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SUMMARY

While visual responses to familiar and novel stimuli have been extensively studied, it is unknown 

how neuronal representations of familiar stimuli are affected when they are interleaved with 

novel images. We examined a large-scale dataset from mice performing a visual go/no-go change 

detection task. After training with eight images, six novel images were interleaved with two 

familiar ones. Unexpectedly, we found that the behavioral performance in response to familiar 

images was impaired when they were mixed with novel images. When familiar images were 

interleaved with novel ones, the dimensionality of their representation increased, indicating a 

perturbation of their neuronal responses. Furthermore, responses to familiar images in the primary 

visual cortex were less predictive of responses in higher-order areas, indicating less efficient 

communication. Spontaneous correlations between neurons were predictive of responses to novel 

images, but less so to familiar ones. Our study demonstrates the modification of representations of 

familiar images by novelty.

In brief

Based on a large-scale dataset from mice trained on a visual go/no-go change detection task, 

Nitzan et al. found that mice’s behavior is impaired when familiar and novel stimuli are mixed. 

The decrease in performance was paralleled by a series of physiological correlates, which 

persisted during spontaneous activity.
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INTRODUCTION

Reliable detection of change in the surrounding world is a survival advantage. The 

effectiveness of change detection depends on several factors, including brain state and the 

complexity of the environment, with its mixture of familiar and novel stimuli. Familiarity 

is not a feature of a physical cue but depends on the subject’s experience with that 

cue. Extensive literature documents how neurons respond to specific familiar and novel 

stimuli and when searching for a target in the presence of distractors, but we have a 

limited understanding of the neuronal mechanisms that allow the detection of change in a 

visual scene. Responses to previously unexperienced stimuli are fundamental to cognitive 

operations, including curiosity, motivation, attention, and memory.1 Novelty (unfamiliarity), 

surprise effect (unpredictability), stimulus history (recency), and salience induce behavioral 

orientation and attention tostimuli.2,3 These behavioral changes are potentially driven by 

hypothetical “comparator” mechanisms distributed across many brain regions.4–9 Novel 

visual stimuli trigger stronger evoked potentials, and cortical neurons respond more 

vigorously when an unexpected or unknown stimulus is presented compared to familiar 

stimuli.10,11 As novel stimuli become familiar, neuronal responses attenuate over time.10,12–

14 This stimulus-specific reduction in neural activity has been referred to by various 

terms, including adaptation, mnemonic filtering, repetition suppression, and decremental 

responses.15,16
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In real-life situations, novel stimuli are often mixed with familiar stimuli,17 and the detection 

of even subtle changes in the animal’s ecological milieu is often critical. Behavioral data 

from humans and other primates indicate that visual search for a familiar target pattern 

is impeded when it is embedded within novel distractors.18–21 Yet, how the intrusion of 

novel stimuli affects the neuronal representation of familiar cues is not well understood. 

If novel representations were simply added to an ever-growing brain dictionary, adding 

new synapses and neurons would be required. This is an unlikely scenario, given that 

the total synaptic weights and firing rates in a given circuit do not change much with 

learning.22,23 Another option is that novel stimuli bring about a reorganization among the 

old representations. Therefore, it is critical to learn whether and how novel inputs to the 

brain interact with existing representations and how such hypothetical reorganization affects 

the animal’s ability to detect change.

To address how the intrusion of novel stimuli affects the stability of existing neuronal 

representations, we employed a paradigm that allowed large-scale recording by Neuropixels 

probe of neuronal activity in multiple cortical and subcortical structures simultaneously 

to study both single neuronal responses and their population dynamics in response to 

changing visual stimuli. In these experiments, head-fixed mice performed a go/no-go visual 

change detection task.24 After several weeks of training with familiar images, subjects 

were shown an image set containing both familiar and novel images. Unexpectedly, we 

found that the behavioral performance in response to familiar images was substantially 

impaired when they were interleaved with novel images. The behavioral impairment was 

accompanied by a multitude of physiological changes. Novelty increased the tendency of 

visual cortical neurons for generalization, as indicated by larger fractions of cells modulated 

by a larger number of images. Unexpectedly, when familiar images were mixed with novel 

stimuli, they elicited weaker responses and recruited fewer cells. In addition, responses to 

familiar images became less correlated, and their dimensionality increased, indicating their 

perturbed stability. When familiar stimuli were mixed with novel stimuli, responses to the 

familiar stimuli in the primary visual cortex (VISp) became less predictive of activity in 

higher-order visual areas, indicating less efficient communication. The higher correlations 

between neuron pairs representing novel stimuli persisted during spontaneous activity in 

the absence of visual stimuli, compared to cell pairs representing both novel and familiar 

stimuli. Several physiological parameters of the modified neuronal responses were related to 

behavioral impairment. These findings suggest that novel information does not simply add to 

an existing scaffold, but novelty modifies the relationship between familiar stimuli and their 

previously formed neuronal representations.

RESULTS

Head-fixed mice were trained on a go/no-go visual change detection task (Figure 1A). 

Mice were shown a continuous series of natural images presented for 250 ms. On each 

trial, one image was presented for a variable number of times (5–11 times, according to a 

truncated geometric distribution). Mice were rewarded with a 3 μL water drop for licking 

within a 150–750 ms window whenever the identity of the image changed (HIT; Figure 

1A). A lack of response was considered a MISS trial (omission error). If mice licked before 

the image change, the trial was aborted and restarted at the time of the next scheduled 
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image presentation (commission error). Mice underwent two recording sessions: in the first 

recording session, stimuli were drawn from a familiar set of eight images (set G) on which 

the mice were previously trained (30.5 ± 1.8 sessions, range 47). On the second recording 

day, they were shown a new image set (set H) containing six novel images and two familiar 

images from day 1 (henceforth “shared” images). Experimental sessions consisted of 60 min 

of active task performance, followed by 25 min of receptive field (RF) mapping using Gabor 

patches and full-field flashes. Following the RF mapping, the same sequences of images 

that were presented during the active part of the task were presented again, but this time the 

water spout was retracted (“passive replay”; Figure 1B).

Behavioral responses

Due to pre-training (>2 weeks; STAR Methods), mice performed at a high level on the first 

recording session (mean HIT rate per image 70%, range 64%–75% per image). On day 

1, average HIT rates in response to the six day-1-only images (“familiar”) were strongly 

correlated with average HIT rates to the two shared images (im083 and im111; r = 0.90, 

Figure S1A), demonstrating that the familiar and shared images were perceived similarly. 

