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Abstract

Analyzing vast textual data and summarizing key information from electronic health records 

imposes a substantial burden on how clinicians allocate their time. Although large language 

models (LLMs) have shown promise in natural language processing (NLP) tasks, their 

effectiveness on a diverse range of clinical summarization tasks remains unproven. Here we 

applied adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks: 

radiology reports, patient questions, progress notes and doctor–patient dialogue. Quantitative 

assessments with syntactic, semantic and conceptual NLP metrics reveal trade-offs between 

models and adaptation methods. A clinical reader study with 10 physicians evaluated summary 

completeness, correctness and conciseness; in most cases, summaries from our best-adapted 

LLMs were deemed either equivalent (45%) or superior (36%) compared with summaries from 

medical experts. The ensuing safety analysis highlights challenges faced by both LLMs and 

medical experts, as we connect errors to potential medical harm and categorize types of fabricated 

information. Our research provides evidence of LLMs outperforming medical experts in clinical 

text summarization across multiple tasks. This suggests that integrating LLMs into clinical 

workflows could alleviate documentation burden, allowing clinicians to focus more on patient 

care.

Documentation plays an indispensable role in healthcare practice. Currently, clinicians 

spend a substantial amount of time summarizing vast amounts of textual information—

whether it be compiling diagnostic reports, writing progress notes or synthesizing a patient’s 

treatment history across different specialists1–3. Even for experienced physicians with a high 

level of expertise, this intricate task naturally introduces the possibility for errors, which can 

be detrimental in healthcare where precision is paramount4–6.

The widespread adoption of electronic health records has expanded clinical documentation 

workload, directly contributing to increasing stress and clinician burnout7–9. Recent data 

indicate that physicians can expend up to 2 hours on documentation for each hour of patient 

interaction10. Similarly, documentation responsibilities for nurses can consume up to 60% of 

their time and account for considerable work stress11–13. These tasks divert attention from 

direct patient care, leading to worse outcomes for patients and decreased job satisfaction for 

clinicians2,14–16.

Large language models (LLMs) have gained remarkable traction, leading to widespread 

adoption of models such as ChatGPT17, which excel at information retrieval, nuanced 

understanding and text generation18,19. Although LLM benchmarks for general natural 

language processing (NLP) tasks exist20,21, they do not evaluate performance on relevant 

clinical tasks. Addressing this limitation presents an opportunity to accelerate the process of 

clinical text summarization, hence alleviating documentation burden and improving patient 

care.
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Crucially, machine-generated summaries must be non-inferior to those of seasoned 

clinicians, especially when used to support sensitive clinical decision-making. Previous work 

has demonstrated potential across clinical NLP tasks22,23, adapting to the medical domain 

by training a new model24,25, fine-tuning an existing model26,27 or supplying task-specific 

examples in the model prompt27,28. However, adapting LLMs to summarize a diverse set of 

clinical tasks has not been thoroughly explored nor has non-inferiority to medical experts 

been achieved.

With the overarching objective of bringing LLMs closer to clinical readiness, we 

demonstrate here the potential of these models for clinical text summarization. Our 

evaluation framework (Fig. 1) follows a three-step process: (1) use quantitative NLP 

metrics to identify the best model and adaptation method across those selected on four 

summarization tasks; (2) conduct a clinical reader study with 10 physicians comparing the 

best LLM summaries to medical expert summaries across the key attributes of completeness, 

correctness and conciseness; and (3) perform a safety analysis of examples, potential 

medical harm and fabricated information to understand challenges faced by both models 

and medical experts. This framework aims to guide future enhancements of LLMs and their 

integration into clinical workflows.

Results

Constructing prompt anatomy

We structured prompts (Fig. 2) by following best practices29,30 and evaluating a handful 

of options for model expertise and task instructions. Figure 2 also illustrates the effect of 

model expertise on GPT-3.5. For example, we achieved better performance by nudging the 

model toward medical expertise compared to specializing in wizardry or having no specific 

expertise at all. This illustrates the value of relevant context in achieving better outcomes 

for the target task. We also explored the temperature hyperparameter, which adjusts the 

LLM’s conditional probability distributions during sampling, hence affecting how often the 

model will output less likely tokens or individual units of text. Higher temperatures lead to 

more randomness and ‘creativity’, whereas lower temperatures produce more deterministic 

outputs. After searching over temperature values {0.1, 0.5, 0.9} using GPT-3.5, Fig. 2 

demonstrates that the lowest value, 0.1, performed best. We, thus, set temperature to this 

value for all models. Intuitively, a lower value seems appropriate given our goal of factually 

summarizing text with a high aversion to factually incorrect text.

Identifying the best model/method

Following Fig. 1, we identified the best model/method across four summarization tasks 

comprising six datasets (Extended Data Table 1). This includes eight LLMs described 

in Extended Data Table 2: six open-source (FLAN-T5 (ref. 31), FLAN-UL2 (ref. 32), 

Alpaca33, Med-Alpaca34, Vicuna35 and Llama-2 (ref. 36)) and two proprietary (GPT-3.5 

(ref. 37) and GPT-4 (ref. 38)). For adapting each model to a particular summarization 

task, we considered two proven adaptation strategies: in-context learning (ICL39), which 

adapts by including examples within the model prompt, and quantized low-rank adaptation 

(QLoRA40), which adapts by fine-tuning a subset of model weights on examples.
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Impact of domain-specific fine-tuning.

When considering which open-source models to evaluate, we first assessed the benefit of 

fine-tuning open-source models on medical text. For example, Med-Alpaca is a version of 

Alpaca that was further instruction-tuned with medical question and answer (Q&A) text, 

consequently improving performance for the task of medical question–answering. Figure 3a 

compares these models for our task of summarization, showing that most data points are 

below the dashed lines, denoting equivalence. Hence, despite Med-Alpaca’s adaptation for 

the medical domain, it actually performed worse than Alpaca for our tasks of clinical text 

summarization, highlighting a distinction between domain adaptation and task adaptation. 

With this in mind, and considering that Alpaca is known to perform worse than our other 

open-source autoregressive models, Vicuna and Llama-2 (refs. 21,35), for simplicity we 

excluded Alpaca and Med-Alpaca from further analysis.

Comparison of adaptation strategies.

