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Application of polygenic scores to a deeply phenotyped sample
enriched for substance use disorders reveals extensive
pleiotropy with psychiatric and somatic traits
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Co-occurring psychiatric, medical, and substance use disorders (SUDs) are common, but the complex pathways leading to such
comorbidities are poorly understood. A greater understanding of genetic influences on this phenomenon could inform precision
medicine efforts. We used the Yale-Penn dataset, a cross-sectional sample enriched for individuals with SUDs, to examine
pleiotropic effects of genetic liability for psychiatric and somatic traits. Participants completed an in-depth interview that provides
information on demographics, environment, medical illnesses, and psychiatric and SUDs. Polygenic scores (PGS) for psychiatric
disorders and somatic traits were calculated in European-ancestry (EUR; n= 5691) participants and, when discovery datasets were
available, for African-ancestry (AFR; n= 4918) participants. Phenome-wide association studies (PheWAS) were then conducted. In
AFR participants, the only PGS with significant associations was bipolar disorder (BD), all of which were with substance use
phenotypes. In EUR participants, PGS for major depressive disorder (MDD), generalized anxiety disorder (GAD), post-traumatic stress
disorder (PTSD), schizophrenia (SCZ), body mass index (BMI), coronary artery disease (CAD), and type 2 diabetes (T2D) all showed
significant associations, the majority of which were with phenotypes in the substance use categories. For instance, PGSMDD was
associated with over 200 phenotypes, 15 of which were depression-related (e.g., depression criterion count), 55 of which were other
psychiatric phenotypes, and 126 of which were substance use phenotypes; and PGSBMI was associated with 138 phenotypes, 105 of
which were substance related. Genetic liability for psychiatric and somatic traits is associated with numerous phenotypes across
multiple categories, indicative of the broad genetic liability of these traits.
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INTRODUCTION
Medical illness and psychiatric disorders, including substance use
disorders (SUDs), frequently co-occur. Individuals with chronic
medical conditions are more likely to have a co-occurring SUD or
psychiatric diagnosis [1–5] and over 9 million U.S. adults have a
psychiatric disorder that co-occurs with an SUD [6]. The
development of a comorbid disorder can exacerbate pre-
existing conditions [7, 8] and worsen an individual’s prognosis
[9, 10]. Moreover, co-occurring disorders can limit treatment
options [11] and adversely affect treatment outcomes by reducing
treatment adherence or decreasing its effectiveness [12–14].
Understanding the genetic underpinnings of comorbid disorders
could improve their diagnosis, treatment, and ongoing manage-
ment, thus informing precision medicine efforts.
Genetic liability for medical and psychiatric disorders has been

discovered using genome-wide association studies (GWAS), which
identify associations between common genetic variants and the
trait of interest. These studies have identified pleiotropic variants,
i.e., those associated with multiple conditions. GWAS findings have
also demonstrated significant genetic correlations between SUDs
and other psychiatric disorders [15, 16] and medical conditions

[17]. These findings contribute to a growing body of evidence that
shared genetic risk loci or common biological pathways may
underlie co-occurring conditions.
Polygenic scores (PGS) provide a measure of an individual’s

genetic risk for specific traits and as such are a complementary
method to investigate genetic overlap. Previous studies have
shown that PGS are associated with conditions such as
cardiovascular disease [18], kidney disease [19], opioid use
disorder [20], depression [21], and pain [22], among many others.
PGS may also be used in phenome-wide association studies
(PheWAS) [23] to provide insight into the pleiotropic nature of
genetic liability for disorders [24, 25]. PheWAS, which have been
commonly implemented using electronic health record (EHR)
databases, measure the association between a PGS for a disorder
by testing it against multiple phenotypes in a hypothesis-free
paradigm.
Here, we used the Yale-Penn sample—which comprises a

diverse sample of participants recruited for genetic studies of
cocaine, opioid, and alcohol dependence—to conduct PheWAS of
psychiatric and somatic PGS. Yale-Penn participants completed
the Semi-Structured Assessment for Drug Dependence and
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Alcoholism (SSADDA) which queries medical, psychosocial, and
substance use history and diagnoses, psychiatric diagnoses, and
demographics [26, 27]. Previous studies have utilized the Yale-
Penn sample to conduct gene x environment studies [28], linkage
and association studies of substance use and dependence [29–36],
and to examine phenotypic associations [37]. These studies have
shown shared genetic liability across SUDs, psychiatric disorders,
and environmental traits.
Using the Yale-Penn sample, we created a simplified PheWAS

dataset for genetic analysis and calculated PGS to examine
pleiotropy for four major substance-related traits: alcohol use
disorder, opioid use disorder, smoking initiation, and lifetime
cannabis use [38]. PheWAS analyses in European-ancestry
participants identified significant associations between SUD PGS
and substance and psychiatric diagnoses and demographic and
environmental phenotypes. Here, we extend this work by
examining the associations of PGS for a variety of psychiatric
disorders and somatic traits in the Yale-Penn sample.