On day 2, mice maintained high HIT rates when stimulus change was signaled by previously 

unseen (novel) images (mean HIT rate per image 74%, range 71%–77%). Surprisingly, 

when the changed image was a shared (i.e., already familiar) image, the mice performed 

significantly worse (Figures 1C and S1C; mean HIT rate 47% per image), resulting in 

weaker correlations between average HIT rates for novel and shared images (r = 0.34, Figure 

S1A). The correlation between performances in response to shared stimuli on day 1 and day 

2 was also lower (Figure S1B). To examine whether the decreased performance in response 

to a given image was associated with transitions from particular images, we computed the 

HIT probability conditioned on the previous image presented (Figure S1E). Conditional HIT 

probabilities did not depend on the previous image presented on either day, and lower HIT 

probabilities for shared images on day 2 were observed regardless of the preceding image. 

One possible explanation is an “extinction” effect, since after the active session on day 1, 

the images were also presented in the absence of reward for 60 min (passive replay; Figure 

1B). We reasoned that if extinction was a proper explanation, the mice should relearn to 

associate shared image change and reward by improving their performance throughout the 

active session on day 2.25 To examine this possibility, we computed the average MISS count 

in five-trial blocks (Figure 1D). Although mice had more misses (omission error) as the 

session progressed, the within-session dynamics of MISS trials were comparable between 

responses to familiar stimuli on day 1 and to novel stimuli on day 2. In contrast, MISS 

trials in response to shared images on day 2 were high throughout the session (Figure 

1D). Further, while reaction times to the different images were not statistically different on 

day 1, mice responded slightly, but significantly, faster to shared images on day 2, which 

is inconsistent with the extinction hypothesis (Figure 1F). In further support against the 

extinction explanation, when, in a second cohort of mice (n = 3), the novel image set (H) 

was presented on day 1, the performance of the mice to shared images was reduced on day 

1, but recovered on day 2, when they were presented together with other familiar images 

(G) (Figure S1F). Other behavioral variables, such as pupil diameter and running speed, did 

not show systematic variation and could not account for the decreased performance on day 2 

(Figure S2).
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In addition to HIT rate, we also examined the incidence of premature licks, which resulted 

in aborted trials (commission errors). On day 1, the fraction of aborted trials did not 

significantly differ across images (Figure 1E). However, on day 2, premature licks were 

significantly less frequent during the presentation of shared images, compared to novel 

stimuli, resulting in significantly fewer aborted trials (Figures 1E, S1D, and S1G). The 

increased omission, yet decreased commission, errors were manifested in a lower sensitivity 

index (d′) on day 2 and higher decision criteria during shared image trials (Figures S1H and 

S1I), indicating that mice adopted a more conservative decision criterion for familiar images.

In a third cohort, mice (n = 10) were trained and tested on day 1 with image set H and 

on day 2 with image set G, and we replicated the main behavioral results (Figures S1J and 

S1K). This control experiment indicated that stimulus novelty per se, rather than the specific 

images in each image set, was driving the changes in performance.

Novelty modulates neuronal responses to familiar stimuli

We first examined the responses of individual neurons to the presented images. Six 

Neuropixels probes each targeted separate visual cortical areas, including VISp, as well 

as lateral and medial higher-order visual areas (Figure 2A). In addition, the probes also 

recorded from subcortical structures, including the visual thalamus (lateral geniculate 

nucleus [LGd] and lateral posterior nucleus [LP]), hippocampus (HPC), and midbrain (MB; 

Figure S3A). Peri-stimulus time histograms (PSTHs) of the population responses (computed 

for each image separately, based on repeated presentations, and averaged across stimulus 

categories; STAR Methods) were similar between images on day 1 (Figures 2B and S3B). 

As expected,10,11,26 novel stimuli presented on day 2 elicited stronger responses in visual 

cortical areas, hippocampus, and midbrain but less so in the thalamus (Figure 2B). Novelty 

also increased the fractions of modulated cells in most areas (Figure S3C) and resulted in 

more sustained responses,27 but response onset to novel stimuli was delayed compared to 

shared stimuli (Figures 2B, 2C, S3D, and S3E). Importantly, neuronal excitability measures 

in response to shared stimuli were altered on day 2 when they were mixed with novel 

stimuli. Response magnitude to shared stimuli was lower on day 2 compared to that of day 

1 (Figure 2D), and the fraction of positively modulated cells decreased (Figure 2E), while 

the fraction of negatively modulated cells increased (Figure 2F; see also Figures S4A–S4C). 

These changes were similar in different visual cortical areas, while other areas showed 

mixed effects (Figures S4E–S4G). A cross-validated linear regression model trained to 

predict HIT rate/image from these metrics performed significantly worse on shared images 

on day 2 compared to day 1 (Figure S4D).

To visualize spiking activity patterns evoked by the presentation of natural images, we used 

Rastermap for sorting neural responses along a one-dimensional manifold.28 This analysis 

uncovered multiple activity patterns expressed by clusters of neurons that alternated during 

the active behavior (Figure 3A). Some of the clusters were preferentially tuned to a single 

image, while other neuronal responses were non-specific to images or were related to 

the animal’s motor behavior (Figure 3B). Both the size and the fraction of clusters that 

were preferentially tuned to shared images were significantly reduced on day 2 compared 

to day 1, indicating that responses to those images were sparser (Figures S4J and S4K). 
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PSTHs of individual neurons across the dataset exhibited a large degree of variability with 

respect to their selectivity, temporal response profile, and response magnitude (Figure 3C). 

A selectivity index was defined as the fraction of images that yielded significant spike 

responses. In VISp, the largest fraction of responding neurons (~15%) exhibited a low 

degree of selectivity by responding to all eight images, while only a small fraction of 

neurons (~8%) was selectively tuned to only one image. Selectivity decreased from day 1 

to day 2, with fewer neurons responding to a single image and more neurons to all eight 

images, due to more generalized responses to novel stimuli. Lateral visual areas (VISl, 

VISal) followed the same trend, whereas medial visual areas showed intermediate degrees of 

selectivity (Figure 3D). In a striking contrast, responding hippocampal neurons (DG, CA3, 

CA1, and SUB) showed the opposite trend, with the majority of significantly modulated 

neurons responding to a single image and only a minor fraction responded to all eight 

images (Figure 3D).

Image decoding from population responses

In addition to single-neuron responses, we examined how well the identity of the images 

could be decoded by neuronal populations.29,30 Due to the diverse image tuning profiles, the 

image identity could be readily decoded from the normalized spike counts of simultaneously 

recorded neurons using a linear decoder (Figure S5; STAR Methods). Decoding accuracy 

from withheld data was highest in the visual cortex and visual thalamus, but was also 

significant in the hippocampus and midbrain (Figures S5A–S5D). Image decodability was 

present already in the first 50 ms bin and reached a maximum by 100 ms in the visual cortex 

and remained high throughout the stimulus duration and even 200 ms after the stimulus 

offset (Figure S5E). The same trends were observed when decoding image identity was 

predicted from responses in individual visual cortical areas separately (Figure S5F). The 

temporal response profile was similar in the thalamus. In the hippocampus, image decoding 

was delayed and reached a maximum in the 100–150 ms bin and rapidly diminished 

thereafter (Figure S5E). The decoding accuracy of single images was high in the visual 

cortical areas, intermediate in the thalamus and midbrain, and lowest in the hippocampus 

(Figures S5G–S5H). The accuracy of image decoding from hippocampal spiking activity 

was reduced from day 1 to day 2 (Figure S5G), likely due to the higher confusion between 

novel stimuli (Figure S5B). Thus, while image specificity was highest in the hippocampus 

at the single-neuron level (Figure 3D), when a larger population of neurons was available, 

image decoding was more effective in the visual cortex, due mainly to the large numbers of 

responding neurons with different rates and patterns to individual images (Figure 3C).