Next, we compared ICL versus QLoRA across the remaining open-source models using 

the Open-i radiology reports dataset in Fig. 3b and the patient health questions dataset 

in Extended Data Fig. 1. We chose these datasets because their shorter context lengths 

allow for training with lower computational cost. FLAN-T5 emerged as the best-performing 

model with QLoRA. QLoRA typically outperformed ICL with the better models (FLAN-T5 

and Llama-2); given a sufficient number of in-context examples, however, most models 

surpassed even the best QLoRA fine-tuned model, FLAN-T5 (Extended Data Fig. 2). 

FLAN-T5 (2.7B) eclipsed its fellow sequence-to-sequence (seq2seq) model, FLAN-UL2 

(20B), despite being an older model with almost 10× fewer parameters.

Effect of context length for ICL.

Figure 3c displays MEDCON41 scores, which capture the quality of summaries with respect 

to medical concepts. These scores are plotted for all models against number of in-context 

examples, up to the maximum number of examples permitted by each model and dataset. 

This graph also includes the best-performing model (FLAN-T5) with QLoRA as a reference, 

depicted by a horizontal dashed line. Compared to prompting a model without examples 

(zero-shot prompting), adapting with even one example considerably improved performance 

in almost all cases, underscoring the importance of adaptation methods. Although ICL and 

QLoRA were competitive for open-source models, proprietary models GPT-3.5 and GPT-4 

far outperformed other models and methods given sufficient in-context examples. For a 

similar graph across all metrics, see Extended Data Fig. 2.

Head-to-head model comparison.

Figure 3d compares models using win rates—that is, the head-to-head winning percentage of 

each model combination across the same set of samples. In other words, for what percentage 

of samples do model A’s summaries have a higher score than model B’s summaries? 

Although FLAN-T5 was more competitive for syntactic metrics, such as BLEU42, this 

model is constrained to a shorter context length of 512 (Extended Data Table 2).
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Best model/method.

We deemed the best model and method to be GPT-4 (32,000 context length) with 

a maximum allowable number of in-context examples, hereon identified as the best-

performing model.

Analyzing reader study results

Given our clinical reader study overview (Fig. 4a), pooled results across 10 physicians (Fig. 

4b) demonstrate that summaries from the best-adapted model (GPT-4 using ICL) were more 

complete and contained fewer errors compared to medical expert summaries, which were 

created either by medical doctors during clinical care or by a committee of medical doctors 

and experts (Methods).

The distributions of reader responses in Fig. 4c show that medical expert summaries 

were preferred in only a minority of cases (19%), whereas, in a majority, the best 

model was either non-inferior (45%) or preferred (36%). Extended Data Table 3 contains 

scores separated by individual readers and affirms the reliability of scores across readers 

by displaying positive intra-reader correlation values. Based on physician feedback, we 

undertook a qualitative analysis to illustrate strengths and weaknesses of summaries by the 

model and medical experts (Fig. 5 and Extended Data Figs. 3 and 4).

We observed that the best model summaries were more complete, on average, than medical 

expert summaries, achieving statistical significance across all three summarization tasks 

with P < 0.001 (Fig. 4b). Lengths of summaries were similar between the model and 

medical experts for all three datasets: 47 ± 24 versus 44 ± 22 tokens for radiology reports, 

15 ± 5 versus 14 ± 4 tokens for patient questions and 29 ± 7 versus 27 ± 13 tokens 

for progress notes. Hence, the model’s advantage in completeness is not simply a result 

of generating longer summaries. We provide intuition for completeness by investigating 

a specific example in progress notes summarization. In Extended Data Fig. 3, the model 

correctly identified conditions that were missed by the medical expert, such as hypotension 

and anemia. Although the model was more complete than the expert in generating its 

progress note summary, it also missed historical context (a history of hypertension).

Regarding correctness, the best model generated significantly fewer errors (P < 0.001) 

compared to medical expert summaries (Fig. 4b) overall and on two of three summarization 

tasks. As an example of the model’s superior correctness performance on the radiology 

report summarization task, we observe that it avoided common medical expert errors related 

to lateral distinctions (right versus left; Fig. 5). For the problem list summarization task, 

Extended Data Fig. 3 reveals an intriguing case: during the blinded study, the physician 

reader erroneously assumed that a hallucination—in this case, the incorrect inclusion of 

urinary tract infection—was made by the model. In this case, the medical expert was 

responsible for the hallucination. This instance underscores the point that even medical 

experts, not just LLMs, can hallucinate. Despite this promising performance, the model was 

not perfect across all tasks. We see a clear example in Extended Data Fig. 3 where the model 

mistakenly generated (hallucinated) several absent conditions, such as eosinophilia.
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Regarding conciseness, the best model performed significantly better than medical experts 

(P < 0.001) overall and on two tasks, whereas, for radiology reports, it performed similarly 

to medical experts. We note that the model’s summaries are more concise while concurrently 

being more complete. Figure 5 provides an example in which the model’s summary includes 

correct information that readers deemed not important.

We then conducted a supplemental reader study connecting summarization errors to medical 

harm, inspired by the Agency for Healthcare Research and Quality (AHRQ)’s harm scale43. 

The results of this harm study (Fig. 4d) indicate that the medical expert summaries would 

have both a higher likelihood (14%) and a higher extent (22%) of possible harm compared to 

the summaries from the best model (12% and 16%, respectively).

Fabricated information

Fabricated information, or factually incorrect text, poses a substantial obstacle to the clinical 

integration of LLMs given the critical need for accuracy in medical applications. Our 

reader study results for correctness (Fig. 4b) indicate that the best model produces fewer 

instances of fabricated information than medical experts. Further, the need for accuracy 

motivates a more nuanced understanding of correctness for clinical text summarization. As 

such, we define three types of fabricated information: (1) misinterpretations of ambiguity; 

(2) factual inaccuracies: modifying existing facts to be incorrect; and (3) hallucinations: 

inventing new information that cannot be inferred from the input text. We found that the 

model committed misinterpretations, inaccuracies and hallucinations on 6%, 2% and 5% 

of samples, respectively, compared to 9%, 4% and 12%, respectively, by medical experts. 

Given the model’s lower error rate in each category, this suggests that incorporating LLMs 

could actually reduce fabricated information in clinical practice.

