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Abstract

Total lung volume (TLV) at full inspiration is a parameter of significant interest in pulmonary 

physiology but requires computed tomography (CT) scanning of the full axial extent of the lung. 

There is a growing interest to infer TLV from cardiac CT scans, which are much more widely 

available in epidemiologic studies. In this study, we present an original approach to train a 

multi-view convolutional neural network (CNN) model to infer TLV from cardiac CT scans, which 

visualize about 2/3rd of the lung volume. Supervised learning is used, exploiting paired full-lung 

and cardiac CT scans in the Multi-Ethnic Study of Atherosclerosis (MESA). Our results show that 

our network outperforms existing regression models for TLV estimation, and achieves accuracy 

and reproducibility comparable to the scan-rescan reproducibility of TLV on full-lung CT.
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1. INTRODUCTION

Total lung capacity (TLC), defined as lung volume at full inspiration, is associated with 

chronic obstructive pulmonary disease (COPD) risk [1], disease severity [2], respiratory 

mortality [3-6]. TLC is usually measured by body plethysmography or tracer gas dilution in 

the pulmonary function laboratory, but accessibility compared with computed tomography 

(CT) is limited. Alternatively, total lung volume (TLV) can be measured on inspiratory 

full-lung computed tomography (CT) [7, 8]. TLV differs slightly from TLC due to technical 

factors [9, 10] but is highly correlated with TLC and informative of pathophysiology. 

Sample sizes for reference equations for TLV are already larger than most for TLC [11]; 

further, TLV is a critical component of CT-assessment of dysanapsis, defined as the ratio of 

airway caliber to TLV, which is the strongest known predictor of COPD [1] and is implicated 

in risk for and sequelae of respiratory infections, including potentially severe COVID-19 and 

post-acute sequelae of COVID-19 (PASC).

The Collaborative Cohort of Cohorts COVID-19 Study (C4R) has ascertained COVID-19 

and PASC risk in 14 NIH-funded cohort studies comprising 53,143 participants [12]. The 

C4R CT study is measuring TLV and dysanapsis on CT scans acquired in 10 of these 

cohorts, comprising 12,459 full-lung CT scans and 13,752 cardiac scans with all but one 

cohort, the Multi-Ethnic Study of Atherosclerosis (MESA) [13], acquiring either full-lung or 

cardiac CT scans. In contrast to full-lung CT, cardiac CT scans are cropped to the pulmonary 

trunk superiorly and the cardiac apex interiorly, and include roughly 2/3 of the lung volume 

(Fig. 1) [14]. An accurate and reliable measure of TLV from cardiac CT scans would 

therefore approximately double the sample size for C4R CT investigations.

While rough estimates of TLV have been demonstrated by least-squares regression of 

cardiac-CT-imaged lung volume against TLV with or without demographic covariates [14], 

this correlation is limited by scan-rescan variability in TLV [15], variation between cardiac 

and full-lung imaging protocols, and the unknown volume outside the cardiac field of view. 

A more accurate estimate of TLV from cardiac CT would be highly preferred; moreover, 

recent reports have shown that deep-learning models can effectively estimate TLV from 

chest radiographs [16], which is a simplified version of our use case where the full lung 

fields are visible. We therefore hypothesized that a deep-learned model for TLV estimation 

which uses the geometry of the imaged lung and anatomic cues from the cardiac scan will 

significantly outperform regression on the volume observed.

To that end, in this work we use the full-lung and cardiac CT scans acquired at the 

same imaging session in MESA Exam 5 to design and validate a multi-view CNN model 

for inferring TLV from lung silhouettes derived from cardiac scans. We additionally 

demonstrate the reproducibility of our TLV estimate on paired cardiac CT scans, and 

compare the performance of our model to both existing regression-based inference, and 

compare it to previously published reports TLV reproducibility on repeated full-lung 

inspiratory CT.
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2. MATERIALS AND METHODS

2.1. Input data and pre-processing

MESA is a longitudinal, multicenter, population-based study that recruited 6,814 adults at 

six clinical centers ages 45-84 and free of clinical cardiovascular disease in 2000-2002. At 

Exams 1 (2000-2002) and 5 (2010-2012), cardiac computed tomography was acquired for 

all consenting study participants; two cardiac CT scans were acquired at the same scanning 

session at Exam 1. The MESA Lung Study acquired full-lung inspiratory CT in Exam 5 

with isotropic in-plane resolution between [0.4668, 0.9810] mm, slice spacing of 0.5mm and 

slice thickness 0.625 or 0.75 mm. Cardiac CT scans were acquired with in-plane resolution 

between [0.5469, 0.7813] mm, and slice spacing 2.4 mm, 2.5 mm or 3.0 mm, equal to 

slice thickness, from the carina to the cardiac apex. Lung segmentation was performed for 

full-lung scans by VIDA Diagnostics, Inc. (Coralville, IA, USA).

