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A novel method for creating “golden” 3D center-out radial MRI sampling trajectories was developed 
and analyzed. This method, called ELECTRO (ELECTRic potential energy Optimized), uses repulsive 
forces to minimize electric potential energy. An objective function G (S), the electric potential energies 
of all subsets of consecutive readouts in a 3D radial trajectory, and its reduced form were minimized 
using a multi-stage optimization strategy. A metric called normalized mean nearest neighbor angular 
distance (NMNA) was proposed for describing distributions of points on a sphere. ELECTRO and other 
relevant golden trajectories were compared in silico using NMNA and point spread function analysis. 
Consecutive readouts from an ELECTRO trajectory were well spread out, with consistent NMNA values 
across sphere sizes (σNMNA = 0.005) and between regions on the sphere (NMNA ≈ 1.49). Conversely, 
the supergolden trajectory had poor consistency in NMNA values (σNMNA = 0.090) and clustering 
(NMNA = 1.28 at the pole with 40,000 readouts) that lead to artifact in the point spread function. 
Multi-stage optimization was faster than single-stage and obtained lower values of G (S) (e.g., 0.87 
vs. 0.91, for a sphere size of 40). In conclusion, ELECTRO trajectories are more golden than other 3D 
center-out radial trajectories, making them a suitable candidate for dynamic 3D MR imaging.
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In MRI, non-Cartesian sampling trajectories based on the golden ratio are a popular choice for accelerated 
dynamic 2D imaging applications. The golden ratio can produce a set of points that sample the unit interval such 
that, informally, all subsets of consecutive points are well spread out1–3. This property translates to sampling of 
the semi-circle and circle for golden angle radial4 and spiral trajectories respectively. As a result of this golden 
property and reconstruction algorithms that can tolerate undersampling5,6, golden angle k-space data are well 
suited for reconstruction in multiple different ways. Data can be binned according to a sliding window of 
arbitrary width for studies that require real-time images7. For cardiovascular imaging, data from different heart 
beats can be combined and reconstructed into a representative cine of the cardiac cycle. And all data can be 
reconstructed together for time-averaged imaging, coil sensitivity map estimation8,9, or motion estimation10. 
Certain motion-compensated cardiovascular MRI techniques rely on the use of all these types of reconstructions 
in a single reconstruction pipeline11–14. Reconstruction techniques that sort k-space data into high-dimensional 
spaces to simultaneously resolve multiple physiological dimensions (e.g., cardiac, respiratory, contrast) also 
make use of golden angle trajectories15,16.

Designing a “golden angle” radial trajectory in 3D is considerably more difficult for several reasons. Data 
readouts that are simply rotated in the same direction about the origin will sample a circle instead of the whole 
sphere. Under the spherical coordinate system, incrementing the polar angle linearly will result in a denser 
distribution of samples towards the poles. The concept of uniformity of points on a sphere is more difficult to 
define than the uniformity of points on a circle. Different optimization objectives for distributing points evenly 
on the sphere can lead to different global solutions17. There are challenges to visually evaluating trajectories 
for uniformity in 3D, and regions with poor uniformity may not be apparent or may only become apparent 
after a certain number of readouts. The golden 3D radial trajectory18, based on the 2D golden mean19, has 
been regarded as the 3D counterpart to the 2D golden angle radial trajectory. However, it may not be the only 
trajectory worthy of the title “golden”. To differentiate it from the others, and since it is related to the supergolden 
ratio20, we will refer to it as the supergolden trajectory for the remainder of this paper. Figure  1 shows the 
readout directions for the center-out supergolden trajectory, together with other trajectory distributions that are 
described in more detail below.
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The supergolden trajectory is calculated by first generating a sequence of well-distributed points in the unit 
square, and then mapping these points to the sphere using an inverse cylindrical equal-area projection21, thus 
obtaining the direction for each spoke. However, this mapping causes varying degrees of spatial distortion 
everywhere (except for two lines of latitude), with the distortion being most severe towards the north and south 
poles21 (Fig. 2A–C). The resulting point clustering on the sphere can range from none to severe, depending on 
the distribution in the square of points to be mapped. The degree of clustering also changes as a function of the 
number of readouts in the trajectory. For the center-out supergolden trajectory with 40,000 readouts (Fig. 1A), 

Fig. 1.  Points on the sphere represent the readout directions for 3D center-out radial trajectories. The blue-
red-green colormap indicates the order of readouts. A narrow view of the sphere is shown since point patterns 
mainly vary as a function of the polar angle. The Normalized Mean Nearest neighbor Angular distance 
(NMNA) is used to describe points on the unit sphere (see Methods). A randomly distributed set of points 
will, on average, produce an NMNA value of 1. Clustered distributions of points will tend to have NMNA 
values below 1, while higher values indicate points are more evenly spread out. (A) Examples of five different 
trajectories with 40,000 readouts each. (B) Example point distributions with different values of NMNA.
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readouts near the z-axis form spiral clusters while those towards the equator form vertical lines. Such clustering 
reduces the sampling efficiency of the trajectory and negatively affects the image quality.

