Skip to main content
. 2024 Oct 4;24(19):6434. doi: 10.3390/s24196434

Table 3.

Comparison of different backbones with and without IPAM for trash sorting.

Datasets Models Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)
TrashIVL-5 ResNet50 [31] 96.13 ± 0.18 95.57 ± 0.11 94.97 ± 0.23 95.65 ± 0.21 95.61 ± 0.16
ResNet50+IPAM 96.22 ± 0.12 96.02 ± 0.26 95.09 ± 0.18 95.68 ± 0.26 96.02 ± 0.08
EfficientNet-B7 [32] 95.12 ± 0.07 94.40 ± 0.12 94.47 ± 0.05 94.57 ± 0.02 93.55 ± 0.11
EfficientNet-B7+IPAM 95.35 ± 0.18 94.89 ± 0.14 94.22 ± 0.23 94.65 ± 0.28 94.68 ± 0.17
DenseNet121 [33] 96.01 ± 0.12 95.52 ± 0.10 95.80 ± 0.15 95.46 ± 0.08 94.83 ± 0.12
DenseNet121+IPAM 97.08 ± 0.15 96.80 ± 0.17 96.08 ± 0.19 96.55 ± 0.15 96.52 ± 0.09
Xception [34] 96.24 ± 0.04 95.54 ± 0.04 95.02 ± 0.05 95.75 ± 0.14 95.64 ± 0.07
Xception+IPAM 97.36 ± 0.11 96.82 ± 0.19 96.38 ± 0.15 96.90 ± 0.20 96.85 ± 0.12
ResNeXt50 [25] 96.25 ± 0.07 95.72 ± 0.12 95.13 ± 0.09 95.82 ± 0.19 95.76 ± 0.06
ResNeXt50+IPAM 97.42 ± 0.14 96.88 ± 0.09 96.36 ± 0.18 97.12 ± 0.16 96.99 ± 0.11
TrashIVL-12 ResNet50 [31] 91.62 ± 0.42 90.86 ± 0.42 90.57 ± 0.47 89.58 ± 0.85 90.04 ± 0.61
ResNet50+IPAM 92.22 ± 0.36 91.85 ± 0.39 91.28 ± 0.40 90.09 ± 0.58 91.12 ± 0.48
EfficientNet-B7 [32] 91.55 ± 0.08 91.78 ± 0.44 91.54 ± 0.24 90.29 ± 0.10 90.73 ± 0.09
EfficientNet-B7+IPAM 92.10 ± 0.20 92.02 ± 0.18 91.89 ± 0.26 91.08 ± 0.32 91.96 ± 0.29
DenseNet121 [33] 90.57 ± 0.45 89.90 ± 0.76 89.99 ± 0.59 88.42 ± 0.62 89.38 ± 0.50
DenseNet121+IPAM 91.68 ± 0.26 90.06 ± 0.39 90.28 ± 0.44 90.06 ± 0.50 90.88 ± 0.38
Xception [34] 91.93 ± 0.22 91.12 ± 0.35 91.65 ± 0.28 90.38 ± 0.30 90.15 ± 0.38
Xception+IPAM 93.20 ± 0.16 92.88 ± 0.20 92.59 ± 0.28 92.02 ± 0.16 91.68 ± 0.28
ResNeXt50 [25] 92.16 ± 0.47 91.54 ± 0.36 91.17 ± 0.52 90.41 ± 0.72 90.82 ± 0.51
ResNeXt50+IPAM 94.08 ± 0.11 93.69 ± 0.08 93.80 ± 0.14 94.01 ± 0.22 93.32 ± 0.30