METHODS
Participants and procedures
The Yale-Penn sample (N= 14,040) was recruited from five U.S. academic
sites for studies of the genetics of cocaine, alcohol, and opioid use
disorders. The institutional review boards at University of Connecticut
Health, Medical University of South Carolina, McLean Hospital, University of
Pennsylvania, and Yale University approved the study protocol and
informed consent forms. After they gave informed consent, all participants
were administered the SSADDA and provided a blood or saliva sample for
genotyping. The SSADDA comprises 24 modules that assess demographic
information, environmental variables, medical history, and psychiatric and
substance use history and diagnoses [26]. Additional information on
variable selection and cleaning has been published [38]. In brief, the
SSADDA yields over 3700 variables, which we refined to 691 variables for
use in PheWAS by selecting variables that were considered informative for
genetic studies and nonduplicative [38]. These variables are grouped into
25 categories: Demographics, Medical History, Substance Use (Tobacco,
Alcohol, Cocaine, Opiate, Marijuana, Sedatives, Stimulants, Other drugs),
Psychiatric (Major Depression, Conduct Disorder, Antisocial Personality
Disorder [ASPD], Attention Deficit Hyperactivity Disorder [ADHD], Suicid-
ality, Post-Traumatic Stress Disorder [PTSD], Generalized Anxiety Disorder
[GAD], Panic Disorder, Social Phobia, Mania, Agoraphobia, Obsessive
Compulsive Disorder [OCD], Schizophrenia, and Gambling) and
Environment.

Case and control definitions
Participants who endorsed Diagnostic and Statistical Manual (DSM) criteria
for a given lifetime disorder (DSM-IV for psychiatric disorders, DSM-IV and
DSM-5 for SUDs) were coded as cases and those who met no diagnostic
criteria were considered controls. Participants meeting a sub-threshold
number of criteria (e.g., one criterion when multiple are required for
diagnosis) were excluded from analyses for that disorder. For individual
symptoms (e.g., suicide attempt), participants who responded affirmatively
were considered cases and those who did not were considered controls.
When an item was not answered, participants were coded as “NA” and not
included as either a case or a control for that variable.

Genotyping and imputation
In brief, Yale-Penn participants were genotyped in three batches using
Illumina microarrays at Center for Inherited Disease Research (CIDR) or the
Gelernter lab at Yale and imputed using the Michigan Imputation Server
[39] with the 1000 Genomes phase 3 reference panel [40]. Details on
genotyping, imputation, and quality control for the genetic data have
previously been reported [36, 38, 41, 42].
Ancestry-specific PGS were calculated using PRS-Continuous Shrinkage

(PRS-CS) software [43] from GWAS in discovery samples for anorexia (AN)
[44], autism spectrum disorder (ASD) [45], bipolar disorder (BD) [46],
generalized anxiety disorder (GAD) [47], major depressive disorder (MDD)
[48], obsessive compulsive disorder (OCD) [49], panic disorder (PD) [50],
post-traumatic stress disorder (PTSD) [51], schizophrenia (SCZ) [52],
Tourette syndrome (TS) [53], body mass index (BMI) [54], coronary artery

disease (CAD) [55] and type 2 diabetes (T2D) [56] (Supplementary Table 1).
All GWAS were available for European-ancestry (EUR), but only BD [57],
GAD [47], MDD [21], PTSD [51], and SCZ [52] were available for African-
ancestry (AFR). Discovery GWAS were selected based on their public
availability and excluded the Yale-Penn sample. The global shrinkage
parameter phi was learned from the data and default values were used for
other parameters as described on the github page for the software
(https://github.com/getian107/PRScs).

Statistical analysis
For PGS with available primary phenotypes (diagnoses for AN, ASD and TS
are not available in the Yale-Penn sample, and individuals with SCZ
diagnoses were excluded from recruitment), we tested for association
between the PGS and the primary phenotype using logistic regression
models in R, with p < 0.05 considered significant. We next conducted a
series of PheWAS using logistic regression models for binary traits and
linear regression models for continuous traits, adjusting for age, sex, and
the top 10 principal genetic components within each ancestry. Phenotypes
in which there were less than 100 cases or controls were excluded. For
available phenotypes, a second PheWAS was run that covaried for the
primary diagnostic phenotype. A Bonferroni correction was applied to each
ancestry group to account for multiple comparisons (AFR phenotypes
n= 574, p= 8.7 × 10−05; EUR phenotypes n= 620, p= 8.1 × 10−05).
Nagelkerke R2 was calculated to quantify the variance explained by PGS
only and PGS with covariates. Additionally, we also calculated a pseudo-R2

metric developed by Lee et al. [58] measured on a liability scale to avoid
bias in these estimates due to sample prevalence not being equal to
population prevalence.