In this work, we develop a novel method for determining readout directions and their ordering for flexible 
3D center-out radial MRI. This method represents readout directions as point charges on the surface of the unit 
sphere. The total electric potential energy (EPE) is then minimized using repulsive/Coulomb forces, producing 
distributions of points that tend towards spherical uniformity. The problem of distributing points on the sphere 
is of interest across many disciplines22,23, and EPE and repulsive forces are intuitive ways to obtain distributions 
of points that are well spread out17,24–28. We use EPE to represent the desired properties of a trajectory, thereby 
producing ELECTRic potential energy Optimized (ELECTRO) 3D radial trajectories. To pursue the flexibility of 
golden trajectories in image reconstruction, ELECTRO trajectories are produced where all subsets of consecutive 
readouts are well spread out. An efficient GPU implementation of the optimization algorithm was developed, 
enabling the pre-calculation of trajectories that are large enough for many MRI applications. Also, we propose a 
new measure for describing distributions of points on the unit sphere, based on the angular distances between 

Fig. 2.  (A) A set of points forming a square grid. (B) The square grid mapped to the sphere using an inverse 
cylindrical equal-area projection. (C) The square grid mapped to the top hemisphere. Both cases show how 
space is distorted. (D) A spherical cap and its parameters.
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nearest neighbors. We theoretically evaluate ELECTRO and other golden trajectories using the new measure and 
point spread function (PSF) analysis.

Theory
Relevant sampling trajectories
This section defines four 3D center-out radial trajectories that (to varying degrees) evenly sample the sphere 
continuously in time: supergolden, plastic, 2D bit-reversed29, and Halton trajectories. These trajectories are 
shown in (Fig. 1A).

The unit square can be filled with points (an, bn) according to the sequence

	

an = (np1 + c1) mod 1

bn = (np2 + c2) mod 1
� (1)

for n = 0,1, 2, . . . , where p = (p1, p2) is a pair of positive real numbers and c = (c1, c2) is a nonnegative initial 
offset. For the trajectories in this paper, c is set to zero. These points can then be mapped to the unit sphere using 
the inverse cylindrical equal-area projection21 (in Cartesian coordinates),

	

xn =
√
1− z2n cos 2πbn

yn =
√
1− z2n sin 2πbn

zn = 1− 2an

� (2)

thus forming the unit readout direction r = (x, y, z) . To map to the top hemisphere only, Eq.  (2) can be 
modified so that zn = 1− an.

A center-out radial version of the supergolden trajectory18 can be defined by setting p to the 2D golden 
mean19. Chan et al.18 derived the 2D golden mean through the eigenvectors of a matrix related to Narayana’s 
cows sequence. Alternatively, the 2D golden mean can be derived from the positive root of the polynomial 
x3 − x2 − 1, which is also known as the supergolden ratio, ψ = 1.465571…. The 2D golden mean can be 
expressed as psupergolden =

(
1/ψ , 1/ψ 2

)
. Geometrically, the point psupergolden creates a supergolden rectangle 

in the unit square, where the width of the square is in the supergolden ratio with the longer side of the rectangle, 
and the longer side of the rectangle is in the supergolden ratio with the shorter side. We note that the order of 
assignment of 1/ψ  and 1/ψ 2 to psupergolden is arbitrary, with the two possibilities producing different patterns of 
sample clustering on the sphere. We follow the order used in Chan et al. and assign psupergolden =

(
1/ψ 2, 1/ψ

)
.

Similarly, a “golden” 3D center-out radial trajectory based on the plastic ratio30, ρ = 1.324717 . . . , can 
be generated by setting p = pplastic =

(
1/ρ , 1/ρ 2

)
. The plastic ratio is the positive root of the polynomial 

x3 − x− 1, and the point pplastic creates a plastic rectangle in the unit square. The plastic ratio is related to the 
Padovan sequence. Though we have not observed trajectories based on the plastic ratio in MRI, the plastic ratio 
has been associated with quasirandom sequences on the sphere31, and has properties similar to the supergolden 
3D radial trajectory. To distinguish between these two “golden” trajectories, we call the trajectory associated with 
the plastic ratio the plastic trajectory.

Another alternative to generating readout directions that are well-distributed throughout time is to use 
methods related to base- b digit reversal. Trajectories based on base-2 digit reversal (i.e. bit-reversal) have been 
studied for 2D and 3D radial18,32. Furthermore, 3D center-out radial trajectories based on a 2D bit-reversal 
algorithm29 have been applied to dynamic pulmonary imaging33,34. The 2D bit-reversed 3D radial trajectory 
reorders the readout directions from a uniform spiral trajectory35, and depends on two positive integer 
parameters whose product equals the total number of readouts. Bit-reversal is closely related to the base-2 van 
der Corput sequence, which is a 1D sequence that quasirandomly samples the unit interval. Halton sequences 
generalize the van der Corput sequences to higher dimensions36. A 2D Halton sequence, that uses the base-2 
and base-3 van der Corput sequences as its first and second dimensions respectively, samples the unit square in a 
quasirandom manner. We map these points to the sphere using Eq. (2) and call the corresponding trajectory the 
Halton trajectory. These four trajectories will be evaluated alongside ELECTRO trajectories.