Novel stimuli bring about modification of network dynamics

To explore potential mechanisms responsible for the differential responses to shared 

stimuli across days, we compared their population responses using multiple complementary 

methods. We first inspected the intrinsic dimensionality of visual cortical activity in 

response to shared stimuli on both days by computing their eigenspectra. Leading 

dimensions on day 1 explained more variance compared to day 2, and this was reversed 

for dimensions explaining less variance, resulting in a flattening of eigenspectra on day 2 

(Figure 4A). We quantified this change using the participation ratio (PR), which measures 

the spread of explained variance across dimensions.31 PR values of shared images on day 
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2 were significantly higher than those of the same images on the previous day, indicating 

an increase in the intrinsic dimensionality of responses to familiar images when interspersed 

with novel ones (Figure 4B). Dimensionality in higher-order visual areas was higher 

compared to that of the VISp (Figure S6A). These results were corroborated by fitting 

the eigenspectra of cross-validated principal components and estimating their power-law 

exponent.29 This analysis indicated a significantly flatter eigenspectrum of shared images 

on day 2 than on day 1 (Figure S6B). Other areas included in the dataset also displayed 

a significant increase in the dimensionality of responses to familiar images on day 2 

compared to day 1, but unlike the visual cortex, the dimensionality of novel images was 

also significantly higher (Figures S6C–S6E).

Next, we asked whether the hypothesized destabilization of shared image representations 

affected the interactions between the different visual areas. To address this question, we used 

a cross-validated ridge regression model, which takes the normalized single-trial residual 

activity (i.e., after subtracting the appropriate PSTH) of VISp units in response to each of 

the stimuli and uses this input to predict the activity in higher-order visual areas, as well 

as in a held-out VISp subpopulation (Figures 4C and 4D; STAR Methods). As expected, 

on day 1, predictive performances were similar for familiar and shared images (Figure 4E). 

They were highest in VISp and decreased in areas with a higher anatomical hierarchy score 

assigned by a previous anatomical study.32 In contrast, the predictive performance of activity 

in response to shared images on day 2 was significantly lower than that of novel images 

(Figure 4F). Importantly, the prediction of spiking to shared images in higher-order visual 

areas from VISp was also significantly lower on day 2 compared with day 1 (Figure 4G). 

These differences were significant in higher-order visual areas, but not in the VISp (against 

withheld data), indicating less effective communication between VISp and higher-order 

visual areas in day 2, but not within VISp. These differences were maintained during passive 

viewing, indicating that they were not the result of action, motivation, or attention signals 

during the active part of the session (Figure S6F).

Novelty reduces change-evoked responses to familiar stimuli

It has been shown that viewing simple visual patterns such as gratings induces stimulus-

specific adaptation,33 but it is not clear whether adaptation is modulated by stimulus 

familiarity. We examined the extent of adaptation by computing the ratio of responses to 

changed and repeated presentations of the same image, averaged across trials. Confirming 

previous observations,24,34 higher-order visual cortical areas were increasingly sensitive to 

changes in image identity, resulting in a strong correlation between the ratio of responses 

to changed/repeated shared stimuli and anatomical hierarchy (Figures 5A, S7A, and S7B). 

In stark contrast, when interleaved with novel stimuli, excess activity to changed familiar 

stimuli was markedly reduced, and the positive correlation with anatomical hierarchy was 

abolished (Figure 5A). These results were maintained during passive viewing, suggesting 

that they cannot be fully accounted for by action signals (Figure S7C). We validated these 

results by training a cross-validated linear decoder to classify image change from repeated 

presentation of the same image. Prediction accuracy was comparable across familiar and 

novel images but significantly decreased for shared images on day 2, indicating diminished 

differences between firing responses to changed vs. repeated shared stimuli (Figure 5B). 
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These differences were observed across other areas included in the dataset and were 

maintained during passive replay (Figures S7E–S7G). In sum, in the presence of novel 

stimuli, responses to already familiar stimuli undergo a weaker adaptation.

Novelty reduced the within-session stability of familiar representations

Although responses to novel stimuli were stronger and recruited more cells (Figure 2), 

their dimensionality was comparable to that of familiar stimuli on the previous day (Figure 

4). We asked whether this is because neuronal representations of novel stimuli change 

less over time within the course of the session.35,36 To compare the drift of neuronal 

responses to familiar and novel neural images, we calculated the population vector (PV) 

correlations between spike counts of visual cortex neurons across same-image trials for the 

first appearance of the image (Figure S8A). On day 1, we observed similar PV drifts across 

different images (Figure S8B), quantified by the decay rates and intercepts (estimated by 

exponential fit; Figures S8B and S8C). The decay rates of the shared images were similar on 

day 1 and day 2, whereas the PVs of novel images exhibited a slower decay (Figure S8C). 

Those differences were observed in individual subjects, suggesting that they are not driven 

by a small subset of mice (Figure S8D). The same decay was also maintained during passive 

viewing, suggesting that it is not due to action signals (Figures S8E and S8F), and the decay 

was similar in different visual cortical areas (Figure S8G). Subcortical areas, including the 

hippocampus, visual thalamus, and midbrain, exhibited similar drift, but with no significant 

differences between novel and familiar images (Figures S8H–S8J).

To test the hypothesis that a failure to respond to image change involves a momentary 

destabilization of the neuronal representation of that image, we calculated the difference 

between the PV correlation on a MISS trial and the immediately preceding and following 

HIT trials of the same image (Figure S8L). PV correlations on the surrounding HIT trials 

were, on average, higher than those on MISS trials on both recording days (Figure S8M). 

However, the difference in PV correlation on MISS trials was significantly larger for shared 

images on day 2 compared to both novel images and the same images on day 1 (Figure S8M, 

p < 0.001, Kruskal-Wallis with Tukey-Kramer post hoc tests). The average decrease in PV 

correlation in a session was positively correlated with MISS probability for both familiar 

and novel images (Figure S8N). These results suggest that mixing familiar and novel stimuli 

perturb the stability or strength of neuronal representations of familiar images.