RESULTS
Sample
Genetic data were available for 10,275 of the 14,040 participants,
the majority of whom (54.46%) were male. The sample included
4851 AFR participants (55.2% males) and 5424 EUR participants
(51.1% males) whose mean ages were 41.47 (SD= 10.16) and
39.79 (SD= 12.91), respectively. Supplementary Table 2 shows
demographic information by for available primary phenotypes.

Primary phenotypic associations of PGS
For the PGS with primary phenotypes available, we tested the
association of PGS with each primary phenotype (Fig. 1A). In AFR
participants, none of the PGS were associated with their primary
phenotype. In EUR participants, PGS for three psychiatric disorders
(PGSMDD, PGSPD, and PGSPTSD) and three somatic traits (PGSBMI,
PGSCAD and PGST2D) were associated with their primary phenotype
at a p-value of <0.05. The proportion of phenotypic variance
explained by the PGS alone ranged from 0.26 to 10.10%
(Nagelkerke’s pseudo-R2) and 0.10 to 4.68% (liability scale R2), in
line with previous estimates (Table 1).
We next examined phenotypic associations of each PGS other

than the primary phenotype. In AFR participants, after Bonferroni
correction, there were significant associations for PGSBD (Supple-
mentary Table 3). No other associations were observed among
AFR participants following Bonferroni correction (Supplementary
Tables 4–7). In EUR participants, there were significant associations
for five of the psychiatric disorders (PGSMDD, PGSGAD, PGSPTSD,
PGSSCZ, and PGSTS) and somatic traits (PGSBMI, PGSCAD and
PGST2DM), whereas there were no significant associations for
PGSBD, PGSAN, PGSASD, PGSOCD or PGSPD (Supplementary
Tables 8–20).

Phenome-wide analysis of psychiatric PGS
Bipolar disorder (BD). In AFR participants, PGSBD was associated
with three phenotypes in the substance use category, all related to
cocaine (e.g., regularly use cocaine, OR= 1.14, CI= 1.07–1.20,
p= 8.6 × 10−5; Fig. 1B; Supplementary Tables 3 and 21). PGSBD
was not associated with any phenotypes in EUR participants
(Supplementary Table 8).
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Major depressive disorder (MDD). In EUR participants, PGSMDD was
associated with 220 phenotypes across 17 categories (Figs. 1B and
2; Supplementary Tables 9 and 21). Although PGSMDD was not
significantly associated with the MDD diagnosis following
Bonferroni correction (OR= 1.13, CI= 1.05–1.21, p= 3.8 × 10−3;
Fig. 1A), it was significantly associated with 15 phenotypes in the
depression category, most significantly the MDD criterion count
(β= 0.40, CI= 0.30–0.50, p= 3.0 × 10−15). These phenotypes
remained significantly associated when covarying for MDD
diagnosis (Supplementary Fig. 1, Supplementary Table 9).
PGSMDD also showed 55 significant associations with other

psychiatric disorders. Notably, PGSMDD was the only PGS associated
with any phenotypes in the depression, generalized anxiety (e.g.,
sum of physical reactions (β= 0.14, CI= 0.08–0.20, p= 5.9 × 10−6)),
panic disorder (e.g. shortness of breath (OR= 1.29, CI= 1.18–1.41,
p= 4.0 × 10−9)), agoraphobia (e.g., ever agoraphobic (OR= 1.16,
CI= 0.08–0.23, p= 5.84 × 10−5)), and suicide categories (Supple-
mentary Table 21). Five phenotypes related to suicide were
significantly associated with PGSMDD, the most significant being
high suicidal intent (OR= 1.37, CI= 1.27–1.48, p= 6.5 × 10−9).
Covarying for the MDD diagnosis reduced the number of
associations in the panic disorder category from 18 to 13, and
the number of associations with GAD from 4 to 0. PGSMDD was the
only PGS associated with the number of inpatient psychiatric
treatments (β= 0.50, CI= 0.32–0.68, p= 2.8 × 10−8), emotional
problems (OR= 1.28, CI= 1.21–1.35, p= 6.0 × 10−12) and history
of antidepressant use (OR= 1.24, CI= 1.18–1.30, p= 2.0 × 10−12).
Other categories with significant associations included those