Electric potential energy of one sphere
A 3D center-out radial trajectory with a set of N  readout directions S = {r1, . . . , rN} can be represented as 
N  points on the unit sphere, each with unit charge. Let the total EPE of S be

	
U (S) = U (r1, . . . , rN) =

∑
1≤ i<j≤N

1

|ri − rj| � (3)

The objective is to find a set of points that minimizes U (S), subject to the constraints |ri| = 1 for i = 1, . . . , N . 
The minimization can be carried out by performing gradient descent on every point ri in a single iteration, and 
then projecting every point back onto the unit sphere. The negative gradient of U (S) with respect to ri is the 
net force exerted on the point at ri by all the other points. At the t-th iteration, the net force on r(t)

i  is

	

F
(t)
i =

N∑
j=1,j ̸= i

r
(t)
i − r

(t)
j∣∣∣r(t)

i − r
(t)
j

∣∣∣
3 � (4)
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Thus the update to r(t)
i  is (including the projection onto the sphere)

	

r
(t+1)
i =

r
(t)
i + γ F

(t)
i∣∣∣r(t)

i + γ F
(t)
i

∣∣∣ � (5)

for some step size γ . Optimization of U (S) would produce a set of points that are well-distributed on the 
sphere, but this would not directly impose any preference on the sequential ordering of these points.

Electric potential energy of multiple spheres
The golden angle 2D radial trajectory samples the unit circle such that all subsets of consecutive readouts are 
well spread out. To produce a 3D center-out radial trajectory with this property on the unit sphere, we divide 
the trajectory into consecutive, overlapping subsets of points of size m. We refer to m as the sphere size – the 
number of points on a given sphere. The goal is then to minimize the total EPE across all spheres, and the 
objective function is as follows. A sequence of N  points can form (N −m + 1) spheres, such that each sphere 
contains m consecutive points. The EPE of each of these spheres can be summed to form the function

	
Hm (S) =

N−m+1∑
k=1

U (rk, . . . , rk+m−1)� (6)

The formation of this function is illustrated in (Fig. 3A). Minimizing Hm (S) would cause the points in every 
sphere to be well spread out. To produce a trajectory where subsets of all sizes from 2 to N  contain points that 
are well spread out, we propose to optimize the following function.

	
G (S) =

N∑
m=2

α mHm (S)� (7)

This function contains the EPE of every possible sphere of consecutive points (naturally excluding spheres with 0 
or 1 point in them). α m is a nonnegative scalar that gives weighting to the EPE of spheres of different sizes. For 
spheres with a lower number of points, the distances between points are larger, energies are lower, and forces are 
weaker on average. Consequently, it would be more difficult for points in smaller spheres to repel each other to 
their optimal positions when in the presence of stronger forces from spheres with a higher density of points. The 
weighting α m provides a means to adjust these forces so that points are appropriately distributed.

Alternatively, G (S) can be viewed as the EPE of one sphere (as in Eq. (3)), except now the energies between 
pairs of points have different weightings. By substitution of Eqs. (3) and (6) into (7), and then factoring, G (S) 
can be written as, 

	

G (S) =
∑

1≤i<j≤N

wi,j
1

|ri − rj|

wi,j =

N∑
m=2

αmcm,i,j

� (8)

where cm,i,j is a count of the number of spheres of size m that contain the points ri and rj. The negative 
gradient of G (S) with respect to ri is similar to Eq. (4) except now the forces are weighted by wi,j.

	

F
(t)
i =

N∑
j=1,j ̸= i

wi,j

r
(t)
i − r

(t)
j∣∣∣r(t)

i − r
(t)
j

∣∣∣
3 � (9)

It follows from the definition of wi,j  that, informally, points that are closer to each other in sequence ordering 
(points are closer to each other in sequence ordering when |i− j| is smaller) will have greater weighting on 
their energies/forces. Consequently, points closer to each other in sequence ordering will tend to be farther apart 
on the sphere, and points far from each other in sequence ordering may be closer together on the sphere. The 
optimization process and its implementation, along with the definition of a metric to quantify point spacing on 
the unit sphere (normalized mean nearest neighbor angular distance, NMNA), are described in the following 
Methods section.

Methods
Multi-stage optimization
Finding a good configuration of points through the minimization of G (S) is challenging due to the large 
number of forces involved in the problem. We propose a strategy that first moves points to their approximate 
optimal positions, and then gradually adjusts these positions to obtain a more precise configuration. We do this 
systematically with a multi-stage optimization, where the EPE in the smaller spheres are minimized first, before 
adding the larger spheres into the objective function. For example, in the first stage, the EPE of all spheres of size 
2 are minimized, i.e., α 2H2 (S). In the next stage, continuing from the final point positions of the previous stage, 
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the EPE of all spheres of sizes 2 and 3 are minimized, i.e., α 2H2 (S) + α 3H3 (S). This would continue until the 
final stage in which the full function G (S) is minimized. In each stage, several iterations are performed. Each 
iteration consists of a gradient update, a projection onto the unit sphere, a clipping of angular displacements, 
and a criterion check for moving to the next stage (Fig. 3B–E). As the optimization transitions to the next stage, 

Fig. 3.  Overview of the ELECTRO optimization process. (A) Spheres with m points are formed by 
considering all possible subsets of m consecutive points (sphere size m). The total EPE of all these spheres is 
Hm (S). (B) Gradient update for one of the points. (C) The point gets projected back onto the unit sphere. (D) 
Angular displacement gets clipped if it exceeds δ max. (E) Flowchart of the multi-stage optimization process.
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points that did not interact previously (their energies were not included in the objective function) may be in 
very close proximity to each other. Such resulting large forces would cause points to be displaced far from their 
previous near optimal positions. To prevent this, points with angular displacements (after gradient update and 
projection) that are larger than some maximum angular distance δ max have their angular displacements clipped 
to δ max.

