Table 6.
Dataset | Attention | Models | Accuracy (%) | Recall (%) | Kappa (%) | Precision (%) | F1-Score (%) |
---|---|---|---|---|---|---|---|
TrashIVL-5 | CBAM [26] | ResNeXt50+SAM | 96.12 ± 0.15 | 95.62 ± 0.17 | 94.96 ± 0.19 | 95.63 ± 0.20 | 95.66 ± 0.25 |
NAM [12] | ResNeXt50+SAM | 96.28 ± 0.26 | 95.76 ± 0.34 | 95.78 ± 0.33 | 95.83 ± 0.32 | 95.17 ± 0.33 | |
IPAM | ResNeXt50+SAM | 96.31 ± 0.21 | 95.74 ± 0.27 | 95.21 ± 0.27 | 95.83 ± 0.26 | 95.96 ± 0.24 | |
TrashIVL-12 | CBAM [26] | ResNeXt50+SAM | 93.71 ± 0.26 | 93.00 ± 0.38 | 92.91 ± 0.29 | 92.71 ± 0.11 | 92.81 ± 0.23 |
NAM [12] | ResNeXt50+SAM | 93.98 ± 0.30 | 93.44 ± 0.46 | 93.21 ± 0.34 | 93.28 ± 0.41 | 93.22 ± 0.41 | |
IPAM | ResNeXt50+SAM | 94.01 ± 0.11 | 93.53 ± 0.37 | 93.24 ± 0.11 | 93.40 ± 0.07 | 93.22 ± 0.12 |