with PTSD (e.g. criterion count (β= 0.26, CI= 0.20–0.31,
p= 2.3 × 10−18)), conduct disorder (e.g., truancy, being suspended
or expelled from school (OR= 1.31, CI= 1.25–1.38, p= 8.5 × 10−16),
ASPD (e.g., impulsivity (OR= 1.17, CI= 1.11–1.24, p= 8.6 × 10−7),
and ADHD (e.g., criterion count (β= 0.09, CI= 0.06–0.12,
p= 9.6 × 10−10). Additionally, PGSMDD was significantly associated
with demographic and environmental phenotypes, including
negatively with education (β=−0.10, CI=−0.12–0.08,

p= 8.7 × 10−20) and positively with childhood adversity (OR= 1.29,
CI= 1.22–1.35, p= 6.8 × 10−13).
PGSMDD was also significantly associated with 126 substance use

phenotypes, 122 of which remained significant after covarying for
the MDD diagnosis. The substance use traits most significantly
associated with PGSMDD in each category were the Fagerström Test
for Nicotine Dependence (FTND) score (β= 0.38, CI= 0.31–0.46,
p= 8.7 × 10−23), criterion count for DSM-5 cocaine use disorder
(CocUD; β= 0.56, CI= 0.44–0.69, p= 1.3 × 10−18), “ever used”
opioids (OR= 1.31, CI= 1.25–1.37, p= 5.1 × 10−17), and DSM-IV
alcohol abuse (OR= 1.25, CI= 1.18–1.31, p= 2.3 × 10−11). Notably,
PGSMDD had the most alcohol associations of the PGS tested.

Generalized anxiety disorder (GAD). PGSGAD was associated with
85 phenotypes in EUR participants (Figs. 1B and 2; Supplementary
Tables 10 and 21). Although it was not significantly associated
with the primary diagnosis of GAD (OR= 1.21, CI= 1.01–1.40,
p= 0.06; Fig. 1), it was the only PGS to be associated with a history
of anxiolytic treatment (OR= 1.19, CI= 1.11–1.26, p= 8.7 × 10−6).
PGSGAD was significantly associated with four phenotypes

related to other psychiatric disorders, which were hyperactivity-
impulsivity (β= 0.18, CI= 0.12–0.25, p= 1.2 × 10−7) and inatten-
tion (β= 0.17, CI= 0.09–0.25, p= 2.4 × 10−5) for ADHD; truancy,
being suspended or expelled from school (OR= 1.18,
CI= 1.12–1.24, p= 2.9 × 10−7) for conduct disorder; and seeking
treatment for PTSD (OR= 1.21, CI= 1.12–1.31, p= 4.4 × 10−5).
Additionally, PGSGAD was significantly associated with non-
psychiatric phenotypes, such as health rating (higher value
indicates poorer health; β= 0.07, CI= 0.05–0.10, p= 2.4 × 10−7)
and education (β=−0.07, CI=−0.09–−0.05, p= 1.0 × 10−11).
PGSGAD was significantly associated with 73 substance

use phenotypes, particularly in the tobacco, cocaine, and
opioid categories (e.g., FTND score (β= 0.21, CI= 0.14–0.28,
p= 2.5 × 10−8), using more cocaine than intended (OR= 1.18,
CI= 1.07–1.19, p= 1.0 × 10−8), DSM-IV opioid dependence (OR=
1.23, CI= 1.17–1.29, p= 3.3 × 10−11), and DSM-5 alcohol use

Fig. 1 Primary and secondary associations of psychiatric and somatic PGS. A Effect size and 95% confidence intervals for associations
between PGS and their corresponding primary phenotype, if available. Asterisks indicate p-value for significant associations: *p < 0.05,
**p < 0.01, ***p < 0.001. B Number of associations within each category for the PGS with significant associations. BD Bipolar Disorder, GAD
generalized anxiety disorder, MDD major depressive disorder, OCD obsessive compulsive disorder, PD panic disorder, PTSD post-traumatic
stress disorder, SCZ schizophrenia, T2D diabetes, CAD coronary artery disease, BMI body mass index.
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disorder (AUD, OR= 1.16, CI= 1.09–1.23, p= 2.1 × 10−5)). Unlike
other psychiatric PGS, PGSGAD also had two significant associations
with marijuana use.
Covarying for the primary phenotype, half of the phenotypes

associated with PGSGAD were not significant, although the
association with anxiolytic treatment remained significant (Sup-
plementary Fig. 2, Supplementary Table 10). The tobacco category
had the greatest reduction in number of associations, with 8 of 11
phenotypes no longer significant when GAD diagnosis was
included as a covariate.