Connecting quantitative and clinical evaluations

Figure 6 captures the correlation between NLP metrics and physicians’ preferences. These 

values are calculated as the Spearman correlation coefficient between NLP metric scores 

and the magnitudes of reader scores. For correctness, the metrics BERTScore44 (measuring 

semantics) and MEDCON41 (measuring medical concepts) correlated most strongly with 

reader preference; meanwhile, the BLEU42 metric (measuring syntax) correlated most with 

completeness and least with conciseness. However, the low magnitude of correlation values 

(approximately 0.2) underscores the need to go beyond NLP metrics with a clinical reader 

study when assessing clinical readiness.

Separately, we note the inclusion of additional results analyzing model size, demonstrating 

the dialogue task and comparing to summarization baselines in Extended Data Figs. 5 and 6 

and Extended Data Table 4, respectively.

Discussion

In this research, we evaluated methods for adapting LLMs to summarize clinical text, 

analyzing eight models across a diverse set of summarization tasks. Our quantitative results 

underscore the advantages of adapting models to specific tasks and domains. The ensuing 

clinical reader study demonstrates that LLM summaries are often preferred over medical 
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expert summaries due to higher scores for completeness, correctness and conciseness. 

The subsequent safety analysis explores qualitative examples, potential medical harm and 

fabricated information to demonstrate the limitations of both LLMs and medical experts. 

Evidence from this study suggests a potential avenue for LLMs to reduce documentation 

burden for clinicians.

We first highlight the importance of ‘prompt engineering’, or modifying and tuning the 

input prompt to improve model performance. This is well reflected in our evaluation of 

conciseness. We specified the desired summary length in the instruction—for example, with 

‘one question of 15 words or less’ for summarizing patient questions (Extended Data Table 

1). Without this instruction, the model might generate lengthy outputs, occasionally even 

longer than the input text. When considering conciseness scores (Fig. 4b), radiology reports 

were the only task in which physicians did not prefer the best model’s summaries to the 

medical experts. This could be attributed to the relatively vague length specification in the 

radiology reports instruction—that is, ‘…with minimal text’—whereas the other two task 

instructions quantify length.

Overall, our best-adapted model achieved non-inferior results to medical experts while 

performing a basic search across 1–2 options for each task instruction (Extended Data Table 

1). Prompt phrasing and model temperature can have a considerable effect on LLM output, 

as demonstrated in the literature45,46 and in Fig. 2. This suggests that results could be further 

improved with additional prompt engineering and model hyperparameters, which is subject 

to future studies. In addition, beyond the scope of this manuscript, there is further potential 

to improve accuracy through incorporating checks by human operators and checks by other 

LLMs or using a model ensemble47,48.

Model performance generally improved with more context. Even one example provided 

considerable benefit compared to zero-shot prompting, underscoring the value of adaptation 

methods. Note that the number of allowable examples depends on the number of tokens 

per example and the model context length. This motivates future work to pursue more 

challenging tasks, such as summarizing longer documents or multiple documents of different 

types. Addressing these cases demands two key advancements: (1) extending model 

context length, potentially through multi-query aggregation or methods that increase context 

length49,50, and (2) introducing open-source datasets that include broader tasks and lengthier 

documents.

In terms of trade-offs between lightweight adaptation methods, while QLoRA fine-tuning 

performed similarly for some cases, ICL was the best overall, especially when including 

proprietary models GPT-3.5 and GPT-4. The proprietary nature of these models raises an 

interesting consideration for healthcare, where data and model governance are important, 

especially if summarization tools are cleared for clinical use by the Food and Drug 

Administration. This could motivate the use of fine-tuning methods on open-source models. 

Governance aside, ICL provides many benefits: (1) model weights are fixed, hence enabling 

queries of pre-existing LLMs, and (2) adaptation is feasible with even a few examples, 

whereas fine-tuning methods, such as QLoRA, typically require hundreds or thousands of 

examples.
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We consider trade-offs of different model types: autoregressive and seq2seq. Seq2seq 

models (FLAN-T5 and FLAN-UL2) performed very well on syntactical metrics, such as 

BLEU, but worse on others (Fig. 3d), suggesting that these models excel more at matching 

word choice than matching semantic or conceptual meaning. Note that seq2seq models are 

often constrained to much shorter context length than autoregressive models, such as GPT-4, 

because seq2seq models require the memory-intensive step of encoding the input sequence 

into a fixed-size context vector. Among open-source models, seq2seq models performed 

better than autoregressive models (Llama-2 and Vicuna) on radiology reports but worse on 

patient questions and progress notes (Fig. 3c). Given that these latter datasets have higher 

lexical variance (Extended Data Table 1) and more heterogeneous formatting compared 

to radiology reports, we hypothesize that autoregressive models may perform better with 

increasing data heterogeneity and complexity.

The evidence from our reader study suggests that adapting LLMs can outperform medical 

experts in terms of completeness, correctness and conciseness. When qualitatively analyzing 

summaries, we notice a few general trends. As implied by the completeness scores, the 

best-adapted model (GPT-4 using ICL) excelled at identifying and understanding the most 

relevant information from the source text. However, both the model and the medical experts 

faced challenges interpreting ambiguity, such as user queries in patient health questions. 

Consider example 1 in Extended Data Fig. 4, in which the input question mentioned 

‘diabetes and neuropathy’.

The model mirrored this phrasing verbatim, whereas the medical expert interpreted it 

as ‘diabetic neuropathy’. This highlights the model’s tendency toward a literal approach 

without interpretation, which may be either advantageous or limiting. In example 2 of 

Extended Data Fig. 4, the model simply reformulated the input question about tests 

and their locations, whereas the medical expert inferred a broader query about tests and 

treatments. In both cases, the model’s summaries leaned toward literalness, a trait that 

readers sometimes favored and sometimes did not. In future work, a systematic exploration 

of model temperature could further illuminate this trade-off.

Regarding general trends for our clinical NLP metrics, the syntactic metric BLEU 

provided the highest correlation with physician preference for completeness. Given that 

BLEU measures sequence overlap, this result seems reasonable, as more text provides 

more ‘surface area’ for overlap; more text also reduces the brevity penalty that BLEU 

applies on generated sequences, which are shorter than the reference42. In addition, the 

metrics BERTScore and MEDCON correlated most strongly with physician preference 

for correctness. This implies that the semantics (BERTScore) and concepts (MEDCON) 

measured by these metrics correspond to correctness more effectively than syntactic metrics 

BLEU and ROUGE-L51.