Novel and familiar representations are segregated

While the response properties of single neurons to familiar and novel stimuli have been 

extensively compared,10,11,37,38 it is unclear how visual cortex population activity is affected 

by novelty. To explore how changes in single-neuron firing are manifested on the population 

level across days, we compared population responses to familiar and novel stimuli, using 

two complementary methods. First, we computed a distance metric for each pair of images 

(expressed as the Frobenius norm between the normalized spike counts matrices) separately 

for each visual cortical area (Figure S9A). While in all pairs the two images were distinct 

from each other in both sessions using this metric (Figure S9B), the average distances on 

day 1 were relatively small across all visual areas (Figures S9C and S9D). In contrast, the 

distances between familiar (shared) and novel images on day 2 were several-fold larger 
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(Figures S9C and S9E). Similarly, we also found that edge angles between trial-averaged 

population response vectors to novel and familiar stimuli were significantly greater than 

those between pairs of novel-novel or familiar-familiar images, indicating a larger separation 

along the signal axis (Figures S9F–S9J). In a second approach, we asked whether different 

images are represented by overlapping sets or different combinations of neurons. To this 

end, we identified the set of neurons that were significantly modulated by each image 

(Figure 3; STAR Methods), and, for each pair of images, we computed the Jaccard similarity 

between these binary indicator vectors. The similarity between familiar and novel images 

was lower in all areas on day 2 (p < 0.001; Figure S9K), indicating a large separation 

between neurons representing familiar and novel stimuli. In sum, these results indicate that 

visual cortex activity patterns undergo orthogonalization in response to novelty.

Neuronal pattern changes predict behavioral performance

To further explore the changes in population activity across days and link them to task 

performance, we applied a non-linear dimensionality reduction method39 to the normalized 

spike counts of visual cortex neurons during the active part of the task. This analysis 

revealed separate clusters corresponding to the different images as well as an additional 

cluster corresponding to the intermittent gray screen and omission trials (Figure 6A). A 

closer comparison of the embeddings in different areas revealed two unexpected trends. 

First, while clusters corresponding to the different images were well separated from one 

another and the gray-screen cluster in VISp, higher-order visual cortex areas showed a 

less robust separation (Figures 6A and S10A). Second, in higher-order visual cortex areas, 

clusters corresponding to shared images on day 2 were embedded substantially closer to 

the gray-screen cluster or even within it (Figure 6A). Because UMAP is a non-linear 

approach best suited to data visualization, we formally quantified this effect by applying 

principal-component analysis (PCA) to the data. We used the first three dimensions of the 

data, which explained a substantial (32% ± 1%) portion of the variance, and computed the 

average difference in distance from the gray-screen cluster between familiar (day 1) or novel 

(day 2) images and shared images and compared this measure with each region’s anatomical 

hierarchy score (Figure 6B). We found that this difference linearly increased with anatomical 

hierarchy on day 2, resulting in a significant correlation, whereas day 1 differences were 

scattered around zero and were not correlated with anatomical hierarchy (Figure 6B). We 

hypothesized that, commensurate with the diminishing difference in response magnitude to 

shared images from baseline activity (Figure 2), the decreased performance in response to 

shared images on day 2 was the result of diminishing distinctiveness between the underlying 

neural representations. To test this idea, we computed the correlation between the distance of 

each image from the gray-screen cluster and the MISS probability of that image (Figure 6C). 

We found significant negative correlations between the distance of a cluster corresponding to 

a given image from the gray-screen cluster and the MISS probability of that image on day 

2 in all visual areas. The magnitude of this correlation across visual areas was significantly 

correlated with their hierarchy score (Figure 6C).

To further link neuronal activity to behavior, we applied the same analysis to the firing 

responses of visual cortex neurons (combining all visual cortex areas), restricted to the 

presentation of changed images on HIT and MISS trials on both recording days. Clusters 
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corresponding to the different images were again well separated on both days (Figures 

6D and 6E, left). We computed the average distance in PCA space between each cluster’s 

centroid and all other cluster centroids. On day 1, normalized distances varied across images 

but were consistent across sessions (e.g., im078, Figure S10B) and were comparable on 

HIT and MISS trials (Figure S10F). In contrast, on day 2, centroid distances of novel and 

shared images showed opposite trends: the distances between clusters corresponding to 

novel images were significantly smaller on MISS trials compared both to the same images 

during HIT trials and to familiar images, consistent with the idea that MISS errors resulted 

from diminished distinctiveness in neural representations. On HIT trials, and even more so 

on MISS trials, the shared images were embedded significantly farther away from the rest 

of the clusters (Figure 6F; see Figures S10B–S10E for individual images). This differential 

embedding was not the result of different motor patterns (i.e., licking), because it was 

also observed during passive viewing without licking (Figure S10G). Similar results were 

obtained when applying this analysis for each visual area separately (Figure S10H). The 

normalized centroid distances of the shared images were significantly positively correlated 

with the probability of MISS trials for familiar and shared images, but not for novel 

images (Figure 6G). Thus, while the tendency of mice to miss novel images was associated 

with reduced distances between the representations of those images, representations of the 

interleaved familiar (shared) images were most distinct in MISS trials.

Mixing novel and familiar images affects the correlations of visual cortical neurons during 
spontaneous activity

If the segregation of familiar and novel representations and the subsequent destabilization of 

the representation of shared stimuli imparts enduring changes in the correlational structure 

of visual cortex neurons, we hypothesized that this altered relationship should persist in the 

absence of external stimuli. To test this hypothesis, we trained a cross-validated generalized 

linear model to predict the firing rates of individual withheld visual cortex neurons during 

spontaneous activity at the end of the active behavior from the weighted sum of firing 

rates of the rest of the visual cortex population (“peer prediction”).40 After optimizing the 

weights to predict spontaneous spiking data, we used the stimulus-evoked firing rates of 

neurons from the active task to predict the response of the left-out neuron (Figure 7A). This 

analysis allowed us to reconstruct the peer-predicted tuning curves of visual cortex neurons 

(Figure 7B). We then evaluated the reconstruction accuracy by correlating the actual and 

the predicted tuning curves (Figure 7C). On day 1, correlations were comparable across 

familiar and shared images and consistent with previous results in the auditory cortex.41 

The reconstruction accuracy of responses to novel images was significantly higher compared 

to familiar ones, indicating that the correlational structure of cells responding to novel 

images was less variable between stimulus-evoked and spontaneous activity. In contrast, the 

reconstruction of responses to shared images on day 2 was significantly lower compared to 

that of day 1 (Figure 7C). These results indicate that the population cofiring patterns that 

preferentially engaged neurons during stimulus presentations endured during the following 

spontaneous activity, but this effect was diminished for familiar stimuli when they were 

interleaved with novel ones.
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DISCUSSION

Using a change detection task, we examined how intruding novel stimuli affect the neuronal 

representation of old cues. When familiar images were embedded in a stream of novel 

pictures, their neuronal correlates were altered, including the predictions of neuronal 

patterns in higher-order areas from spiking activity in VISp. The altered neuronal changes 

were predictive of behavioral outcomes. The findings suggest that novel cues can affect the 

neuronal representation of familiar images and their behavioral responses.