Available participants who had both cardiac and full-lung CT performed at Exam 5 

(n=2,182), were allotted to training, validation, and test sets in a 3:1:1 split with stratification 

by study site and quintile of TLV. Each CT volume and lung mask were padded to 

the maximum physical dimensions observed in MESA Exam 5, then downsampled to an 

array size of 224x224x224 voxels. Hounsfield intensities were clipped to +/−1024 HU and 

rescaled linearly to [−1,1]. Training examples were augmented by translation and left-right 

flipping with probability 0.5. From the resulting volumes, a three-channel input image of 

size 224x224x3 was obtained for the axial, coronal and sagittal planes, consisting of separate 

channels containing (1) the binary lung mask sum, (2) the maximum intensity projection, 

and (3) the mean intensity over the lung fields (Fig. 2B). All available paired cardiac CT 

scans from MESA Exam 1 (n = 6,077) were pre-processed in a similar fashion.

To compare cardiac and full-lung acquisitions, we aligned the image volumes along the 

superior-inferior axis using a previously described approach [17], cropped the full-lung 

scans to the cardiac field of view (Fig. 1), and calculated the cardiac-FOV lung volume on 

cropped full-lung scans.

2.2. Model architecture and training

A multi-view CNN model was trained in two stages (Fig. 2): (1) training convolutional 

feature extractors to independently estimate TLV in axial, sagittal, and coronal views, and 

(2) training a dense neural network to provide the final TLV estimate from the concatenated 

latent feature representations. The first stage (Fig. 2A) consists of residual convolutional 

blocks followed by max-pool downsampling. The convolutional section was followed by a 

global max-pooling operation and three fully-connected layers, and was trained to estimate 

TLV in liters. In the second stage (Fig. 2B), the weights of the convolutional layers were 

frozen, and the output of the global max-pooling layers in each view were concatenated and 

passed to four fully-connected layers again trained to estimate TLV. All components were 

trained using mean squared error loss function, ADAM optimizer and L2 regularization, and 

training for up to 200 epochs with early stopping conditioned on validation mean squared 

error. Learning rate and L2-weight were jointly optimized on the validation set by random 
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search of 20 iterations for each single-view CNN and 30 iterations for the multi-view. 

Network depth and breadth were empirically tuned to optimize test-set performance.

2.3. Statistical analysis

Model performance is summarized by the mean and standard deviation of the residuals on 

the test set, as well as R2 between predicted and ground-truth TLV. We used Bland-Altman 

analysis to evaluate accuracy, and linear regression to quantify the association between 

percentage of the lung fields visible, volume discrepancy between cardiac and full-lung 

imaging, and TLV prediction error. Test-set residual mean/SD and correlation of the model 

was compared to linear regression of TLV against (1) cardiac lung mask volume and (2) 

cropped full-lung mask volume.

3. RESULTS

The test-set residual mean/standard deviation and Pearson correlation are presented in Table 

1, for each component of our model, taking either the lung silhouette alone or all three 

channels as input. Relative performance of all models is determined by the residual standard 

deviation and Pearson correlation.

In both the three-channel and silhouette-only models, the volume estimate derived from the 

multi-view network outperforms that of the axial, coronal, or sagittal views alone. Inclusion 

of anatomic context through the maximum-intensity and mean-intensity projections led to 

an appreciable performance improvement for the multi-view-CNN TLV estimate. Test-set 

residual standard deviation and R2 reached 0 +/− 486 mL and 0.855, respectively, for the 

best-performing model, outperforming correlation between cardiac and full-lung volumes in 

MESA Exam 5 (residual SD 656 mL, R2 = 0.689) and comparing favorably to literature 

reports on the reproducibility of TLV measured by repeated full-lung CT (Table 2).

We observe that volumes derived from the cropped full-lung scans are on average larger 

by 228 mL than those measured on cardiac scans, suggestive of a systematic difference in 

inspiratory effort between the cardiac and full-lung acquisitions. Among full-lung scans, 

correlation between TLV and the cropped volume was notably higher. The proportion 

of TLV outside of the cardiac field of view, as assessed on the full-lung scan, was not 

significantly associated with prediction error of our model (R2 = 0.008, p = 0.074). However, 

percent emphysema assessed by hidden Markov measure field segmentation [18] on the 

full-lung imaging significantly affected prediction error (−243+/−479 mL vs. 44+/−474 mL 

for cases above and below 5 percent emphysema, respectively, p < 10−5).