Many previous clinical NLP studies rely primarily on quantitative metrics for 

evaluation41,52–54. Given the critical nature of nuanced medical tasks, such as 

summarization, that typically have no objective solutions, including human experts in the 

evaluation process beyond quantitative metrics is crucial to demonstrate clinical readiness. 

To address this, there have been recent releases of expert evaluations for adjacent clinical 
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NLP tasks3,55. Other studies employ human experts to evaluate synthesized abstracts, 

demonstrating that NLP metrics are not sufficient to measure summary quality56. Aside 

from the low correlation values in Fig. 6, our reader study results in Fig. 4 also highlight 

another limitation of NLP metrics, especially as model-generated summaries become 

increasingly viable. These metrics rely on a reference (in our case, the medical expert), 

which we have demonstrated may contain errors. Hence, we suggest that human evaluation 

is essential when assessing the clinical feasibility of new methods. When human evaluation 

is not feasible, Fig. 6 suggests that syntactic metrics are better at measuring completeness, 

whereas semantic and conceptual metrics are better at measuring correctness.

The present study has several limitations that must be addressed in future research. First, 

we did not consider the inherently context-specific nature of summarization. For example, 

a gastroenterologist, a radiologist and an oncologist may have different preferences for 

summaries of a cancer patient with liver metastasis. Or perhaps an abdominal radiologist 

will want a different summary than a neuroradiologist. Furthermore, individual clinicians 

may prefer different styles or amounts of information. Although we did not explore such 

a granular level of adaptation, this may not require much further development: because the 

best model and method uses a handful of examples via ICL, one could plausibly adapt 

using examples curated for a particular specialty or clinician. Another limitation is that 

radiology report summaries from medical experts occasionally recommend further studies 

or refer to prior studies—for example, ‘… not significantly changed from prior’ in Fig. 5. 

These instances are out of scope for the LLM, as it does not have access to prior studies 

nor the purview to make recommendations. Hence, for our clinical reader study, physicians 

were told to disregard these phrases. However, future work can explore providing more 

context via prior reports and allow the LLM to make a treatment suggestion. An additional 

consideration for our study and other LLM studies, especially with proprietary models, is 

that it is not possible to verify whether a particular open-source dataset was included in 

model training. Although three of our datasets (MIMIC-CXR, MIMIC-III and ProbSum) 

require PhysioNet57 access to ensure safe data usage by third parties, this is no guarantee 

against data leakage. This complication highlights the need for validating results on internal 

data when possible. We further note the potential for LLMs to be biased58,59. Although our 

datasets do not contain demographic information, we advocate for future work to consider 

whether summary qualities have any dependence upon group membership.

The findings from our study demonstrate that adapting LLMs can outperform medical 

experts for clinical text summarization across the diverse range of documents that 

we evaluated. This suggests that incorporating LLM-generated candidate summaries 

could reduce documentation load, potentially leading to decreased clinician strain and 

improved patient care. Testing this hypothesis requires future prospective studies in clinical 

environments.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 
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details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591-024-02855-5.

Methods

LLMs

We investigated a diverse collection of transformer-based LLMs for clinical summarization 

tasks. This included two broad approaches to language generation: seq2seq models and 

autoregressive models. Seq2seq models use an encoder–decoder architecture to map the 

input text to a generated output, often requiring paired datasets for training. These models 

have shown strong performance in machine translation60 and summarization61. In contrast, 

the autoregressive models typically use only a decoder. They generate tokens sequentially

—where each new token is conditioned on previous tokens—thus efficiently capturing 

context and long-range dependencies. Autoregressive models are typically trained with 

unpaired data, and they are particularly useful for various NLP tasks, such as text generation, 

question–answering and dialogue interactions17,35.

We included prominent seq2seq models owing to their strong summarization performance61 

and autoregressive models owing to their state-of-the-art performance across general NLP 

tasks21. As shown in Extended Data Table 2, our choice of models varied widely with 

respect to number of parameters (2.7 billion to 175 billion) and context length (512 to 

32,000)—that is, the maximum number of input tokens a model can process. We organized 

our models into three categories:

Open-source seq2seq models.—The original T5 ‘text-to-text transfer transformer’ 

model62 demonstrated excellent performance in transfer learning using the seq2seq 

architecture. A derivative model, FLAN-T5 (refs. 31,63), improved performance via 

instruction prompt tuning. This T5 model family has proven effective for various clinical 

NLP tasks27,64. The FLAN-UL2 model32,31 was introduced recently, which features an 

increased context length (fourfold that of FLAN-T5) and a modified pre-training procedure 

called unified language learning (UL2).

Open-source autoregressive models.—The Llama family of LLMs36 has enabled the 

proliferation of open-source instruction-tuned models that deliver similar performance to 

GPT-3 (ref. 17) on many benchmarks despite their smaller sizes. Descendants of this original 

model have taken additional fine-tuning approaches, such as fine-tuning via instruction-

following (Alpaca33), medical Q&A data (Med-Alpaca34), user-shared conversations 

(Vicuna35) and reinforcement learning from human feedback (Llama-2 (ref. 36)). Llama-2 

allows for twofold longer context lengths (4,096) relative to the aforementioned open-source 

autoregressive models.

Our focus was primarily on the 7B-parameter tier of these models despite some models, 

such as Llama-2, having larger versions. The benefit of larger models is explored in 

Extended Data Fig. 5, which found this improvement marginal for Llama-2 (13B) compared 

to Llama-2 (7B). Although other open-source models might have slightly outperformed our 
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selections, this likely would not have substantially changed our analysis, especially because 

the clinical reader study employed a state-of-the-art proprietary model21.

Proprietary autoregressive models.—We include GPT-3.5 (ref. 37) and GPT-4 (ref. 

38), the latter of which has been regarded as state of the art on general NLP tasks21 

and has demonstrated strong performance on biomedical NLP tasks, such as medical 

examinations65–67. Both models offer significantly higher context length (16,384 and 

32,768) than open-source models. We note that, since sharing our work, GPT-4’s context 

length has been increased to 128,000.

Adaptation methods

We considered two proven techniques for adapting pre-trained, general-purpose LLMs to 

domain-specific tasks:

ICL.—ICL is a lightweight adaptation method that requires no altering of model weights; 

instead, one includes a handful of in-context examples directly within the model prompt62. 