Novel stimuli affect the representation of familiar images

The only condition for obtaining a reward in the present paradigm was to detect a change 

across various images, irrespective of whether the images were familiar or novel. Behavioral 

performances in response to familiar and novel stimuli were comparable in terms of HIT 

rates, an indication that the schema42 learned during the weeks of training was generalized 

to the novel stimuli on day 2, despite the overall increased firing rates evoked by novel 

images. Yet, the animals’ overall behavior was quite different on day 1 and day 2, mainly 

due to the decreased HIT rates (omission errors) in response to the familiar (shared) stimuli. 

At the same time, the mice licked less discriminately and at a more constant rate during 

the presentation of novel images (commission errors), indicating both stimulus-specific and 

global changes in their behavior.

Presumably, the main factor in the change detection task is the perceived magnitude of 

change between the current and the previous image. On day 2, novel stimuli may have been 

regarded by the mice as a larger departure from the norm (i.e., perceived change), explaining 

why HIT rates were comparable to those of familiar (day 1) and novel (day 2) images. 

At the same time, this larger contrast to novel images may have reduced the perceived 

magnitude of chance (or “surprise”43) in response to shared stimuli, resulting in an increased 

fraction of MISS trials. In turn, we hypothesize that the reduced behavioral performance 

can be explained by the altered neuronal representation of the familiar (shared) images 

in the presence of novel cues. This interpretation is supported by several physiological 

measures. The latency to the first evoked spike to familiar images was shorter compared to 

that for novel stimuli44–46 in visual cortical areas, commensurate with the reduced latency of 

behavioral responses. Yet, the mixture of old and novel images perturbed the representation 

of the old images. The effects of this perturbation were manifested by multiple differences 

between the representations of shared images on both days. Responses to shared images 

on day 2 were closer to baseline activity, as indicated by a lower modulation index on 

day 2 (Figure 2), and increasingly similar to responses to the gray screen, particularly in 

higher-order visual cortex areas (Figure 6). Unexpectedly, the dimensionality of population 

responses to shared stimuli increased from day 1 to day 2 (Figure 4B), despite the responses 

becoming sparser on day 2. In addition, neuronal responses to shared images on MISS trials 

were particularly distinct from the responses to novel images, and their intercluster distance 

positively correlated with MISS probability. The reduction in PV correlation on MISS trials 

was larger for shared images on day 2 compared to both day 1 and novel images (Figure S8). 

Further, the instantaneous decrease in PV correlation was positively correlated with MISS 

probability for both the familiar and the novel images. When interleaved with novel stimuli, 
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familiar stimuli underwent weaker adaptation, resulting in a diminished sensitivity to image 

change across different visual areas. Finally, the readout of spiking activity in the VISp by 

higher-order areas for shared images was reduced from day 1 to day 2 (Figure 4), indicating 

reduced efficacy of representation of the shared images in higher-order visual areas in 

the presence of distracting novel stimuli. The reorganization of visual circuits introduced 

by the novel images is further supported by the altered correlational structure introduced 

by the novel stimuli that was evident by the low overlap between cell pairs responding 

to familiar and novel stimuli (Figure S9) and persisted during the following spontaneous 

activity (Figure 7). Overall, these findings demonstrate that mixing familiar stimuli with 

novel images temporally alters the relationship between the same physical stimuli and their 

neuronal representations.

The hypothesis of destabilization of the representation of familiar images is seemingly at 

odds with the slower decay of PV correlation as a function of trial numbers for novel stimuli. 

The reduced representational drift may be explained by the enhanced attention to novel 

stimuli.47 The persistence of the PV of novel stimuli throughout the session may explain the 

persistent destabilization of the neuronal representation of familiar images.

In our experiments, the familiar stimuli embedded in a sequence of novel images were 

associated with altered neuronal firing patterns, yet the extent of this destabilization effect 

remains unknown, as mice were tested on the novel image set only once. Insights into this 

question may come from a related, 3 day experiment, in which mice were shown familiar 

images on day 1, novel images on day 2, and then the same novel images on day 3. The 

neuronal responses were similar on day 1 and day 3, suggesting that novelty can become 

familiar overnight.26 Thus, one would expect that if the six novel images shown on day 2 

were repeatedly presented over several days, they would have blended with the familiar eight 

stimuli presented on day 1, and the physiological differences we described here between old 

and novel images would disappear.

An analogy may be drawn between the current observations and human psychophysical 

experiments employing a visual search paradigm. Search for a novel target among familiar 

distractors was markedly faster than search for a familiar target among novel distractors, and 

the reaction time increased with increasing numbers of novel distractors.18,19 Likewise, the 

behavioral performance of expert subjects on a bisection task deteriorated when different 

stimulus types were interleaved,48 indicating that mixing different stimulus categories may 

impair task sensitivity. Similarly, parallels to the altered representations of shared images 

on day 2 may be drawn with fMRI experiments with human subjects17,49 in which the 

participants had to compare match-mismatch expectations of object sequences (A > B > C 

> D). Following repeated presentations, the participants viewed the same quartet of objects 

in the same sequence, an entirely new sequence, or a sequence in which only the last two 

objects in the sequence were reversed. Similar to our experiments, hippocampal activation 

to the entirely new sequence did not differ much from activation produced by the familiar 

sequence. In contrast, hippocampal activation was altered when the objects corresponded to 

a mixture of old and novel sequences.
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Overall, our findings suggest that the perturbations to the representation of familiar images 

may be explained by the aberrant interactions along the visual hierarchy. However, top-down 

inputs to visual cortex may also play a critical role in visual discrimination.50–52 It remains 

to be tested how top-down inputs modulate local computations in the visual cortex during 

the change detection task to guide behavior.

Limitations of the study

The current paradigm tested the effects of mixing familiar and novel stimuli under fixed 

conditions (i.e., a 1/3 ratio). It is unclear whether the observed destabilization effect 

would persist under different conditions (e.g., a 3/1 ratio). It is tempting to speculate that 

the magnitude of destabilization would vary with the ratio of novel to familiar images. 

Insights to this question may come from human studies showing that visual search for 

familiar targets embedded within novel distractors is incrementally impeded with increasing 

numbers of novel distractors, supporting the hypothesis that the destabilization effect would 

decrease with a decreasing ratio of novel to familiar images. To test this hypothesis, new 

experiments with varying ratios of novel to familiar images will be needed. Although the 

only requirement in the present task was to lick after detecting a change in the presented 

images, mice produced other types of behaviors as well. The most prominent of these was 

the extremely high-speed running that was maintained during the entire session (Figure S2). 