Normalized mean nearest neighbor angular distance
We propose to describe the spacing of points in a region of the unit sphere using a measure called the 
Normalized Mean Nearest neighbor Angular distance (NMNA). The angular distance between two points is 
δ ij = arccos (ri · rj). Let the angular distance from ri to its nearest neighbor be min

j
δ ij  such that j ̸= i. Let 

C  be a spherical cap on the unit sphere centered at the spherical polar and azimuthal coordinates (θ , ϕ ) , where 
β  is the angle between the center and the edge of the cap (Fig. 2D). Let Ω  be the set of indices of the points 
that are on the spherical cap, Ω = {i|ri ∈ C}. The number of points in Ω is |Ω|. Then the NMNA is defined as

	
NMNA =

∑
i∈ Ω

min
j
δ ij

|Ω| −ν N

, j ̸= i� (10)

When β = 180◦ , the spherical cap is the same as the whole sphere and |Ω| = N . −
ν N  is the expected value of 

the nearest neighbor angular distance of N  points randomly distributed on the unit sphere (its derivation is 
provided in the Appendix, which has similarities to others in the literature37,38). Even though the summation is 
performed over points on the spherical cap only, all points on the sphere are considered in the calculation of the 
nearest neighbor to ri (even those outside of the spherical cap).

Similar to the measure of spacing for points in a flat region37,39, a randomly distributed set of points would 
produce an NMNA value of 1 on average. Point distributions that are more clustered than the average random 
distribution will produce NMNA values between 0 and 1, while increasing NMNA values indicate that points are 
better spread out. Figure 1 shows different distributions of points on the sphere and their corresponding global 
NMNA values. The NMNA of the uniform spiral of points is near 2.00. Since this measure only considers nearest 
neighbor angular distances, clustered distributions that appear very different may have the same NMNA. For 
example, the distributions labelled Clustered 1 and Clustered 2 both have NMNA values of 0.50, but there are 
larger unsampled spaces in Clustered 1 than Clustered 2.

Implementation
Experiments and analyses were carried out in Python on a high-performance computing node with Intel Xeon 
Gold 6130 and NVIDIA Tesla V100 16GB processors. Computations that involved large summations (e.g., 
energies, forces, nearest neighbor angular distances) were parallelized using CuPy/CUDA40.

Optimization parameters
We define a length that is characteristic of a unit sphere with m points, limiting it to a maximum of the diameter 
of the unit sphere.

	
lm =

{
2, m = 2,3√
4π
m , m ≥ 4

� (11)

The corresponding characteristic angle is defined as qm = 2arcsin (lm/2). For all experiments values of 
α m = lm

3 were used. Such values of α m normalize the forces from different size spheres so that they are each 
relative to the characteristic length. This effectively scales up the forces in smaller m spheres and scales down 
the forces in larger m spheres.

Still, the forces are proportional to the number of spheres that contain the corresponding pairs of points, and 
the points in the middle of the sequence are part of more spheres than points at the ends. This includes spheres 
of every size m. We normalize for this by including a factor in the step size parameter γ  that will approximately 
average the forces.

	
γ = 0.08/

∑
m

min (m,N −m + 1)� (12)

The summation is performed over all m that have corresponding non-zero values for α m. The value in the 
denominator is a count of the number of spheres that contain the middle point in an N-point sequence. The 
value of 0.08 was determined empirically.

In the multi-stage optimizations, angular displacements were clipped to δ max, which was set to half the 
characteristic angle of the largest size m sphere in the current stage. No clipping of angular displacements was 
performed for the non-multi-stage optimizations. For the multi-stage optimizations, the criterion for advancing 
to the next stage was when no point moved more than 1% of the characteristic angle of the size m sphere to be 
added in the next stage. All optimizations were initialized using a random distribution of points.

Reducing the number of sphere sizes
The definition of G (S) in Eqs. (7) and (8) involves the EPE of spheres of all sizes from 2 to N . For large N , 
the amount of space required to pre-compute and store wi,j  exceeds the memory of most GPUs. Consequently, 
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wi,j  is recalculated each iteration, adding a nested loop of approximately size N  and significantly increasing 
computation time. As the golden angle 2D radial trajectory is more uniform when the number of readouts is 
a Fibonacci number, we reduce computation time by only optimizing for sphere sizes corresponding to the 
numbers in Narayana’s cows sequence41 greater than 1, i.e. 2, 3, 4, 6, 9, 13, 19, 28, . . . , stopping before the 
number N  is exceeded. If the sequence does not end on N , N  is appended. This approach reduces computation 
time by reducing the size of the inner loop that calculates wi,j  and by reducing the number of stages in the 
multi-stage optimization. The terms in Narayana’s cows sequence grow approximately exponentially (with the 
base being the supergolden ratio), meaning the larger numbers in the sequence are spaced farther apart than 
the smaller numbers. This suitably reduces to a greater degree the number of later stages in the optimization, 
which are more computationally expensive but less significant because points move very little. For example, if 
the points in a sphere with 10,000 points are well spread out, 9999 of those points are already well spread out, 
9998 of those points are already well spread out, etc.

Evaluation of experimental factors on image quality
To evaluate the experimental performance of different trajectories, realistic retrospective simulations of image 
acquisition and reconstruction were performed. These simulations were based on an established digital phantom 
of the adult thorax, created using MRXCAT42. Signal reception was based on a simulated 24-elemental coil 
array. Image acquisition assumed a trapezoidal readout gradient (480 µs rise time, 1280 µs readout), a 64 kHz 
acquisition bandwidth (16 µs dwell time), and a total of 40,000 center-out radial spokes. Sphere sizes (m) of 
40,000, 20,000 and 10,000 were considered.