This simple approach provides the model with context, enhancing LLM performance for a 

particular task or domain27,28. We implemented this by choosing, for each sample in our test 

set, the m nearest neighbors training samples in the embedding space of the PubMedBERT 

model68. Note that choosing ‘relevant’ in-context examples has been shown to outperform 

choosing examples at random69. For a given model and dataset, we used m = 2x examples, 

where x ∈ {0, 1, 2, 3,…, M} for M such that no more than 1% of the s = 250 samples were 

excluded due to prompts exceeding the model’s context length. Hence, each model’s context 

length limited the allowable number of in-context examples.

To demonstrate the benefit of adaptation methods, we included the baseline zero-shot 

prompting—that is m = 0 in-context samples.

QLoRA.—Low-rank adaptation (LoRA)70 has emerged as an effective, lightweight 

approach for fine-tuning LLMs by altering a small subset of model weights, often less 

than 0.1% (ref. 27). LoRA inserts trainable matrices into the attention layers; then, using 

a training set of samples, this method performs gradient descent on the inserted matrices 

while keeping the original model weights frozen. Compared to training model weights from 

scratch, LoRA is much more efficient with respect to both computational requirements 

and the volume of training data required. Recently, QLoRA40 was introduced as a more 

memory-efficient variant of LoRA, employing 4-bit quantization to enable the fine-tuning 

of larger LLMs given the same hardware constraints. This quantization negligibly impacts 

performance40; as such, we used QLoRA for all model training. Note that QLoRA could not 

be used to fine-tune proprietary models on our consumer hardware, as their model weights 

are not publicly available. Fine-tuning of GPT-3.5 via API was made available after our 

internal model cutoff date of 31 July 202371.

Data

To robustly evaluate LLM performance on clinical text summarization, we chose four 

distinct summarization tasks, comprising six open-source datasets. As depicted in Extended 
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Data Table 1, each dataset contained a varying number of samples, token lengths and lexical 

variance. Lexical variance is calculated as the ratio of unique words to total words across the 

entire dataset; hence, a higher ratio indicates less repetition and more lexical diversity. We 

describe each task and dataset below. For examples of each task, see Fig. 5 and Extended 

Data Figs. 3, 4 and 6.

Radiology reports.—Radiology report summarization takes as input the findings section 

of a radiology study containing detailed examination analysis and results. The goal is to 

summarize these findings into an impression section that concisely captures the most salient, 

actionable information from the study. We considered three datasets for this task, where both 

reports and findings were created by attending physicians as part of routine clinical care. 

Open-i72 contains de-identified narrative chest x-ray reports from the Indiana Network for 

Patient Care 10 database. From the initial set of 4,000 studies, Demner-Fushman et al.72 

selected a final set of 3,400 reports based on the quality of imaging views and diagnostic 

content. MIMIC-CXR73 contains chest x-ray studies accompanied by free-text radiology 

reports acquired at the Beth Israel Deaconess Medical Center between 2011 and 2016. For 

this study, we used a dataset of 128,000 reports69 pre-processed by the RadSum23 shared 

task at BioNLP 2023 (refs. 74,75). MIMIC-III76 contains 67,000 radiology reports spanning 

seven anatomies (head, abdomen, chest, spine, neck, sinus and pelvis) and two modalities: 

magnetic resonance imaging (MRI) and computed tomography (CT). This dataset originated 

from patient stays in critical care units of the Beth Israel Deaconess Medical Center between 

2001 and 2012. For this study, we used a pre-processed version via RadSum23 (refs. 74,75). 

Compared to x-rays, MRIs and CT scans capture more information at a higher resolution. 

This usually leads to longer reports (Extended Data Table 1), rendering MIMIC-III a more 

challenging summarization dataset than Open-i or MIMIC-CXR.

Patient questions.—Question summarization consists of generating a condensed question 

expressing the minimum information required to find correct answers to the original 

question77. For this task, we employed the MeQSum dataset77. MeQSum contains (1) 

patient health questions of varying verbosity and coherence selected from messages sent to 

the US National Library of Medicine and (2) corresponding condensed questions created 

by three medical experts such that the summary allows retrieving complete, correct answers 

to the original question without the potential for further condensation. These condensed 

questions were then validated by a medical doctor and verified to have high inter-annotator 

agreement. Due to the wide variety of these questions, MeQSum exhibited the highest 

lexical variance of our datasets (Extended Data Table 1).

Progress notes.—The goal of this task was to generate a ‘problem list’, or a condensed 

list of diagnoses and medical problems using the provider’s progress notes during 

hospitalization. For this task, we employed the ProbSum dataset78. This dataset, generated 

by attending internal medicine physicians during the course of routine clinical practice, 

was extracted from the MIMIC-III database of de-identified hospital intensive care unit 

(ICU) admissions. ProbSum contains (1) progress notes averaging more than 1,000 tokens 

and substantial presence of unlabeled numerical data—for example, dates and test results—

and (2) corresponding problem lists created by attending medical experts in the ICU. We 
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accessed these data via the BioNLP Problem List Summarization shared task75,79,80 and 

PhysioNet81.

Dialogue.—The goal of this task was to summarize a doctor–patient conversation into an 

‘assessment and plan’ paragraph. For this task, we employed the ACI-Bench dataset41,82–

84, which contains (1) 207 doctor–patient conversations and (2) corresponding patient 

visit notes, which were first generated by a seq2seq model and subsequently corrected 

and validated by expert medical scribes and physicians. Because ACI-Bench’s visit notes 

include a heterogeneous collection of section headers, we chose 126 samples containing an 

‘assessment and plan’ section for our analysis. Per Extended Data Table 1, this task entailed 

the largest token count across our six datasets for both the input (dialogue) and the target 

(assessment).

As we are not the first to employ these datasets, Extended Data Table 4 contains quantitative 

metric scores from other works25,27,41,52–54 that developed methods specific to each 

individual summarization task.

Experimental setup

For each dataset, we constructed test sets by randomly drawing the same s samples, where 

s = 250 for all datasets except dialogue (s = 100), which included only 126 samples in 

total. After selecting these s samples, we chose another s as a validation set for datasets, 

which incorporated fine-tuning. We then used the remaining samples as a training set for 

ICL examples or QLoRA fine-tuning.