Calorie loss associated with such intense exercise is substantial and may reflect maladaptive 

“collateral” behavior,53,54 likely induced by the head-fixed condition. How constraining the 

mouse’s behavior by head fixing affected behavioral performance and neurophysiological 

patterns is not clear at the moment. Eye and head movements are essential features of vision 

and likely critical elements of image transformation. Future experiments in freely moving 

mice will be needed to address these caveats.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, György Buzsáki 

(Gyorgy.Buzsaki@nyulangone.org).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Data: The data reported in this paper is publicly available on 

http://portal.brain-map.org/explore/circuits/visual-behavior-neuropixels. Any 

additional information required to reanalyze the data reported in this work paper 

is available from the Lead Contact upon request.

• Code: The code used to analyze the data is available at https://github.com/

buzsakilab/buzcode
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice—For all analyses presented in this paper, we use data from the Allen Brain 

Institute Visual Behavior Neuropixels dataset. The main dataset included both male and 

female mice of the following genotypes: 10 WT mice, 19 Sst-IRES-Cre/wt;Ai32(RCL-

ChR2(H134R)_EYFP)/wt and 11 Vip-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)-_EYFP)/wt 

mice. 35 of these mice were measured across both days. For the supplementary datasets 

shown in Figure S1 data included 3 WT mice and 10 Sst-IRES-Cre/wt;Ai32(RCL-

ChR2(H134R)_EYFP)/wt mice.

METHOD DETAILS

Behavior—Mice were trained for 1 hour/day and progressed through multiple training 

phases by meeting specific progression criteria defined by d-prime and the number of 

contingent (i.e., not aborted) trials per training session. Mice were deemed ready to be 

transitioned to the recording stage if the following criteria were met during the final training 

phase: 1) A peak d-prime (calculated over a 100 trials rolling window) of >1 for three 

consecutive sessions. 2) At least 100 contingent trials on three consecutive sessions. 3) Mean 

reward number of >120 over at least three sessions. The active task lasted for 1 h and 

consisted of 31.3 ± 0.05 go trials (where the identity of images changed) on day 1 and 29.3 

± 0.07 go trials on day 2 (mean ± s.e.m.).

QUANTIFICATION AND STATISTICAL ANALYSIS

Signal detection measures—d-prime and decision criteria were computed based on hit 

rates and false-alarm rates, which were based on catch trials, where the identity of the image 

did not change but the animal licked in the response window. Hit and false alarm rates 

were corrected to account for low trial counts by clipping their values using the following 

formula:

1
2NH

≤ RH ≤ 1 − 1
2NH

1
2NF

≤ RF ≤ 1 − 1
2NF

Where RH and RF are hit and false-alarm rates, respectively, and NH and NF are the numbers 

of go and catch trials, respectively. d-prime is defined as:

d′ = Z RH − Z RF

The decision criterion is defined as:

c = − Z RH + Z RF /2

where Z is the inverse cumulative normal distribution function.
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Unit quality criteria—For all analyses, we only included units that with less than 0.5% 

ISI violations, presence ratio higher than 0.9, amplitude cutoff below 0.1 and firing rate 

higher than 0.1 Hz.

Estimation of pupil area—Eye tracking data was acquired at 30 Hz and pre-processed 

by the Allen Institute. The pupil diameter, defined as the mean of the pupil height and width 

was normalized by the median of each session.

Rastermap embedding—One-dimensional embedding of neural activity was performed 

using Rastermap (https://github.com/MouseLand/RasterMap) with the following parameters: 

n_clusters = 20, n_PCs = 40, locality = 0.75, time_lag_window=15.

Event triggered histograms and significance of modulation—Peri-stimulus time 

histograms (PSTHs) were computed by counting spiking activity around stimulus time into 1 

ms bins. The mean firing rate was then calculated by dividing by the bin size and number of 

stimuli. To deem units significantly modulated by a given stimulus, spike times were jittered 

in a ± 0.5 s window to generate 1000 surrogate PSTHs for each unit. We then calculated 

the sum of squared differences between the actual PSTH and the mean of surrogate PSTHs 

and compared it to the sum of squared differences of each surrogate PSTH with the mean 

of surrogate PSTHs. Units were deemed significantly modulated if this difference exceeded 

the 97.5 percentile, corresponding to p<0.05. The modulation index was computed by 

calculating the percent of firing rate change during the stimulation window compared to a 

100 ms preceding baseline window and divided by the mean baseline firing rate and the 

modulation sign (i.e., up or down-modulation) was defined as the direction of this index.

Response lags—Response lags to the different stimuli were calculated as the median 

time to first spike across all trials. We only considered response lags of significantly 

modulated units.

Decoding of image identity—We used a linear multiclass SVM trained using 10-fold 

cross validation to predict natural image identity. To exclude the potential influence of 

expectation signals we only included the first image in a trial (i.e., the changed image). Input 

features were min-max normalized spike counts from all units in a given session and brain 

region. Decoding accuracy is reported as the mean of the cross-validated accuracy.

Measurements of population response geometry—To measure the linear difference 

between neural representations of each pair of images we used the measure of the Frobenius 

norm computed as:

∥ Ap, q ∥F = ∥ Ap − Aq ∥F =
i = 1

M

j = 1

N
ai′, j

p − aij
q 2

Where Ap and Aq are min-max normalized spike count by image presentation matrices for 

image p and q.
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The edge angle between the representations of different images was computed as:

Θp, q = cos−1 up ⋅ uq
∥ up ∥∥ uq ∥

where Θp, q is the angle between vectors up and uq denoting average responses to images p and 

q.

Jaccard similarity was calculated as:

Jp, q = up ∩ uq / up ∪ uq

Where up i  and uq i  are indicator variables denoting whether the ith neuron is significantly 

modulated by images p and q, respectively and u  is the cardinal set of u.

Regression models—To predict per-session HIT rates, we used a 10-fold cross-validated 

linear regression model using the fractions of up- and down-modulated cells, as well as the 

session-averaged visual cortex modulation index as input features. Model performance is 

reported as the distributions of mean-squared error values across folds.

To predict target population activity from VISp activity, spiking activity from each visual 

area during the 250 ms image presentation window was counted in 50 ms bins, the 

appropriate PSTH was subtracted from each single-trial response and the resulting responses 

were z-score normalized. To exclude the contribution of motor patterns, we excluded the 

first (i.e., changed) image in a trial. Target population activity was predicted using:

Y Ridge = XBRidge

Where BRidge = XTX + λI −1XTY  is the least-squares solution and λ is a constant that 

determines the strength of regularization chosen using a 10-fold cross validation.