Post-traumatic stress disorder (PTSD). PGSPTSD was associated with
a total of 90 phenotypes in EUR participants (Figs. 1B and 2;
Supplementary Tables 11 and 21). PGSPTSD showed significant
associations with the diagnosis of PTSD (OR= 1.20, CI= 1.11–1.28,
p= 3.8 × 10−5) and with treatment-seeking for PTSD (OR= 1.21,
CI= 1.11–1.30, p= 5.8 × 10−5). The only other association in the
psychiatric category was with truancy, being suspended, or
expelled from school in the conduct disorder category (OR= 1.18,
CI= 1.11–1.24, p= 3.9 × 10−7). These associations were no longer
significant when the PTSD diagnosis was used as a covariate in the
analysis (Supplementary Fig. 3, Supplementary Table 11).
PGSPTSD was significantly associated with 77 cocaine, tobacco,

and opioid use phenotypes, including DSM-IV dependence and
withdrawal symptoms for all three substances. Almost half of
these traits were not significant when the PTSD diagnosis was
used as a covariate.
Similar to other PGS results, PGSPTSD was also significantly

associated with demographic phenotypes (e.g., education
(β=−0.07, CI=−0.09–−0.05, p= 5.8 × 10−11)), environment
phenotypes (e.g., household members being cigarette smokers
(OR= 1.18, CI= 1.11–1.24, p= 2.2 × 10−7)), and medical pheno-
types (e.g., health rating (β= 0.08, CI= 0.05–0.10, p= 8.4 × 10−8)).
However, the majority of these phenotypes became nonsignifi-
cant when the PTSD diagnosis was used as a covariate.

Schizophrenia (SCZ). PGSSCZ was associated with 14 phenotypes
in EUR participants (Figs. 1B and 2; Supplementary
Tables 12 and 21). The only associations with non-substance use
phenotypes were with truancy, being suspended or expelled from
school (OR= 1.21, CI= 1.13–1.28, p= 3.4 × 10−7) in the conduct
disorder category and a negative association with household
income (β=−0.15, CI=−0.22–−0.08, p= 4.4 × 10−5) in the
demographics section.
Among substance use phenotypes, PGSSCZ was significantly

associated with several alcohol use (e.g., reduction in other
activities (OR= 1.22, CI= 1.16–1.29, p= 4.2 × 10−9)) and cocaine
use phenotypes, such as failure to fulfill obligations (OR= 1.16,
CI= 1.09–1.23, p= 1.4 × 10−5).

Tourette’s syndrome (TS). In EUR participants, PGSTS was
associated with 1 environmental phenotype (Supplementary

Tables 13 and 21), frequency of moving/relocation as a child
(β= 0.18, CI= 0.09–0.27, p= 7.8 × 10−5).

Phenome-wide analysis of somatic PGS
Body-mass index (BMI). In EUR participants, PGSBMI was asso-
ciated with 138 phenotypes (Figs. 1B and 3; Supplementary
Tables 18 and 21), which was most significant for the primary
phenotype, BMI (β= 1.94, CI= 1.79–2.09, p= 4.1 × 10−133). Three
demographic variables were significant, including education
(β=−0.11, CI=−0.14–−0.09, p= 1.2 × 10−21). PGSBMI was asso-
ciated with 6 medical phenotypes, including health rating
(β= 0.13, CI= 0.10–0.16, p= 5.9 × 10−17) and diabetes (OR= 1.67,
CI= 1.53–1.81, p= 2.6 × 10−12). The demographic phenotypes
remained associated when BMI was used as a covariate, but half
of the medical associations did not (Supplementary Fig. 4,
Supplementary Table 18).
Seventeen psychiatric disorder phenotypes were associated

with PGSBMI, including 10 associations with traits in the conduct
disorder (e.g. truancy, being suspended or expelled from school
(OR= 1.27, CI= 1.20–1.34, p= 1.5 × 10−11)) and ASPD (e.g. irrit-
ability/aggression (OR= 1.24, CI= 1.18–1.31, p= 6.8 × 10−11))
categories; hyperactivity-impulsivity (β= 0.19, CI= 0.11–0.26,
p= 1.3 × 10−6) in the ADHD section; and six phenotypes in the
PTSD section, including PTSD diagnosis (OR= 1.24, CI= 1.14–1.34,
p= 1.3 × 10−5). When covarying for BMI, only 5 of the 17
associations remained significant.
PGSBMI was also significantly associated with 105 substance