Image reconstruction was performed using JSENSE to estimate coil sensitivity maps followed by iterative 
SENSE reconstruction9. Sampling density compensation was performed using the same approach as that 
described for the calculation of PSFs.

To evaluate the effect of gradient delay errors, representative values measured experimentally on a commercial 
scanner (1.5T Avanto, Siemens Healthineers) were applied to the three gradient axes (0, 1 and 4 µs along the x-, 
y- and z-axes, respectively). Image reconstructions were performed both with and without gradient delays, and 
with and without correcting for gradient delays. Differences between the reconstructed images and the ground 
truth digital phantom were then quantified based on the RMSE calculated over the entire volume of the digital 
thoracic phantom for each trajectory, sphere size, and gradient delay condition (none, present and uncorrected, 
present but retrospectively corrected). Note that retrospectively corrected gradient delays provide the actual 
k-space sampling pattern, but this will differ from the intended design. Hence, by evaluating each of these 
gradient delay conditions, one may determine if different trajectories are more sensitive to this perturbation.

Results
Comparing optimization strategies
Four ELECTRO trajectories were produced to demonstrate the effects of using the multi-stage optimization 
strategy and the effects of reducing the number of sphere sizes to be optimized. Computation time for the non-
multi-stage optimization with all sphere sizes limited this comparison to trajectories with only 2500 readouts. 
Each optimization was run for 30,000 iterations. First, these four trajectories were analyzed by evaluating the full 
objective function G (S) for each iteration of the optimization, even if the full G (S) was not used for that stage 
or optimization strategy (Fig. 4A). The multi-stage optimization strategies initially ignore most of the terms in 
G (S), resulting in a delayed drop in G (S) compared to the non-multi-stage optimization strategies. However, 
the multi-stage optimization strategies both converged to lower values of G (S).

In the multi-stage optimization, each point experiences forces from at most (2m− 2) other points, where m 
is the largest sphere size in the current stage. Without multi-stage optimization, each point experiences forces 
from every other point. This makes it difficult for a point to reach its optimal position because it would need to 
push through many other points and the forces pushing a point to its optimal position get weaker as the point 

Fig. 4.  Comparison between non-multi-stage and multi-stage optimizations, and between optimizing all 
sphere sizes and only those corresponding to the numbers in Narayana’s cows sequence. (A) The full objective 
function G (S) (all sphere sizes included) was evaluated for each iteration (2500 readouts). (B–C) For the final 
solution, a normalized Hm (S) was evaluated and shown for a range of sphere sizes.
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gets closer. The fewer force interactions in the earlier stages of the multi-stage approach allows points to move 
more easily to their approximate optimal positions. As the optimization proceeds to the later stages these points 
stay approximately in the same position, while obtaining low energy configurations for both the small and large 
spheres. Figure S1 in the Supplementary Material contains videos showing the point movements for each of 
the four optimization strategies. The multi-stage optimization strategy is also more computationally efficient 
because it has fewer forces to compute in all stages except for the last, where the number of forces to be calculated 
is the same as a non-multi-stage optimization.

For the final solution of each type of optimization, Hm (S) was evaluated and compared in Fig. 4B and C. 
Figure 4B shows the range of sphere sizes from 2 to 64, while Fig. 4C shows the range of sphere sizes from 2437 to 
2500. To enable visual comparison, Hm (S) was normalized by dividing by the number of spheres (N −m + 1) 
and by dividing by the number of interactions in a size m sphere, 

(
m2 −m

)
/2. Figure  4B shows that the 

energies for the smaller sphere sizes were indeed lower for the multi-stage optimizations. Figure  4B and C 
show that optimizing for only the sphere sizes from Narayana’s cows sequence resulted in lower energies for the 
smaller sphere sizes, but higher energies for the larger sphere sizes. This trade-off may be favorable for cine and 
real-time imaging where it is more important for smaller bundles of readouts to be well spread out. For the non-
multi-stage optimizations, optimizing for only Narayana’s cows sphere sizes resulted in a lower G (S) (Fig. 4A), 
likely from the lower energies of the smaller sphere sizes. On the other hand, for the multi-stage optimizations, 
optimizing for all sphere sizes resulted in convergence to the lowest value of G (S) out of the four methods. 
However, the multi-stage optimization with Narayana’s cows sphere sizes requires much less computation than 
that with all sphere sizes. The former reached the final stage in 7 s, at iteration 1824, while the latter reached the 
final stage in 330 s, at iteration 3956. To keep computation times feasible for the larger ELECTRO trajectories, 
we proceed with the rest of our analysis using the multi-stage optimization with Narayana’s cows sphere sizes.

ELECTRO trajectories with increasing N
ELECTRO trajectories using the multi-stage optimization with Narayana’s cows sphere sizes were produced for 
10,000, 20,000, 40,000, and 80,000 readouts. The optimizations were set to run for 10,000 iterations, except for 
the ELECTRO trajectory with 80,000 readouts, which was set to run for 20,000 iterations because it had more 
stages and it converged more slowly. The global NMNA of the first N  readouts and the last N  readouts were 
evaluated for each trajectory and the values are shown in Fig. 5. All ELECTRO trajectories appear to have a drop 
in NMNA towards the highest sphere sizes, suggesting that under the current scheme the weights α m for the 
highest m are too small or there should be more sphere sizes included in G (S) in the highest m range. This 
drop in NMNA correlates with the higher energies for the larger sphere sizes in Fig. 4C. To avoid this potential 
sampling bias, these trajectories can simply be truncated given the NMNA is fairly consistent for most m, e.g., 
take only the first 60,000 readouts from the ELECTRO trajectory optimized for 80,000 readouts. The 80,000 
readout ELECTRO trajectory took 7.8 h to reach the final stage (at iteration 10,026) and 76.3 h to complete all 
20,000 iterations.