Population vector correlation—The population vector (PV) correlation was calculated 

as Pearson’s correlation between the spike counts of neurons over repeated presentations 

of the same stimulus. To account for potential expectation signals, we only used the first 

image in a trial (i.e., the changed image). Average PV correlations are referenced to the first 

presentation of an image.

UMAP visualization—Uniform Manifold Approximation and Projection (UMAP) was 

performed on spiking data binned at 50 ms resolution using parameters n_neighbors 

= 20, metric = Euclidean, min_dist = 0.1, spread = 0.1, components=3. We used 

the MATLAB implementation available under (https://www.mathworks.com/matlabcentral/

fileexchange/71902).

Quantifying the dimensionality of responses to natural images—We used 

the participation ratio (PR)31 to quantify the dimensionality of neural responses. The 
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eigenspectrum of responses to each image was obtained by applying principal component 

analysis to spike count matrices, and the PR was defined as:

PR = i = 1
N λi

2

i = 1
N λi

2

To allow for comparison across different sessions, the PR was divided by the number of 

neurons.

Cross-validated principal components were computed using a k-fold approach (k=5): 

singular vectors V n were first calculated from the training data Xtrain and the test data Xtest was 

then projected onto those singular vectors to yield a cross-validated PC score Un = XtestV n. 

The variance was then calculated from each cvPC score.

Peer prediction analysis—We used a generalized linear model (GLM) to reconstruct 

tuning curves to the different images from correlations during spontaneous activity. First, 

spike counts during the 5-minutes spontaneous activity were binned at 250 ms resolution 

and a 10-fold cross-validated GLM was trained to predict the spike counts of a left-out 

visual cortex neuron from the spike counts of all other visual cortex neurons using the 

Poisson distribution. The model weights were optimized by minimizing the mean squared 

error between the observed and predicted spike count. We then used the weights obtained 

from spontaneous activity in combination with the firing rates of peer neurons in response to 

image presentation to predict the response of the left-out neuron to that stimulus.

Statistical analyses—Data were analyzed in Matlab (2021b). Throughout the paper, data 

are presented as mean ± SEM or, when indicated, median ± 95% confidence intervals. Data 

are displayed as box plots representing median, lower and upper quartiles and whiskers 

representing most extreme data points or as median ± 95% confidence intervals computed 

from 5,000 resamples. Statistical tests for two groups were performed using Wilcoxon 

rank-sum test or signed-rank test when applicable. Statistical tests for multiple groups were 

performed using Kruskal-Wallis test followed by Tukey-Kramer posthoc tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mice perform poorly on a change detection task when familiar and novel 

images are mixed

• Neuronal responses to familiar images are perturbed when they are mixed 

with novel stimuli

• Communication between visual areas during familiar stimuli is perturbed by 

novel stimuli

• Mixing novel and familiar stimuli alters spontaneous correlations in the visual 

cortex
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Figure 1. Visual change detection task
(A) Mice performed a visual go/no-go change detection task in which subjects are shown a 

continuous series of natural images and are rewarded with water dropsfor correctly reporting 

a change in the identity of the image. Premature licking resulted in a 300 ms time-out and 

the trial was restarted.

(B) Each mouse underwent two recording sessions. On the first recording day, subjects were 

shown a familiar image set (G) to which they had been exposed during the preceding 

training. On the second recording day, mice were shown a different image set (H) 

comprising six novel images and two familiar images from the previous set.

(C) Hit rate distributions for the different mice for each image on day 1 (left) and day 2 

(right). On day 2, hit rates of shared images were significantly lower comparedto the novel 

images (p < 0.001, Kruskal-Wallis with Tukey-Kramer post hoc tests; n = 38 sessions on day 

1 and 37 sessions on day 2).

(D) Top: average (mean ± SEM) number of MISS trials in five-trial blocks for familiar 

(black) and shared (red) images on day 1. Bottom: same, for novel (blue) and shared (red) 

images on day 2.

(E) Fraction of aborted trials per image (calculated over the overall aborted trials) for the 

various images on day 1 (left) and day 2 (right). Note that mice showed lower rates of 

premature licking on day 2 when presented with familiar images (p < 0.001 for both shared 

images on day 2, Kruskal-Wallis with Tukey-Kramer post hoc tests).

(F) Distribution of average reaction time (RT) per image type across the two recording 

days. RTs were significantly shorter on day 2 for shared images compared tonovel images 
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(p < 0.001, Friedman repeated measure analysis with Tukey-Kramer post hoc tests; n = 35 

sessions from subjects measured across both days).
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Figure 2. Novelty induced the redistribution of unit activity
(A) Top: cartoon of the mouse brain showing the location of neurons recorded across all 

sessions on day 1 (n = 38 sessions, black dots) and day 2 (n = 37 sessions, red dots). 

Visual cortex, hippocampus, and visual thalamus are depicted in pink, green, and yellow, 

respectively. Bottom: schematic illustration of the mouse visual cortex.

(B) Baseline subtracted mean responses of units in the different areas included in the dataset 

to familiar (black) and shared (red) images on day 1 (top) and novel(blue) and shared (red) 

images on day 2 (bottom). Note the differences in response magnitude between novel and 

shared images on day 2. Scale bars, 0.5 Hz for hippocampus and 2 Hz for all other areas (n = 

961–7,800 neurons per area).

(C) Distribution of median lags to first spike after image presentation for novel vs. shared 

images on day 2. Note the significantly shorter lags in response to sharedimages for the 

majority of the visual cortical areas.

(D) Comparison of modulation index to shared images on day 1 and day 2 (***p < 0.001, 

Wilcoxon signed-rank test, n = 35 mice recorded on both days).

(E and F) Same as (D), for the fraction of significantly up-modulated cells and down-

modulated cells, respectively.
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Figure 3. Heterogeneous unit activity in response to natural images
(A) Spiking activity from the active part of one example session sorted based on correlated 

activity between neurons using Rastermap.

(B) Magnified view of a 5 min epoch in (A) highlighted in red. Top: running speed. 

Middle: stimulus-specific unit activity in response to natural images. Shaded colored areas 

mark windows of different image presentation and are vertically restricted to clusters of 

neurons that preferentially respond to that stimulus. Shaded gray area marks a cluster of 

non-specific neurons that fire in response to all eight stimuli. Green box highlights neurons 

that preferentially fire at the initiation of running (two examples are marked by dashed red 

lines). Bottom: average Z-scored activity of the clusters highlighted above.
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(C) Peri-stimulus time histograms (PSTHs) from one example session showing the 

responses of eight units to the different natural images presented on day 1 sorted by their 

degree of selectivity. Significantly up-modulated PSTHs are shown in red. Gray shaded area, 

250 ms stimulus presentation window. The units’ autocorrelograms are shown on the right. 

Scale bars, 5 Hz.