use phenotypes, including multiple SUD diagnoses. There were
also numerous associations of PGSBMI with heaviness of use,
withdrawal, and physiological symptoms for a variety of
substances. Although PGSBMI was not associated with an
AUD diagnosis, it was uniquely negatively associated with the
ages of first alcohol use (β=−0.27, CI=−0.38– −0.17,
p= 3.4 × 10−7), regular use (β=−0.28, CI=−0.40–−0.17,
p= 1.6 × 10−6), and first intoxication (β=−0.25, CI=
−0.35–−0.14, p= 4.6 × 10−6). Although the alcohol phenotypes
were no longer significant when BMI was included as a
covariate, the majority of the other substance use phenotypes
remained significantly associated.
PGSBMI was also associated with several environmental

variables. These included exposures to substance use in
childhood, such as household members being cigarette
smokers (OR= 1.25, CI= 1.18–1.32, p= 7.8 × 10−10) and fre-
quent drug/alcohol use in the household (OR= 1.23,
CI= 1.16–1.29, p= 1.0 × 10−9). Lifetime trauma assessment
(OR= 1.20, CI= 1.14–1.24, p= 7.9 × 10−9) and childhood adver-
sity (OR= 1.23, CI= 1.15–1.30, p= 3.6 × 10−8) were also sig-
nificantly associated with PGSBMI.

Coronary artery disease (CAD). In EUR participants, PGSCAD was
significantly associated with 13 phenotypes (Figs. 1B and 3;
Supplementary Tables 19 and 21), including the primary phenotype

Table 1. Phenotypic variance explained by the PGS that were significantly associated with their primary phenotype in EUR.

PGS Sample
prevalence

Population
prevalence

Nagelkerke’s R2

(PGS+ covariates)
Nagelkerke’s
R2 (PGS only)

Liability scale R2

(PGS+ covariates)
Liability
scale R2

(PGS only)

Previously
reported R2

MDD 14.48% 8.30% [68] 4.19% 0.27% 4.81% 0.17% 1.5–3.2% [69]

PD 7.06% 4.70% [70] 4.32% 0.26% 5.36% 0.10% 0.8–2.6% [50]

PTSD 13.18% 6.80% [71] 9.62% 0.76% 9.13% 1.11% 0.40% [51]

BMI n/a n/a 15% 10.10% n/a n/a 5.40% [72]

CAD 3.30% 7% [73] 12.09% 1.18% 23.20% 1.46% 6.1% [74]

T2D 4.96% 11.60% [75] 14.10% 5.26% 26.26% 4.68% 5.37% [56]

Previously reported R2 have been calculated using a variety of methods, see references for details.
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of heart disease (OR= 1.38, CI= 1.22–1.54, p= 4.7 × 10−5), BMI
(β= 0.30, CI= 0.16–0.45, p= 4.7 × 10−5) and a negative association
with education (β=−0.07, CI=−0.09–−0.04), p= 1.3 × 10−9). The
remaining significant associations were with 10 tobacco use
phenotypes, (e.g. FTND score (β= 0.25, CI= 0.18–0.33,
p= 3.4 × 10−11)). The majority of these associations remained
significant when the primary phenotype was included as a
covariate (Supplementary Fig. 5; Supplementary Table 19).

Type 2 diabetes (T2D). PGST2D in EUR participants was significantly
associated with 71 phenotypes, including diabetes (OR= 2.18,
CI= 2.02–2.34, p= 7.2 × 10−22) (Figs. 1B and 3; Supplementary
Tables 20 and 21). PGST2D was associated with seven medical and
demographic phenotypes, including BMI (β= 0.58, CI= 0.41–0.76,
p= 3.3 × 10−11) and health rating (β= 0.10, CI= 0.07–0.13,
p= 9.3 × 10−9), five of which remained significant when the
primary phenotype was included as a covariate.
Truancy, being suspended or expelled from school in

the conduct disorder group was the only psychiatric
phenotype associated with PGST2D (OR= 1.17, CI= 1.09–1.25,
p= 4.2 × 10−5). PGST2D was significantly associated with 63
substance use phenotypes, including the FTND score
(β= 0.29, CI= 0.20–0.38, p= 3.5 × 10−10), DSM-5 OUD (OR=
1.25, CI= 1.18–1.32, p= 7.6 × 10−10), DSM-5 CocUD (OR= 1.20,
CI= 1.12–1.27, p= 8.9 × 10−7), and DSM-5 CanUD (OR= 1.17,
CI= 1.09–1.24, p= 5.9 × 10−5). The majority of these remained
significant when covarying for the primary phenotype (Supple-
mentary Fig. 6, Supplementary Table 20).