We leveraged PyTorch for our all our experiments, which included the parameter-efficient 

fine-tuning84 and the generative pre-trained transformers quantization85 libraries for 

implementing QLoRA. We fine-tuned models with QLoRA for five epochs using the Adam 

optimizer with weight decay fix86. An initial learning rate of 1 × 10−3 was decayed linearly 

to 1 × 10−4 after a 100-step warm-up; we determined this configuration after experimenting 

with different learning rates and schedulers. To achieve an effective batch size of 24 on each 

experiment, we adjusted both individual batch size and number of gradient accumulation 

steps to fit on a single consumer GPU, a NVIDIA Quadro RTX 8000. All open-source 

models are available on HuggingFace87.

Quantitative metrics

We used well-known summarization metrics to assess the quality of generated summaries. 

BLEU42, the simplest metric, calculates the degree of overlap between the reference 

and generated texts by considering 1-gram to 4-gram sequences. ROUGE-L51 evaluates 

similarity based on the longest common subsequence; it considers both precision and 

recall, hence being more comprehensive than BLEU. In addition to these syntactic metrics, 

we employed BERTScore, which leverages contextual BERT embeddings to evaluate the 

semantic similarity of the generated and reference texts44. Lastly, we included MEDCON41 

to gauge the consistency of medical concepts. This employs QuickUMLS88, a tool that 

extracts biomedical concepts via string-matching algorithms89. MEDCON was restricted to 

relvant UMLS semantic groups (Anatomy, Chemicals & Drugs, Device, Disorders, Genes 
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& Molecular Sequences, Phenomena and Physiology). All four metrics ranged from [0, 

100] with higher scores indicating higher similarity between the generated and reference 

summaries.

Reader study

After identifying the best model and method via NLP quantitative metrics, we performed a 

clinical reader study across three summarization tasks: radiology reports, patient questions 

and progress notes. The dialogue task was excluded owing to the unwieldiness of a reader 

parsing many lengthy transcribed conversations and paragraphs; see Extended Data Fig. 6 

for an example and Extended Data Table 1 for the token count.

Our readers included two sets of physicians: (1) five board-certified radiologists to 

evaluate summaries of radiology reports and (2) five board-certified hospitalists (internal 

medicine physicians) to evaluate summaries of patient questions and progress notes. For 

each task, each physician viewed the same 100 randomly selected inputs and their A/B 

comparisons (medical expert versus the best model summaries), which were presented in 

a blinded and randomized order. An ideal summary would contain all clinically important 

information (‘completeness’) without any errors (‘correctness’) or superfluous information 

(‘conciseness’). Hence, we posed the following three questions for readers to evaluate using 

a five-point Likert scale.

• Completeness: ‘Which summary more completely captures important 

information?’ This compares the summaries’ recall—that is, the amount of 

clinically important detail retained from the input text.

• Correctness: ‘Which summary includes less false information?’ This compares 

the summaries’ precision—that is, instances of fabricated information.

• Conciseness: ‘Which summary contains less non-important information?’ This 

compares which summary is more condensed, as the value of a summary 

decreases with superfluous information.

To obfuscate any formatting differences between the model and medical expert summaries, 

we applied simple post-processing to standardize capitalization, punctuation, newline 

characters, etc. Figure 4e demonstrates the user interface for this study, which we created 

and deployed via Qualtrics.

Statistical analysis

Given these non-parametric, categorical data, we assessed the statistical significance of 

responses using a Wilcoxon signed-rank test with type 1 error rate = 0.05, adjusted for 

multiple comparisons using Bonferroni correction. We estimated intra-reader correlation 

based on a mean-rating, fixed-agreement, two-may mixed-effects model90 using the 

Pingouin package91. Additionally, readers were provided comment space to make 

observations for qualitative analysis.

Van Veen et al. Page 14

Nat Med. Author manuscript; available in PMC 2024 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Connecting errors to medical harm

We then conducted a supplemental reader study connecting summarization errors to medical 

harm, inspired by the AHRQ harm scale43. We selected radiology reports (nr = 27) 

and progress notes (nn = 44) samples that contained disparities in completeness and/or 

correctness between the best model and medical expert summaries. Here, disparities occur 

if at least one physician significantly preferred, or at least two physicians slightly preferred, 

one summary to the other. These summary pairs were then randomized and blinded. For 

each sample, we asked the following multiple-choice questions: ‘Summary A is more 

complete and/or correct than Summary B. Now, suppose Summary B (worse) is used in 

the standard clinical workflow. Compared to using Summary A (better), what would be 

the…’ (1) ‘… extent of possible harm?’ options: {none, mild or moderate harm, severe 

harm or death} and (2) ‘… likelihood of possible harm?’ options: {low, medium, high}. 

The percentages displayed in Fig. 4d were computed with respect to all samples, such that 

the subset of samples with similar A/B summaries (in completeness and correctness) were 

assumed to contribute no harm.

Connecting quantitative and clinical evaluations

We next outlined our calculation of correlation values between NLP metrics and clinical 

reader scores in Fig. 6. Note that, in this work, these tools measured different quantities: 

NLP metrics measured the similarity between two summaries, whereas reader scores 

measured which summary is better. Consider an example where two summaries are exactly 

the same: NLP metrics would yield the highest possible score (100), whereas clinical readers 

would provide a score of 0 to denote equivalence. As the magnitude of a reader score 

increases, the two summaries are increasingly dissimilar, yielding a lower quantitative metric 

score. Hence, the correlation values are calculated as the Spearman correlation coefficients 

between NLP metric scores and the magnitudes of the reader scores. Because these features 

are inversely correlated, for clarity we display the negative correlation coefficient values.

Statistics and reproducibility

When determining sample size, we used our best judgment based on the size of datasets 

and clinician time. Note that these models are new, and they were applied to a new set of 

tasks. Thus, there was no prior effect size available to guide our sample size estimates. For 

the quantitative experiments, our sample size of 250 was chosen to maximize the number 

of samples given constraints of dataset size and cost of computing resources. We deem 

this sufficient as it enabled reproducible results when running the same experiments with 

a different set of samples. Furthermore, our use of six datasets enhances the robustness of 

our experiments. Note that we reduced the temperature parameter of the LLMs to be near 

zero, hence reducing randomness in the generated output summaries. For the clinical reader 

study, our sample size of 100 comparisons per reader per task was chosen to maximize 

the number of comparisons that could be made in a reasonable amount of time, which we 

estimated as 10 h. We deem this sufficient as it enabled statistically significant results for 

many combinations of tasks and attributes. No data were excluded from the analyses.