Bland-Altman analysis (Fig. 3A) illustrates minimal fixed bias, and low but statistically 

significant proportional bias (β = −0.1342+/−0.019, p < 10−11), leading to under- and over-

estimation of TLV at high- and low-TLV outliers, respectively. The maximum prediction 

error, confidence bounds, and Pearson correlation all exceed the published performance 

of TLV estimates from chest radiography [16]. t-SNE plots of test-set examples (Fig. 3B) 

demonstrate that input images are ordered by TLV in a low-dimensional representation 

of the latent space of each branch of the network. Inference on repeated cardiac scans 

in MESA Exam 1, meanwhile, showed excellent reproducibility of the TLV estimate on 
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repeat imaging (residual SD 337 mL, R2=0.910, Fig. 4), exceeding the reproducibility of the 

imaged lung volume (residual SD 300 mL, R2 = 0.858).

4. DISCUSSION

In this work, we have designed a robust and reproducible deep-learned model for TLV 

estimation from cardiac CT scans which substantially outperforms regression methods. Our 

findings suggest that our TLV precision approaches the reproducibility of TLV from direct 

measurement on full-lung CT [15], and outperforms deep-learned TLV estimates from chest 

X-ray with full visualization of the lung fields [16].

Error in TLV estimation from cardiac CT can be decomposed into (1) uncertainty in TLV 

based on the partial image available in the cardiac scan, (2) protocol differences between 

the cardiac and full-lung acquisition, and (3) scan-rescan reproducibility of TLV due to 

varying inspiration levels. The strong correlation between TLV and cropped lung volume on 

full-lung scans (Table 2), as well as the independence of prediction error and the fraction 

of lung outside the scan field of view, suggest that the geometry of the full lung can be 

accurately inferred from a partial image. Any systematic protocol-specific variation between 

cardiac and full-lung scans can similarly be accounted for by our approach. Scan-rescan 

reproducibility, however, imposes a fundamental limit on the accuracy of the TLV estimate, 

as the uncertainty in the deep-learned measure will always equal or exceed the uncertainty 

in the measures used as ground-truth. An alternative training approach for TLV estimation 

would involve cropping and downsampling images obtained from full-lung HRCT, avoiding 

uncertainty in the ground-truth TLV used for training. However, in preliminary investigation, 

we found that this approach generalized poorly to cardiac CT data, most likely due to 

protocol incompatibility.

In our proposed framework, we observed a bias in volume estimates at very high and 

low TLV (Figure 3). This variance will be addressed in a future study. In addition, 

ablation studies, testing each combination of input channel and imaging plane, will enhance 

explainability by quantifying the contribution of each channel and view to the final TLV 

estimate. Perhaps most importantly, the relative underestimation of TLV in participants 

with significant emphysema highlights the need to characterize and correct for the effect 

of clinical and demographic covariates on estimated TLV. We will consider improving our 

model predictive power and generalizability by adjusting our estimated TLV for participant 

demographics, scanner manufacturer, pulmonary emphysema, and COPD status and severity.

5. COMPLIANCE WITH ETHICAL STANDARDS

Institutional review board approval was obtained for all study activities. Written informed 

consent was obtained from all participants.
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Figure 1. 
3-D rendering of cardiac (left) and full-lung (right) CT scans for a representative MESA 

Exam 5 participant, with lung segmentations. Total lung volume (TLV) is calculated by 

summation over the lung mask on the full-lung scan.
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Figure 2: Schematic of our multi-view CNN model.
(A) for each imaging plane, a separate CNN composed of alternating residual and max-

pooling blocks is trained to estimate TLV from the single view. (B) The three planar CNNs 

are frozen (green dashes), and their bottleneck outputs are concatenated and passed to dense 

layers to generate the final TLV estimate. Models are trained on either the lung silhouette 

alone (input, left column) or on the lung silhouette, MIP (center), and lung mean intensity 

(right).
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Figure 3: 
(A) Bland-Altman plot for test-set predicted and ground-truth TLV (n = 431), from the 

best-performing network. Solid line denotes the mean residual, while dashed lines denote 

the 95% confidence interval. (B) t-SNE plots of the latent-space representation of test-set 

examples for the single views and the multi-view CNNs, color-coded by TLV.
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Figure 4: 
Scatter plot of (A) inferred TLV, (B) lung mask volume for paired MESA Exam 1 scans 

(n = 6,077). Dashed lines denote the least-squares fit, while the solid lines denote the 95% 

prediction interval on the fitted line. Regression slope is reported with 95% confidence 

interval for both cases.
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Table 2:

Residual mean/SD and R2 for volumes computed in MESA Exam 5, and literature reference values for TLV 

reproducibility. “CAC” = cardiac scan; “FL” = “full-lung”.

Comparison Residual mean/
SD (mL) R2

CAC vs. TLV, regression 0 +/− 656 0.689

Cropped FL vs. TLV, regression 0 +/− 304 0.935

CAC-estimated vs. ground-truth TLV 0 +/− 486 0.855

CAC vs. cropped FL volume, observed −228 +/− 473 0.715

TLV reproducibility, reported [18] −10 +/− 440 0.818
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