Comparison between PGS phenotypic associations
Ninety-eight phenotypes were significantly associated with two or
more PGS (Fig. 4). Common demographic variables across PGS
included negative associations with education and income, and
positive associations with BMI. Of the medical phenotypes, health
rating and number of medical problems were the most common
significant associations. Several environmental variables were also
associated with multiple PGS, most commonly household
members using cigarettes. Interestingly, PGSMDD and PGSBMI share

many associated phenotypes in the environment category and in
psychiatric categories, where common associations were observed
for ADHD, antisocial personality disorder, conduct disorder, and
PTSD phenotypes. Truancy, suspended, and expelled from school
from the conduct disorder section was significant across all PGS
except PGSCAD. Substance use categories (alcohol, cocaine,
marijuana, opiate, and tobacco use) exhibited widespread
commonalities across both psychiatric and somatic PGS. Notably,
DSM-5 criterion count for cocaine was associated with four PGS;
whereas sum of withdrawal problems and DSM-5 criterion count
for opiate use were both associated with five of the seven PGS.
Numerous tobacco use phenotypes were associated with all PGS
save for PGSSCZ; whereas the majority of common significant
phenotypes observed for alcohol phenotypes were between
PGSMDD and PGSSCZ.

DISCUSSION
This study examined the performance of psychiatric and somatic
PGS in the deeply-phenotyped Yale-Penn sample, in which most
participants were ascertained based on having one or more
lifetime SUDs. The SSADDA yields a wealth of phenotypic data not
typically available in EHR-based biobanks traditionally used for this
type of analysis, therefore we were able to both replicate previous
findings and identify several novel cross-trait associations. For all
PGS, the largest number of associations were with phenotypes in
the substance use categories. This is consistent with the high
prevalence of SUDs and the large number of individual traits
ascertained for each substance in this sample, and highlights the
high degree of pleiotropy of SUDs with both psychiatric and
medical phenotypes. Also, as might be expected, compared to the
somatic PGS, psychiatric disorder PGS showed more associations
with phenotypes in psychiatric categories, both within and cross
disorder.
Several PGS were significantly associated with their primary

phenotypes. The three somatic PGS were associated with their
respective primary phenotypes, indicative of the power of the
PGS. PGSPTSD in EUR participants was associated with a PTSD
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Fig. 2 Phenome-wide association results for MDD, GAD and PTSD. Phenotype categories are plotted along the x-axis, and –1log10 p-value x
direction of effect is plotted on the y-axis. Selected phenotypes passing Bonferroni correction are labeled.
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diagnosis. However, PGS for MDD and GAD in EUR participants
were not associated with their respective primary diagnosis
following Bonferroni correction, though both were associated
with related phenotypes, such as DSM criterion count for MDD

and the use of medications to treat anxiety. The lack of association
of PGS with their primary phenotypes could be due to the
sample’s ascertainment strategy, which focused on the presence
of one or more SUDs.

Fig. 3 Phenome-wide association results for BMI, CAD and T2D. Phenotype categories are plotted along the x-axis, and –1log10 p-value x
direction of effect is plotted on the y-axis. Selected phenotypes passing Bonferroni correction are labeled.
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Some PGS did not yield any significant associations. In AFR
participants, only the PGSBD showed any significant associations
and none were BD-related phenotypes. Although no other
associations with PGS were significant, some of the AFR PGS
showed nominal associations (i.e., p < 0.05) that may become
significant with a better powered PGS derived from a larger
originating GWAS (e.g., the association of PGSMDD with “ever

depressed”). Because the SSADDA interview does not assess
autism, Tourette’s Syndrome, or eating disorders, primary
associations for these PGS could not be tested.
PGSMDD showed the most associations of any PGS tested.

Notably, it was also the only PGS to yield significant associations
with depression- and suicide-related phenotypes. While other
EHR-based PheWAS have demonstrated strong associations of

Fig. 4 Heatmap of selected phenotypes that were common across two or more PGS.
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MDD with the primary diagnosis [59, 60], our strongest association
among depression phenotypes was for the MDD criterion count.
Moreover, each of the individual nine MDD diagnostic criteria
were also significantly associated with PGSMDD, suggesting a
genetic contribution to each. Most of the associations with
psychiatric phenotypes remained significant when the depression
diagnosis was covaried, indicating that the associations are not
due to co-occurring MDD. As with previous findings in an EHR-
based PheWAS, we observed associations of PGSMDD with alcohol
and tobacco use phenotypes, GAD, PTSD, and agoraphobia [59].
The association between SUDs and MDD was also found in our
previous analysis in this sample, which demonstrated associations
between PGS for SUDs and a number of depression phenotypes
[38]. Interestingly, numerous withdrawal-related phenotypes for
cocaine, tobacco, opioids, and alcohol were also significantly
associated with PGSMDD, as were treatment-seeking for depression
and other psychiatric disorders.
Few studies have examined the performance of anxiety-related