(D) Average (mean ± SEM) fraction of cells modulated by different numbers of images 

across the different major brain areas included in the datasets for day 1 (blue) and day 2 

(red). Significant differences between day 1 and day 2 are marked with an asterisk (p < 0.05, 

Wilcoxon rank-sum test; n = 38 sessions on day 1 and 37 sessions on day 2).
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Figure 4. Novelty perturbs the representations of familiar stimuli and their propagation along 
the visual cortical hierarchy
(A) Example eigenspectra of responses to shared stimuli on day 1 (black) and day 2 (red).

(B) Distribution of participation ratio quantifying the intrinsic dimensionality of visual 

cortex population activity in response to the different image types(***p < 0.001, Kruskal-

Wallis with Tukey-Kramer post hoc tests).

(C) Illustration of the cross-validated ridge regression model used VISp activity to predict 

the activity in higher-order visual areas or a withheld VISp subpopulation.

(D) Performance (mean ± SEM across folds) of a cross-validated ridge regression model 

trained to predict VISam activity from VISp activity in an example mouse for a familiar 

image and a novel image on day 1 and 2, respectively, as well as the same shared image 

on both days. Note the decreased performance for the shared image on day 2.</p/>(E) 

Predictive performance (mean ± SEM) for all higher-order visual areas, as well as a held-out 

VISp population for familiar (gray) and shared (red) images on day 1 (familiar/shared 

differences are not significant; n = 26–30 sessions per area). Dotted lines, linear regression 

lines.

(F) Same as (E), for novel (cyan) and shared (red) images on day 2. Predictive performance 

of activity during the presentation of shared images was significantly lower than that of 

novel images in all higher-order visual areas, but not in VISp (p < 0.001, Wilcoxon rank-

sum test; n = 31–33 sessions per area).

(G) Comparison of predictive performance (median ± 95% confidence intervals) for shared 

images on day 1 (opaque colors) and day 2 (bright colors) for the different visual cortical 

areas, sorted by their anatomical hierarchy score (*p < 0.05, **p < 0.01, ***p < 0.001, 

Wilcoxon rank-sum test with Bonferroni-Holm corrections).
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Figure 5. Novelty affects adaptation to familiar stimuli
(A) Ratio of responses (median ± 95% confidence intervals) to changed/repeated 

presentations of shared images on day 1 (opaque) and day 2 (bright colors) during the 

active task, plotted against each area’s anatomical hierarchy score. Ratios were significantly 

lower on day 2 in higher-order visual areas, but not in VISp (**p < 0.01, ***p < 

0.001, Bonferroni-Holm corrected Wilcoxon rank-sum test; see Figure S7 for sample size 

summary). Pearson’s correlation coefficients and p values are indicated in the top left corner. 

Regression lines are plotted as dashed lines in the respective color.

(B) Prediction accuracy of a cross-validated linear classifier trained to distinguish changed 

and repeated presentations of the same image from normalized spike counts of all visual 

cortex neurons during the active task (*p < 0.05, **p < 0.01, ***p < 0.001, Kruskal-Wallis 

with Tukey-Kramer post hoc tests; n = 38 sessions on day 1 and 37 sessions on day 2).
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Figure 6. Differential embedding of novel and familiar neural representations
(A) Left: example UMAP embedding of responses to the different natural images presented 

on day 2 from primary visual cortex (VISp). Middle and right: same, but for two higher-

order visual cortex areas (VISpm and VISam, respectively). Note that, while VISp responses 

to different images form distinct clusters, higher-order visual areas show a less clear 

separation. Also note that in higher-order visual areas responses to shared images (im083 

and im111, red and brown, respectively) are embedded near or within the responses to the 

gray screen (gray).

(B) Anatomical hierarchy score of the different visual areas plotted against the average 

distance from the gray cluster (mean ± SEM) of shared images subtracted from the distance 

from the gray cluster of familiar (day 1) or novel (day 2) images. The color code for the 

different areas is shown below (n = 38 day 1 sessions and 37 day 2 sessions).

(C) Anatomical hierarchy score, plotted against the correlation between the distance of an 

image from the gray screen and the miss probability for that image (averaged across all 

images in a session). Significant correlations were observed only on day 2. Same color code 

as in (B) (***p < 0.001; **p < 0.01; Spearman’s correlation; n = 38 and 37 sessions on day 

1 and 2, respectively).

(D) Top left: two-dimensional UMAP embedding of neural responses (normalized spike 

counts within 50 ms windows during image presentation) of visual cortex units for HIT trials 

on day 1 from one example mouse. Responses are color coded by image identity. Top right: 

dissimilarity matrix showing the Euclidean distance between the embedding coordinates of 

the responses. Bottom: same, for MISS trials.
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(E) Same as (D), but for day 2. Note that on day 2, neural responses to familiar images (red 

and brown clusters) are embedded farther away from novel images, particularly on MISS 

trials.

(F) Effect size estimate of average centroid distance depicted as the distribution of 

differences between the medians of each group computed from 5,000 bootstrapped 

resamples and the median of familiar image HIT trials on day 1. Black bars depict 95% 

CIs (**p < 0.01, ***p < 0.001 to familiar day 1 HIT, Kruskal-Wallis with Tukey-Kramer 

post hoc tests).

(G) Left: miss probability on day 1 plotted against average centroid distance for familiar 

images shown on day 1 only (black) or images shared across both days (red). Right: same, 

for novel images (blue) and familiar images shown on day 2. Pearson’s correlation and p 

values are indicated in the bottom right.
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Figure 7. Differential participation of neurons modulated by familiar and novel images in 
spontaneous activity assemblies
(A) Left: a cross-validated generalized linear model was trained to predict the firing rate of 

a withheld visual cortex neuron (top raster plot, red) in 250 ms bins of spontaneous activity 

(red shaded area) from the firing rates of the remaining visual cortex neurons (bottom raster 

plot, black). Right: the optimized model weights (blue stem plot) were used in combination 

with the stimulus-evoked firing rates of visual cortex neurons (gray shaded raster) to predict 

the firing rate of the withheld neuron to that stimulus.

(B) Example actual (left) and predicted (right) tuning curves from one session.

(C) Distribution of correlation values between actual and predicted tuning curves, used 

to assess prediction accuracy (***p < 0.001, **p < 0.01, *p < 0.05, Kruskal-Wallis with 

Tukey-Kramer post hoc tests; n = 38 sessions on day 1 and 37 sessions on day 2). Note 

decreased prediction of the same (shared) stimuli on day 2 compared to day 1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB 2023a MathWorks https://www.mathworks.com/

Analysis tools Buzsaki Lab https://github.com/buzsakilab/buzcode

Uniform Manifold Approximation and Projection 
(UMAP) Stephen Meehan https://www.mathworks.com/matlabcentral/fileexchange/71902

RasterMap Stringer et al., 202328 https://github.com/MouseLand/RasterMap
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