lower com-
pared to the TrashNet and TrashIVL-5 datasets. For further investigation, we present the
confusion matrix of ResNeXt50+IPAM on TrashIVL-12 in Figure 6, which highlights areas
where the model faces challenges in classification. The model struggles to distinguish
between certain materials (e.g., pants, skirts, and upper garments; cardboard and carton;
plastic bottles and glass bottles). These items indeed have similar appearances, making clas-
sification more difficult. Nevertheless, ResNeXt50+IPAM correctly classifies the majority of
objects, demonstrating its overall effectiveness. The ResNeXt50 backbone provides a strong
foundation with its multi-branch structure, which increases model width and improves the
ability to capture diverse and abstract features. Additionally, IPAM introduces both CAM
and SAM, utilizing LN and IN. These techniques allow the model to focus on the most
relevant features while filtering out irrelevant information. This channel–spatial attention
mechanism is particularly useful in trash sorting tasks, where distinguishing between
similar objects and backgrounds is crucial.
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Table 8. Comparison of trash sorting models.

Datasets Models Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)

TrashNet

AlexNet [6] 90.08 ± 0.38 88.65 ± 0.40 87.52 ± 0.28 87.37 ± 0.45 87.81 ± 0.52
DenseNet169 [7] 95.75 ± 0.29 95.39 ± 0.37 94.77 ± 0.35 95.04 ± 0.33 94.62 ± 0.33
EfficientNet-B2 [10] 94.13 ± 0.20 93.56 ± 0.36 92.78 ± 0.22 92.88 ± 0.30 93.17 ± 0.26
Optimized DenseNet121 [8] 94.94 ± 0.22 94.25 ± 0.86 93.77 ± 0.28 93.95 ± 0.50 93.77 ± 0.42
AM-b Xception [9] 94.57 ± 0.35 94.07 ± 0.34 93.32 ± 0.42 93.63 ± 0.60 93.34 ± 0.85
ResNeXt50+IPAM 96.05 ± 0.14 95.50 ± 0.43 94.94 ± 0.26 94.50 ± 0.17 95.16 ± 0.17

TrashIVL-5

AlexNet [6] 88.86 ± 0.33 87.16 ± 0.48 87.15 ± 0.39 87.21 ± 0.37 85.56 ± 0.43
DenseNet169 [7] 96.15 ± 0.18 95.63 ± 0.11 95.76 ± 0.12 95.82 ± 0.25 95.26 ± 0.23
EfficientNet-B2 [10] 96.22 ± 0.14 95.65 ± 0.06 95.74 ± 0.08 95.85 ± 0.98 95.10 ± 0.18
Optimized DenseNet121 [8] 93.46 ± 0.91 93.93 ± 1.92 94.42 ± 1.38 94.46 ± 1.11 93.49 ± 1.13
AM-b Xception [9] 96.10 ± 0.18 95.31 ± 0.19 95.47 ± 0.25 95.66 ± 0.31 94.94 ± 0.23
ResNeXt50+IPAM 97.42 ± 0.14 96.88 ± 0.09 96.36 ± 0.18 97.12 ± 0.16 96.99 ± 0.11

TrashIVL-12

AlexNet [6] 84.16 ± 0.23 82.11 ± 0.44 82.06 ± 0.37 82.46 ± 0.52 82.14 ± 0.26
DenseNet169 [7] 91.93 ± 0.26 91.52 ± 0.30 91.19 ± 0.18 90.05 ± 0.28 90.16 ± 0.20
EfficientNet-B2 [10] 91.91 ± 0.22 91.57 ± 0.25 90.14 ± 0.25 91.04 ± 0.20 90.67 ± 0.26
Optimized DenseNet121 [8] 92.33 ± 0.35 92.25 ± 0.26 92.27 ± 0.24 91.89 ± 0.23 92.04 ± 0.13
AM-b Xception [9] 93.98 ± 0.23 92.78 ± 0.38 93.21 ± 0.26 92.91 ± 0.28 93.17 ± 0.18
ResNeXt50+IPAM 94.08 ± 0.11 93.69 ± 0.08 93.80 ± 0.14 94.01 ± 0.22 93.32 ± 0.30

Figure 6. Confusion matrix for ResNeXt50+IPAM based on TrashIVL-12.

6. Conclusions

In this work, we have presented a comprehensive approach to automated recyclable
trash sorting from a dataset and algorithmic perspective. First, we introduce TrashIVL, which
is a dataset comprising five classes of recyclable trash. Images of TrashIVL are collected
from public datasets by selectively excluding images without background. To enable fine-
grained recycling, TrashIVL can be further subdivided into 12 classes. Then, we introduce
the integrated parallel attention module (IPAM) to assist CNNs in reducing interference from
the image background. IPAM is a parallel-connected channel–spatial attention. It scales and
adjusts normalized features so that the model adaptively learns the importance of different
features. After that, we construct the recyclable trash sorting network by inserting IPAM into
ResNeXt50. This network achieves a sorting accuracy of 97.42% on TrashIVL-5 and 94.08% on
TrashIVL-12, demonstrating its effectiveness in trash sorting.
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In the future, we will continue to collect more recyclable trash images to expand
TrashIVL. Meanwhile, we will further optimize IPAM and explore its classification effect
on other trash datasets.
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