Regional point distribution analysis
The regional NMNA was evaluated for five spherical caps on the unit sphere. Since the spatial distortion from 
the inverse cylindrical equal-area projection varies as a function of the polar angle θ  but not the azimuthal angle 
ϕ  (Fig. 2A–C), four spherical caps were positioned at θ = 0◦ , 30◦ , 60◦ , 90◦ , each with ϕ = 0◦  and cap angle 
β = 15◦ . The fifth spherical cap was the whole sphere. The NMNA was evaluated as a function of the first N  
readouts of the ELECTRO, supergolden, plastic, 2D bit-reversed, and Halton trajectories. This was evaluated 
up to 80,000 spokes for every trajectory except for the 2D bit-reversed trajectory, which only had 40,000 spokes 
so that the same trajectory can be used in the next analysis (i.e., Fig. 7). The two parameters used for the 2D 
bit-reversed trajectory were 20 and 2000. Figure  6A– E compare the regional NMNA between the different 
spherical caps for each trajectory. Figure 6F compares the global NMNA between the different trajectories. The 
supergolden and plastic trajectories have the largest variation in regional NMNA between the four regions of the 
sphere, and large changes in regional NMNA as a function of N . The NMNA of the 2D bit-reversed trajectory 
generally increases as a function of N , until near uniformity when all readouts are included. The 2D bit-reversed, 
Halton, and ELECTRO trajectories have relatively little variation in regional NMNA between the four regions. 
The Halton and ELECTRO trajectories have relatively consistent values of NMNA for all N  evaluated, though 
the values for the ELECTRO trajectory are higher. Like the global NMNA, the regional NMNA has drops at large 
sphere sizes for the ELECTRO trajectory. The supergolden trajectory at 40,000 readouts has greater clustering in 
the region at θ = 0◦  than the Halton trajectory. This can be seen both visually (Fig. 1A) and in their regional 
NMNA values (1.28 for supergolden and 1.33 for Halton), but the global NMNA of the supergolden trajectory 
remains higher than that of the Halton trajectory (1.37 for supergolden and 1.24 for Halton). This highlights the 
importance of regional analysis and how local information can be lost due to global averaging.

Uniformity of the smaller spheres
For each of the sphere sizes from 2 to 1000, the global NMNA was calculated for each of the (N −m + 1) spheres. 
The average and standard deviation of the values were evaluated for each sphere size, and the results are shown in 
Fig. 7A and B respectively. Computation time limits this analysis to the lower range of sphere sizes, though this 
range includes realistic temporal resolutions for cine and real-time MRI applications. Trajectories with 40,000 
readouts were included in this comparison. The ELECTRO trajectory with 80,000 readouts was truncated by 
taking the first 40,000 readouts. To measure the flatness of the curves, σ , in Fig. 7A the standard deviation of 
the values in each curve was calculated. In the range of sphere sizes from 2 to 1000, the ELECTRO trajectory 
has stable values for the average NMNA ( σ =0.005) that are consistently higher than those from the Halton 
and 2D bit-reversed trajectories (except for the sphere size of 2, for which the Halton trajectory has a higher 
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average NMNA). The supergolden and plastic trajectories have average NMNA values that dramatically oscillate 
above and below the values of the ELECTRO trajectory ( σ =0.090 and σ =0.070 respectively). The 2D bit-
reversed and Halton curves have moderate flatness values at σ =0.014 and σ =0.019 respectively. The standard 
deviation of the NMNA (Fig. 7B) is generally lowest for the supergolden and plastic trajectories, followed by 
the ELECTRO trajectory and then the Halton and 2D bit-reversed trajectories. Compared to the supergolden 
trajectory, the ELECTRO trajectory had significantly higher (Welch’s t-test, p < 0.05) average NMNA values for 
771 sphere sizes, while the supergolden trajectory had significantly higher values for 227 sphere sizes. Compared 
to the plastic trajectory, the ELECTRO trajectory had significantly higher average NMNA values for 336 sphere 
sizes, while the plastic trajectory had significantly higher values for 662 sphere sizes. Between the supergolden 
and plastic trajectories, the supergolden trajectory had significantly higher values for 222 sphere sizes while the 
plastic trajectory had significantly higher values for 777 sphere sizes. 

Point spread function analysis
PSFs were calculated for the 40,000 spoke 3D center-out radial trajectories. Radial spokes with instantaneous 
gradient ramping were used (i.e., no uneven sampling on the spoke). The density compensation function was 
derived geometrically, assuming all points in a spherical shell occupied the same volume (no compensation 

Fig. 5.  ELECTRO trajectories were produced for 10,000, 20,000, 40,000, and 80,000 readouts. The global 
NMNA was evaluated for the first N  and last N  readouts.
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for uneven angular spacing). The same density compensation function was used for each trajectory. The non-
uniform fast Fourier transform43 from the SigPy library (https://github.com/mikgroup/sigpy) was used.

