Skip to main content
. 2024 Oct 4;24(19):6434. doi: 10.3390/s24196434

Table 8.

Comparison of trash sorting models.

Datasets Models Accuracy (%) Recall (%) Kappa (%) Precision (%) F1-Score (%)
TrashNet AlexNet [6] 90.08 ± 0.38 88.65 ± 0.40 87.52 ± 0.28 87.37 ± 0.45 87.81 ± 0.52
DenseNet169 [7] 95.75 ± 0.29 95.39 ± 0.37 94.77 ± 0.35 95.04 ± 0.33 94.62 ± 0.33
EfficientNet-B2 [10] 94.13 ± 0.20 93.56 ± 0.36 92.78 ± 0.22 92.88 ± 0.30 93.17 ± 0.26
Optimized DenseNet121 [8] 94.94 ± 0.22 94.25 ± 0.86 93.77 ± 0.28 93.95 ± 0.50 93.77 ± 0.42
AM-b Xception [9] 94.57 ± 0.35 94.07 ± 0.34 93.32 ± 0.42 93.63 ± 0.60 93.34 ± 0.85
ResNeXt50+IPAM 96.05 ± 0.14 95.50 ± 0.43 94.94 ± 0.26 94.50 ± 0.17 95.16 ± 0.17
TrashIVL-5 AlexNet [6] 88.86 ± 0.33 87.16 ± 0.48 87.15 ± 0.39 87.21 ± 0.37 85.56 ± 0.43
DenseNet169 [7] 96.15 ± 0.18 95.63 ± 0.11 95.76 ± 0.12 95.82 ± 0.25 95.26 ± 0.23
EfficientNet-B2 [10] 96.22 ± 0.14 95.65 ± 0.06 95.74 ± 0.08 95.85 ± 0.98 95.10 ± 0.18
Optimized DenseNet121 [8] 93.46 ± 0.91 93.93 ± 1.92 94.42 ± 1.38 94.46 ± 1.11 93.49 ± 1.13
AM-b Xception [9] 96.10 ± 0.18 95.31 ± 0.19 95.47 ± 0.25 95.66 ± 0.31 94.94 ± 0.23
ResNeXt50+IPAM 97.42 ± 0.14 96.88 ± 0.09 96.36 ± 0.18 97.12 ± 0.16 96.99 ± 0.11
TrashIVL-12 AlexNet [6] 84.16 ± 0.23 82.11 ± 0.44 82.06 ± 0.37 82.46 ± 0.52 82.14 ± 0.26
DenseNet169 [7] 91.93 ± 0.26 91.52 ± 0.30 91.19 ± 0.18 90.05 ± 0.28 90.16 ± 0.20
EfficientNet-B2 [10] 91.91 ± 0.22 91.57 ± 0.25 90.14 ± 0.25 91.04 ± 0.20 90.67 ± 0.26
Optimized DenseNet121 [8] 92.33 ± 0.35 92.25 ± 0.26 92.27 ± 0.24 91.89 ± 0.23 92.04 ± 0.13
AM-b Xception [9] 93.98 ± 0.23 92.78 ± 0.38 93.21 ± 0.26 92.91 ± 0.28 93.17 ± 0.18
ResNeXt50+IPAM 94.08 ± 0.11 93.69 ± 0.08 93.80 ± 0.14 94.01 ± 0.22 93.32 ± 0.30