Data, models and code are all publicly available (https://github.com/StanfordMIMI/clin-

summ). Internally, we verified reproducibility by achieving similar results across all six 
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datasets. Because the LLM temperature parameter is near zero, outputs have very little 

randomness and are, thus, reproducible. Additionally, we chose the smallest dataset––which 

consequently required the lowest cost of computational resources––and re-ran a set of 

experiments that rendered very similar quantitative metric scores. This provided confidence 

moving forward with datasets that required higher computational resources.

Regarding randomization, for the quantitative experiments, we randomly selected 250 test 

samples and then randomly divided remaining samples into training and validation sets. 

For the clinical reader study, we randomly selected 100 samples for comparison; these 

samples and the A/B comparisons within each sample are displayed in random order. 

Regarding blinding, for the clinical reader study, we presented, in a blinded manner, the 

A/B comparison of summaries from the model and human experts. To obfuscate any 

formatting differences between A and B, we applied simple post-processing to standardize 

capitalization, punctuation, newline characters, etc.

Ethics approval

The clinical reader study component of this research involved the participation of 

physicians. This study adhered to the principles outlined in the Declaration of Helsinki. 

Informed consent was obtained from each physician before their participation. This study 

used only retrospective, de-identified data that fell outside the scope of institutional review 

board oversight.

Extended Data

Extended Data Fig. 1 |. ICL vs. QLoRA.
Summarization performance comparing one in-context example (ICL) vs. QLoRA across all 

open-source models on patient health questions.
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Extended Data Fig. 2 |. Quantitative results across all metrics.
Metric scores vs. number of in-context examples across models and datasets. We also 

include the best model fine-tuned with QLoRA (FLAN-T5) as a horizontal dashed line.
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Extended Data Fig. 3 |. Annotation: progress notes.
Qualitative analysis of two progress notes summarization examples from the reader study. 

The table (lower right) contains reader scores for these examples and the task average across 

all samples.
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Extended Data Fig. 4 |. Annotation: patient questions.
Qualitative analysis of two patient health question examples from the reader study. The 

table (lower left) contains reader scores for these examples and the task average across all 

samples.

Extended Data Fig. 5 |. Effect of model size.
Comparing Llama-2 (7B) vs. Llama-2 (13B). The dashed line denotes equivalence, and each 

data point corresponds to the average score of s = 250 samples for a given experimental 

configuration, that is {dataset x m in-context examples}.
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Extended Data Fig. 6 |. Example: dialogue.
Example of the doctor-patient dialogue summarization task, including ‘assessment and plan’ 

sections generated by both a medical expert and the best model.

Extended Data Table 1 |

Datasets, task instructions

Model Context Parameters Proprietary? Seq2seq Autoreg.

FLAN-T5 512 2.7B - ✔ -

FLAN-UL2 2,048 20B - ✔ -

Alpaca 2,048 7B - - ✔

Med-Alpaca 2,048 7B - - ✔

Vicuna 2,048 7B - - ✔

Llama-2 4,096 7B, 13B - - ✔

GPT-3.5 16,384 175B ✔ - ✔

GPT-4 32,768* unknown ✔ - ✔

*
The context length of GPT-4 has since been increased to 128,000.

We quantitatively evaluated eight models, including state-of-the-art seq2seq and autoregressive models. Unless specified, 
models are open source (versus proprietary).
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Extended Data Table 2 |

Models

Dataset descriptions

Dataset Task Number of samples

Avg. number of tokens

Lexical varianceInput Target

Open-i Radiology reports 3.4K 52 ± 22 14 ± 12 0.11

MIMIC-CXR Radiology reports 128K 75 ± 31 22 ± 17 0.08

MIMIC-III Radiology reports 67K 160 ± 83 61 ± 45 0.09

MeQSum Patient questions 1.2K 83 ± 67 14 ± 6 0.21

ProbSum Progress notes 755 1,013 ± 299 23 ± 16 0.15

ACI-Bench Dialogue 126 1,512 ± 467 211 ± 98 0.04

Task Instructions

Task Instruction

Radiology reports “Summarize the radiology report findings into an impression with minimal text.”

Patient questions “Summarize the patient health query into one question of 15 words or less.”

Progress notes “Based on the progress note, generate a list of 3–7 problems (a few words each) ranked in order of 
importance.”

Dialogue “Summarize the patient/doctor dialogue into an assessment and plan.”

Top, description of six open-source datasets with a wide range of token Length and Lexical variance, or the ratio of unique 
words to total words. Bottom, instructions for each of the four summarization tasks.

Extended Data Table 3 |

Individual reader scores

Task Reader Completeness Correctness Conciseness

Radiology reports

1 3.5 ± 5.6 1.7 ± 3.6 1.2 ± 4.8

2 3.6 ± 6.6 2.5 ± 4.7 −0.3 ± 5.4

3 0.8 ± 2.9 0.6 ± 3.2 −1.7 ± 3.0

4 4.7 ± 4.7 2.9 ± 3.9 1.2 ± 3.8

5 1.4 ± 4.0 0.6 ± 2.2 −0.6 ± 3.4

Pooled 2.8 ± 5.1 * 1.7 ± 3.7 * 0.0 ± 4.3

ICC 0.45 0.58 0.48

Patient questions

1 1.7 ± 7.2 0.6 ± 3.4 0.3 ± 3.4

2 1.0 ± 5.6 −0.1 ± 3.6 0.1 ± 3.6

3 2.3 ± 7.2 2.0 ± 5.3 2.2 ± 5.9

4 1.9 ± 6.7 0.0 ± 0.0 0.0 ± 0.0

5 0.9 ± 5.7 0.4 ± 3.6 0.4 ± 3.6

Pooled 1.6 ± 6.5 * 0.6 ± 3.7 * 0.6 ± 3.9 *

ICC 0.67 0.31 0.21

Progress notes 1 3.4 ± 7.5 0.5 ± 2.5 0.1 ± 4.5
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Task Reader Completeness Correctness Conciseness

2 2.3 ± 6.5 0.6 ± 4.4 0.4±4.2

3 2.7 ± 6.3 1.0 ± 4.4 0.9 ± 3.7

4 2.5 ± 7.2 0.5 ± 6.8 1.7 ± 6.9

5 2.0 ± 6.8 −0.8 ± 4.5 −0.1 ± 1.2

Pooled 2.6 ± 6.9 * 0.4 ± 4.8 0.6 ± 4.5 *

ICC 0.77 0.74 0.42

Overall
Pooled 2.3 ± 5.8 * 0.8 ± 3.7 * 0.4 ± 4.0 *

ICC 0.63 0.56 0.38

Reader study results evaluating completeness, correctness and conciseness (columns) across individual readers and pooled 
across readers. Scores are on the range [−10, 10], where positive scores denote that the best model is preferred to the 
medical expert. Asterisks (*) on pooled rows denote statistical significance by a one-sided Wilcoxon signed-rank test, P 
< 0.001. Intra-class correlation (ICC) values across readers are on a range of [−1, 1] where −1, 0 and +1 correspond to 
negative, no and positive correlations, respectively.