The three orthogonal center planes of the PSFs (Fig. 8) show the different aliasing artifacts from each trajectory 
and their directional dependence. Most noticeably, the PSF of the supergolden trajectory has disk-like artifacts 
in the mid z-plane, likely caused by the spiral sample clustering around the z-axis (Fig. 1A). The supergolden, 
plastic, 2D bit-reversed, and Halton trajectories all have one type of aliasing pattern in their mid x- and y-planes 
and a different type of aliasing pattern in their mid z-planes. This is likely a result of using the spherical polar 
and azimuthal angles in their derivation, which results in a symmetry about the z-axis. Of these four trajectories, 
the differences in aliasing pattern can be seen within the 1 FOV radius for the supergolden, plastic, and Halton 
trajectories, while the differences for the 2D bit-reversed trajectory are mainly outside of the 1 FOV radius. The 
ELECTRO trajectory is the only trajectory that has PSF mid planes that are indistinguishable from each other. 
The PSFs of the Halton and ELECTRO trajectories have mostly streak-like aliasing, correlating with the random-
like pattern of their readout directions, while the PSFs of the supergolden and plastic trajectories have blade-like 
aliasing, which may correspond to their readouts having patterns that are regularly repeated azimuthally. Having 
incoherent aliasing artifact is favorable for L1-regularized image reconstructions such as compressed sensing6 
and total-variation minimization44, while not having any directional dependence simplifies the assumptions to 
be made in these reconstructions. Any exponentially increasing sequence could be tried instead (e.g. Fibonacci 
or Padovan), where the base of the exponent would be chosen to control the trade-off between computation time 
and spacing between the numbers in the sequence. Narayana’s cows sequence was chosen because its base sits 
between those of the Fibonacci and Padovan sequences.

Evaluation of experimental factors on image quality
As described in the Methods section, numerical simulations of image acquisition and reconstruction were 
performed using the different trajectories to evaluate the effect of realistic experimental factors on image quality. 
Image quality was quantified based on the root mean squared error (RMSE) between the ground truth image 
(digital thoracic phantom) and the reconstructed images.

Of the factors tested, an uncorrected gradient delay produced the bigger change in RMSE across all 
trajectories. For example, for a sphere size of 40,000, the RMSE for all trajectories in the absence of gradient delay 
was less than 1% of the maximum signal of the ground truth image. Under conditions of experimentally realistic 
and uncorrected gradient delays, this error rose over six to eight-fold; however, following retrospective gradient 
delay correction, RMSE values returned to their baseline values. Similar behaviour was found for a sphere size of 
20,000, with RMSE values rising from 1 to 2% to 5–6%, but again returning to baseline after correction. Finally, 
for a sphere size of 10,000, baseline RMSE values ranged between 5 and 8%, rising to 7.5–9.5%, and returned to 
baseline after correction. These findings demonstrate that, although RMSE values varied across sphere sizes and 
between trajectories, gradient delay errors after retrospective correction had a small influence on image quality.

Discussion
A new method has been developed for determining the readout directions for 3D center-out radial trajectories. 
By minimizing the energy function G (S) a “golden” trajectory is produced where all subsets of consecutive 
spokes are well spread out across the sphere. ELECTRO trajectories produced this way are arguably more 
golden than the supergolden and plastic trajectories. The NMNA of ELECTRO trajectories is more consistent 
across sphere sizes compared to the supergolden and plastic trajectories, whose NMNA values rise and 
drop significantly around the values of the ELECTRO trajectory (Fig. 7A). The regional NMNA varies most 
significantly for the supergolden and plastic trajectories (Fig. 6A–E). There is a regularity to the square of points 
related to the supergolden and plastic trajectories (points are modulo 1 multiples of psupergolden or pplastic). This 
regularity persists when the square of points is mapped to the sphere, giving rise to regular patterns of points that 
may include clustering (Fig. 1A). The square-to-sphere mapping stretches space azimuthally and polarly, but in 

Fig. 6.  Regional point distribution analysis of the trajectories using NMNA. (A–E ) Regional NMNA of five 
center-out radial trajectories. Four regions at different polar angles were evaluated. (F) The NMNA averaged 
over the whole sphere for each of the five trajectories.
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different proportions depending on the polar angle (Fig. 2A–C). For these reasons, the regional NMNA varies 
as a function of the polar angle. This variation of regular patterns correlates with the directionally dependent 
structured aliasing patterns seen in their PSFs (Fig. 8). While the Halton trajectory also maps a square of points 
to the sphere, the points are not multiples of each other, and do not have the same degree of regularity. The 
NMNA is relatively consistent between regions of the ELECTRO trajectory (Fig. 6E) and its PSF has isotropic 
streak-like aliasing patterns (Fig. 8). These characteristics make ELECTRO trajectories more similar to the 2D 
golden angle radial trajectory, which is near uniform for all subsets of consecutive spokes and is not biased in 
any direction.

G (S) was minimized through a multi-stage process that converges faster and achieves lower energy solutions 
compared to minimizing all of G (S) in a single stage (Fig. 4A). A reduced version of G (S) (Narayana’s cows) 
was minimized primarily to shorten computation times but minimizing the full G (S) may yield even lower 
energy solutions. Narayana’s cows sequence improves computational performance by reducing the size of the 
optimization landscape and, at smaller sphere sizes, sampling of the landscape is still favorable for optimization. 
The number of points added to the sphere per iteration is also smaller, which can facilitate optimization at 
smaller sphere sizes (at large sphere sizes, cows are far apart, and convergence may be worse than by optimizing 
for all sphere sizes). In the current GPU implementation, each thread calculates the weighted force for a pair of 
points and adds the weighted force to the net forces of the corresponding two points. This summation can be 
divided amongst multiple GPUs, and the partial summations from each GPU can be combined afterward. Faster 
computation may enable the calculation of better point distributions and allow the production of trajectories 
with a greater number of readouts. Additionally, efficient storage and retrieval of pre-computed wi,j  can further 
reduce computation time. Computation of an ELECTRO trajectory for each value of N  may not be necessary 
since the NMNA is quite consistent between ELECTRO trajectories with different N  (Fig. 5). We expect that 
it would be practical to produce a single, high quality ELECTRO trajectory large enough for all foreseeable 

Fig. 7.  Comparison of NMNA values for the lower range of sphere sizes containing realistic temporal 
resolutions for cine and real-time MRI applications. Five center-out radial trajectories with 40,000 readouts are 
compared. (A) Average NMNA and (B) standard deviation of NMNA.
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MRI applications, and then truncate it as needed. Such an endeavor would require, at least, the discussed 
improvements in hardware and software.

The weighting of the energies wi,j  in Eq. (8) was derived from a multiple-spheres perspective of the problem, 
which consisted of the weighting α m for each of the different sphere sizes. α m provides a handle for tuning the 
trajectory to specific temporal resolutions, if the desired temporal resolutions are known before data acquisition. 
Also, adjusting α m may improve the characteristic drop in NMNA for the large sphere sizes near N  (Figs. 5 
and 6E), as may changing the sphere sizes included in the optimization. For this work, the choices for these 
parameters were kept simple to avoid hand-tuning, but they may not be optimal. Alternatively, it may be possible 
to derive wi,j  from functions that decrease as the distance between points in sequence ordering |i− j| increases.

The ELECTRO readout directions were applied to 3D center-out radial trajectories, but these same directions 
can be used to distribute other trajectories, such as radial-cones45, Seiffert’s spirals46, and corkscrews47,48. 
Development and analysis were carried out for center-out radial, though extension of this method to full spoke 
radial is possible with minor adjustments. Each full spoke would need to have two points on the sphere symmetric 
through the origin, since the heads and tails together should be well spaced out. Most 3D full spoke radial 
trajectories have clustering near the z = 0 plane49,50, because the heads and tails together were not explicitly 
considered in their design18,51–53. Full spoke ELECTRO trajectories would not have this issue.

Potential extensions to this work include comparison to data-driven approaches for k-space trajectory design. 
For example, previous literature has demonstrated a generalized framework for the stochastic optimization of 3D 
non-Cartesian sampling trajectories (SNOPY)54. This approach has been applied to 3D center-out trajectories 
to create optimized but complex and non-linear trajectories. A computational complexity introduced by this 
approach would be the joint optimization of such complex trajectories across different sphere sizes, to support 
reconstruction at different temporal resolutions. Through our simulated experiments, we have demonstrated 

Fig. 8.  Point spread function comparison between five different 3D center-out radial trajectories. A narrow 
display window of [0, 0.004] was used. Images show the three orthogonal center planes at 2x FOV. The center 
planes of the ELECTRO PSF are indistinguishable from each other.
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that ELECTRO can compensate for potential imaging errors with the application of gradient delay corrections. 
Hence, our approach is compatible with existing methods for coil combination and gradient delay corrections.

A new measure called the NMNA was proposed for describing a distribution of points on the sphere. The 
NMNA was used to analyze points in subregions of the sphere, whereas most methods in the literature have 
analyzed the entire sphere of points together18,35,52,53,55, which disregards anisotropy in the distribution of points. 
The NMNA has several differences from the mean nearest neighbor distance measure37, which was later called 
the clustered-random-regular (CRR) continuum38,53. This measure was derived under the assumptions of the 
Poisson distribution37, which are unsuitable for a finite number of points on a finite surface area. When applied 
to a distribution of points on the sphere, there is a bias in the CRR when the number of points is small. The −

ν N  
in NMNA was derived specifically for points on a sphere, which involved the use of the binomial distribution 
instead (see Appendix). We do not call our measure CRR because we do not believe that clustering, randomness, 
and regularity lie on a continuum. For example, the supergolden trajectory with 40,000 readouts has regularly 
repeating vertical line clusters at θ = 90◦  (Fig. 1A), resulting in a regional NMNA value above 1 (Fig. 6A). 
Though EPE was used as the objective function for ELECTRO, it was challenging to use EPE as a measure 
for comparing distributions of points. EPE was difficult to normalize as a function of N  and it was relatively 
insensitive to different distributions of points, likely because the EPE includes the distances between all points 
rather than just the nearest neighbor.

Conclusion
This work demonstrates the potential of obtaining a golden 3D radial trajectory from the optimization of 
electric potential energy. ELECTRO trajectories have more consistent NMNA values across sphere sizes and 
between regions of the sphere when compared to other trajectories. The readouts of the established supergolden 
trajectory form clusters around the z-axis that reduce the efficiency of k-space sampling and leads to structured 
image aliasing artifact, while ELECTRO trajectories are not biased in any direction. Further analysis focused on 
ELECTRO trajectories themselves and the optimization process may yield new insights and lead to better and 
even more efficient solutions.

Data availability
Source code and simulation output are available from the lead author on reasonable request.
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