PGS. One study in which a PGSPTSD was tested in four EHR-based
biobanks [61] showed significant associations with a PTSD
diagnosis, a SUD diagnosis, and tobacco dependence, as well as
numerous associations with medical conditions, including circu-
latory and respiratory diseases. In contrast to our findings, that
study showed associations with various anxiety disorders and
depression, which may have been due to the large size of the
included biobanks and the higher number of cases for anxiety
disorders. Our PheWAS results for both PGSPTSD and PGSGAD were
associated with cocaine, opioid, and tobacco diagnoses, criterion
counts, and treatment seeking for use of those substances, which
is suggestive of an association of greater genetic risk for anxiety
with greater SUD severity.
Participants who, during screening for study participation, self-

reported having a schizophrenia or bipolar disorder diagnosis
were excluded from the Yale-Penn sample. Thus, the lack of
associations of PGSBD with the primary diagnoses and related
phenotypes was not unexpected; and we did not test for
association between PGSSCZ and schizophrenia due to low sample
size (n= 6). As with previous PheWAS, PGSSCZ was associated with
substance use and personality disorder phenotypes [62]. Given the
high rate at which SCZ and tobacco use co-occur, and previously
observed association of PGS for SCZ with tobacco use [62], the
lack of associations here were unexpected and may also be
attributable to the exclusion of participants with psychotic
disorders from the Yale-Penn sample.
In addition to all three somatic PGS being strongly associated

with their primary phenotype, they were associated with BMI and
several tobacco-related phenotypes. Previous studies conducted
using data from the UK Biobank and Penn Medicine BioBank
showed associations of PGSBMI with T2D, circulatory system
disorders, and sleep problems [25, 63]. We also found associations
of the PGSBMI with numerous substance-related phenotypes and
environmental factors. Lifetime trauma assessment, childhood
adversity, and childhood exposure to substance use were also
significantly associated with PGSBMI, experiences that have been
shown to predict higher BMI [64]. PGST2D, as expected, was
associated with measures of poor health and numerous substance
use phenotypes, the majority of which persisted after controlling
for a diabetes diagnosis. Higher rates of SUDs have been observed
in individuals with T2D [65] and individuals with a SUD and T2D
experience poorer medical outcomes and higher mortality than
those with T2D alone [66], though little is currently known about
pleiotropy of these traits. Akin to previous work [67], PGSCAD was
associated with tobacco use phenotypes but no other substance
use, such as alcohol phenotypes, or medical disorders, such as
T2D. PGSCAD did not yield any associations in the psychiatric
category and PGST2D only had one, which was no longer
significant covarying for diabetes diagnosis, suggesting that

genetic liability for these medical disorders is not associated with
psychiatric phenotypes in this sample.
This study should be interpreted in light of the strengths and

limitations. The Yale-Penn dataset used as a target sample is
comparatively small and cross-sectional, without longitudinal data
and medical records data available in large, EHR-based genetic
studies. However, the in-depth SSADDA interview provides
granular psychiatric and substance use data not available in
EHR-based biobanks, which provide the possibility of novel
insights into the pleiotropy of co-occurring traits. The Yale-Penn
sample excluded individuals with certain psychiatric illnesses,
including self-reported diagnosis of schizophrenia or bipolar
disorder at the time of telephone screening, thus limiting our
ability to observe some associations. For the primary phenotypes
that we did test, PGS for psychiatric disorders explains only a small
proportion of phenotypic variance (<1.4%), although PGS for
somatic traits explains a higher proportion (up to 10% for BMI).
Available discovery GWAS varied in size and those that included
individuals of AFR ancestry GWAS were not available for all the
phenotypes of interest. Moreover, the number of participants in
the originating AFR GWAS were consistently much smaller than
those available for EUR. Because the Yale-Penn sample includes
similar numbers of AFR and EUR participants, we believe that
larger discovery GWAS in AFR participants and the accompanying
increase in statistical power will be more informative of pleiotropy
in non-EUR populations.
Despite these limitations, our findings demonstrate the

pleiotropic nature of genetic liability for psychiatric disorders
and somatic traits. Both psychiatric and somatic PGS were
broadly associated with substance use phenotypes in a sample
enriched for individuals with SUDs. Despite the extensive
pleiotropy found, we also identified associations that were
unique to specific PGS. Furthermore, psychiatric PGS were more
likely to be associated with psychiatric disorders compared to
somatic PGS, suggesting some level of specificity of genetic
architecture within categories. Many phenotypes remained
associated when covarying for the primary phenotype on which
the PGS was based, suggesting that the genetic liability for the
disorders in question is the primary driver of the associations.
Overall, we find evidence that genetic liability for psychiatric
disorders and somatic traits partially underlies the common co-
occurrence of these traits with SUDs.
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