Extended Data Table 4 |

Summarization baselines

Dataset Baseline BLEU ROUGE-L BERTScore MEDCON

Open-i
Ours 46.0 68.2 94.7 64.9

ImpressionGPT [52] - 65.4 - -

MIMIC-CXR

Ours 29.6 53.8 91.5 55.6

RadAdapt [27] 18.9 44.5 90.0 -

ImpressionGPT [52] - 47.9 - -

MIMIC-III

Ours 11.5 34.5 89.0 36.5

RadAdapt [27] 16.2 38.7 90.2 -

Med-PaLM M [25] 15.2 32.0 - -

Patient questions
Ours 10.7 37.3 92.5 59.8

ECL° [53] - 50.5 - -

Progress notes
Ours 3.4 27.2 86.1 31.5

CUED [54] - 30.1 - -

Dialogue
Ours 26.9 42.9 90.2 59.9

ACI-Bench° [41] - 45.6 - 57.8

Comparison of our general approach (GPT-4 using ICL) against baselines specific to each individual dataset. We note that 
the focal point of our study is not to achieve state-of-the-art quantitative results, especially given the discordance between 
NLP metrics and reader study scores. A dash (-) indicates that the metric was not reported; a ° indicates that the dataset was 
pre-processed differently.
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This study used six datasets that are all publicly accessible at the provided references. 

Three of those datasets require PhysioNet81 access due to their terms of use: MIMIC-

CXR73 (radiology reports), MIMIC- III76 (radiology reports) and ProbSum79 (progress 

notes). For the other three datasets not requiring PhysioNet access—Open-i72 (radiology 

reports), MeQSum77 (patient questions) and ACI-Bench41 (dialogue)—researchers can 

access original versions via the provided references, in addition to our data via the 

following GitHub repository: https://github.com/StanfordMIMI/clin-summ. Note that any 

further distribution of datasets is subject to the terms of use and data-sharing agreements 
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Fig. 1 |. Framework overview.
First, we quantitatively evaluated each valid combination (×) of LLM and adaptation method 

across four distinct summarization tasks comprising six datasets. We then conducted a 

clinical reader study in which 10 physicians compared summaries of the best model/method 

against those of a medical expert. Lastly, we performed a safety analysis to categorize 

different types of fabricated information and to identify potential medical harm that may 

result from choosing either the model or the medical expert summary.
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Fig. 2 |. Model prompts and temperature.
Left, prompt anatomy. Each summarization task uses a slightly different instruction. Right, 

model performance across different temperature values and expertise.
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Fig. 3 |. Identifying the best model/method.
a, Impact of domain-specific fine-tuning. Alpaca versus Med-Alpaca. Each data point 

corresponds to one experimental configuration, and the dashed lines denote equal 

performance. b, Comparison of adaptation strategies. One in-context example (ICL) versus 

QLoRA across all open-source models on the Open-i radiology report dataset. c, Effect 

of context length for ICL. MEDCON scores versus number of in-context examples across 

models and datasets. We also included the best QLoRA fine-tuned model (FLAN-T5) 

as a horizontal dashed line for valid datasets. d, Head-to-head model comparison. Win 

percentages of each head-to-head model combination, where red/blue intensities highlight 

the degree to which models on the vertical axis outperform models on the horizontal axis.
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Fig. 4 |. Clinical reader study.
a, Study design comparing summaries from the best model versus that of medical experts 

on three attributes: completeness, correctness and conciseness. b, Results. Highlight colors 

correspond to a value’s location on the color spectrum. Asterisks (*) denote statistical 

significance by a one-sided Wilcoxon signed-rank test, P < 0.001. c, Distribution of 

reader scores for each summarization task across attributes. Horizontal axes denote reader 

preference as measured by a five-point Likert scale. Vertical axes denote frequency count, 

with 1,500 total cases for each plot. d, Extent and likelihood of possible harm caused by 

choosing summaries from the medical expert (pink) or best model (purple) over the other. e, 

Reader study user interface.
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Fig. 5 |. Annotation: radiology reports.
Qualitative analysis of two radiologist report examples from the reader study. The table 

(lower left) contains reader scores for these two examples and the task average across all 

samples.
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Fig. 6 |. Connecting NLP metrics and reader scores.
Spearman correlation coefficients between quantitative metrics and reader preference 

assessing completeness, correctness and conciseness.

Van Veen et al. Page 33

Nat Med. Author manuscript; available in PMC 2024 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Constructing prompt anatomy
	Identifying the best model/method
	Impact of domain-specific fine-tuning.
	Comparison of adaptation strategies.
	Effect of context length for ICL.
	Head-to-head model comparison.
	Best model/method.
	Analyzing reader study results
	Fabricated information
	Connecting quantitative and clinical evaluations

	Discussion
	Online content
	Methods
	LLMs
	Open-source seq2seq models.
	Open-source autoregressive models.
	Proprietary autoregressive models.

	Adaptation methods
	ICL.
	QLoRA.

	Data
	Radiology reports.
	Patient questions.
	Progress notes.
	Dialogue.

	Experimental setup
	Quantitative metrics
	Reader study
	Statistical analysis
	Connecting errors to medical harm
	Connecting quantitative and clinical evaluations
	Statistics and reproducibility
	Ethics approval

	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 |
	Extended Data Table 1 |
	Extended Data Table 2 |
	Extended Data Table 3 |
	Extended Data Table 4 |
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |

