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still lag behind traditional tools,

highlighting the need for further
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ARTICLE

Assessing the utility of large language models
for phenotype-driven gene prioritization in the
diagnosis of rare genetic disease

Junyoung Kim,1 Kai Wang,2,3 Chunhua Weng,1,4,* and Cong Liu1,4,*
Summary
Phenotype-driven gene prioritization is fundamental to diagnosing rare genetic disorders. While traditional approaches rely on curated

knowledge graphs with phenotype-gene relations, recent advancements in large language models (LLMs) promise a streamlined text-to-

gene solution. In this study, we evaluated five LLMs, including two generative pre-trained transformers (GPT) series and three Llama2

series, assessing their performance across task completeness, gene prediction accuracy, and adherence to required output structures. We

conducted experiments, exploring various combinations of models, prompts, phenotypic input types, and task difficulty levels. Our

findings revealed that the best-performed LLM, GPT-4, achieved an average accuracy of 17.0% in identifying diagnosed genes within

the top 50 predictions, which still falls behind traditional tools. However, accuracy increased with the model size. Consistent results

were observed over time, as shown in the dataset curated after 2023. Advanced techniques such as retrieval-augmented generation

(RAG) and few-shot learning did not improve the accuracy. Sophisticated prompts were more likely to enhance task completeness, espe-

cially in smaller models. Conversely, complicated prompts tended to decrease output structure compliance rate. LLMs also achieved bet-

ter-than-randomprediction accuracywith free-text input, though performance was slightly lower thanwith standardized concept input.

Bias analysis showed that highly cited genes, such as BRCA1, TP53, and PTEN, are more likely to be predicted. Our study provides

valuable insights into integrating LLMs with genomic analysis, contributing to the ongoing discussion on their utilization in clinical

workflows.
Introduction

Phenotype-driven gene prioritization is a process that in-

volves identifying and ranking candidate diagnostic genes

by examining an individual’s phenotypes. It plays a crucial

role in rare disease diagnosis when analyzing genomic data

from high-throughput (e.g., whole-genome/whole-exome

sequencing) experiments or designing virtual sequencing

panels for diagnosis purposes.1 The underlying premise is

that disease-related phenotypes are caused by one or more

gene dysfunctions. By leveraging the established geno-

type-phenotype disease associations, phenotype-based

analytical models have been developed, resulting in

numerous bioinformatics tools. For instance, Phenomizer2

compares individual phenotypes to adatabase of knownge-

netic diseases and their associated phenotypes and ranks

the potential genetic diseases based on the semantic simi-

larity of the patient’s phenotype to known conditions

within the Human Phenotype Ontology (HPO). Exomiser3

integrates various data sources, includinggene-disease asso-

ciations, variant databases, and Gene Ontology data, and

employs a random-walk analysis to score and rank candi-

date genes or variants. Similarly, AMELIE4 constructed a

comprehensive disease-phenotype knowledgebase by inte-

grating various databases and resources, including ClinVar

andHumanGeneMutationDatabase (HGMD), andparsing
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relationships from literature. It then developed a machine-

learning classifier to rank candidate genes. Phenolyzer5 and

its successor Phen2Gene6 integrated HPO annotations,

gene-disease databases, and gene-gene networks and

applied a probabilistic framework to build a phenotype-

driven gene prioritization tool. Network inferencemethods

based onmodern deep-learning frameworks have also been

explored. For example, DeepSVP7 constructs a graph from

ontology axioms and employs the DL2Vec approach for

gene-phenotype association prediction. CADA8 utilizes

graph-embedding techniques to predict links between

phenotype and diseases.

As introduced above, the majority of the existing tools

rely on established knowledge databases or knowledge

graphs that connect phenotypes with genes (ormonogenic

diseases). These databases are typically curated manually

and informed by the literature, which can be ad hoc and

lack scalability. Additionally, most of these bioinformatics

tools can only process ‘‘term-based’’ input, requiring natu-

ral language-processing techniques tomap terms from clin-

ical notes to HPO concepts. We hypothesized that recent

advancements in large language models (LLMs), trained

on massive and diverse datasets, could potentially provide

an end-to-end, text-to-gene solution to this task by

leveraging their extraordinary ability to ‘‘understand

natural language.’’9,10 These models begin by employing a
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Table 1. Datasets used for LLM evaluation in this study

Source
# of individuals with
HPO terms as input

# of individuals with
narratives as input Average # of HPO (s.d.) Average # of tokens (s.d.)

AJHG 78 72 11.42 (6.43) 187.64 (88.87)

CSH 72 49 12.83 (8.30) 161.43 (102.38)

ColumbiaU 27 – 11.52 (4.73) –

DGD 85 – 9.03 (4.06) –

TAF1 14 – 34.86 (10.71) –

Other – 4 – 180.25 (143.98)

Post2023 – 130 – 270.09 (177.07)
transformer-based decoder architecture to pre-train a base

language completion model without supervision. Subse-

quently, the base model undergoes a fine-tuning process

with human feedback and additional refinement through

reinforcement learning, guided by a reward model trained

using supervised methods, which can lead to the develop-

ment of a ChatBot. Numerous articles have indicated the

potential of LLMs for healthcare applications, including in-

dividual education,11 appointment scheduling,12 optimi-

zation of clinical decision support systems,13 aid in data

collection for clinical studies,14 enhancement of informa-

tion retrieval in electronic health records (EHRs),15 and

summarization of evidence in publications.16

In this study, we will particularly focus on two advanced

ChatBot-based LLMs: generative pre-trained transformer

(GPT) series, including GPT-3.5 (also known as ChatGPT)

and GPT-4 (https://www.mikecaptain.com/resources/pdf/

GPT-1.pdf), and the Llama2 series, including Llama2-7b-

chat (with 7b indicating 7 billion parameters), Llama2-

13b-chat, and Llama2-70b-chat.17,18 We will explore the

ability of standard, unmodified LLMs (vanilla LLMs) to

analyze human phenotypic presentations and predict ge-

netic diagnoses. Our primary objectives include evaluating

LLMs’ performance in completing the designated task,

achieving accurate gene prioritization, and adhering to

output structure requirements. We will assess the impact

of various factors, including prompts, model sizes, task dif-

ficulty levels, and phenotypic input type. Additionally, we

will assess the impact of advanced methods like retrieval-

augmented generation (RAG) and few-shot prompting on

model performance and address data leakage concerns by

repeating experiments with the same dataset at different

times and using a new dataset gathered from post-2023

(Post2023) publications. Overall, this study provides a

comprehensive assessment of how LLMs can potentially

be integrated into the current clinical genomic analysis

workflow for rare disease diagnosis.
Material and methods

Datasets
We utilized publicly accessible datasets consisting of a total of 276

de-identified individuals who had been diagnosed with mono-
The American Jo
genic Mendelian diseases,6 all with previously established diag-

nostic genes before 2021. There are a total of 165 distinct genes

in the final pool of diagnosed genes. The cohort was pooled

from five distinctive sources as outlined in Table 1, including a

broad spectrum of Mendelian diseases and genes, ensuring that

the dataset covered various genetic conditions. The TAF1 dataset

only contains 14 individuals with variants in TAF1 from one of

the American Journal of Human Genetics (AJHG) articles.19 The

Columbia_U dataset contains 27 (de-identified) individuals with

24 diagnostic genes from Columbia University Irving Medical

Center. The Department of Genomic Diagnostics (DGD) dataset

includes 85 (de-identified) individuals with 75 diagnostic genes

from the DGD at the Children’s Hospital of Philadelphia. The

CSH dataset comprises 72 (de-identified) individuals with 59 genes

from Cold Spring Harbor (CSH) Molecular Case Studies articles.

The AJHG dataset has 83 individuals with 13 genes from the

AJHG articles. Except for the CSH and AJHG datasets (both were

curated HPO from the Aho-Corasick algorithm embedded in

Doc2HPO20), the other datasets were curated by doctors before-

hand.6 An institutional review board (IRB) exemption was ob-

tained from the Columbia University Review Board.

The HPO concepts and final diagnosed genes of each individual

were previously curated.6 Free-text phenotypic descriptions were

further collected from 53 original articles for 125 individuals

(including four individuals not included in the original HPO data-

set for quality-control purposes). This was accomplished by iden-

tifying the relevant section in the articles andmanually extracting

the original text that provided detailed information about the in-

dividual’s phenotype presentations. One such example is as fol-

lows: ‘‘At 6 years, IQ was evaluated (verbal IQ 73, performance

IQ 58). On physical examination at 15 years, she has a normal

head circumference (þ0 SD), facial dysmorphism, and thoraco-

lumbar kyphoscoliosis.’’ To avoid data leakage, we manually

excluded genetic/genomic analysis-related text from the original

text. Additionally, we curated a new dataset of free-text pheno-

typic descriptions for 130 individuals from Post2023 publications

by manually extracting the original text in the same way as

described above. More details about the dataset can be found in

the GitHub repository (https://github.com/stormliucong/LLM-

Gene-Prioritization/tree/main/data/evaluation), including the

reference information (if applicable) for the original articles from

which we curated this dataset.

Prompt engineering
Tomaximize the utilization of LLMs, effective prompt engineering

is essential.21 A prompt refers to a set of instructions provided to

an LLM to guide its response. Prompt engineering involves the
urnal of Human Genetics 111, 2190–2202, October 3, 2024 2191
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Table 2. Prompt engineering involved for phenotypic-based gene prioritization task

Prompt template Prompt contenta

Original The phenotype description of the patient is [phenotype list]. Can you suggest
a list of [top k] possible genes to test? Please return gene symbols as a comma
separated list. Example: ‘‘ABC1, BRAC2, BRAC1’’ or ‘‘not applicable’’
if you cannot provide the result.

Original þ
role

Consider you are a genetic counselor. The phenotype description of the patient is
[phenotype list]. Can you suggest a list of [top k] possible genes to test?
Please return gene symbols as a comma separated list. Example:
‘‘ABC1, BRAC2, BRAC1’’ or ‘‘not applicable’’ if you cannot provide the result.

Original þ instruction The phenotype description of the patient is [phenotype list]. Can you suggest a
list of [top k] possible genes to test? Please use the knowledge you have trained.
No need to access to the real-time database to generate outcomes. Also, please
return gene symbols as a comma separated list. Example: ‘‘ABC1, BRAC2, BRAC1’’
or ‘‘not applicable’’ if you cannot provide the result.

Original þ role þ instruction Consider you are a genetic counselor. The phenotype description of the patient is
[phenotype list]. Can you suggest a list of [top k] possible genes to test? Please use the
knowledge you have trained. There is no need to access the real-time database to
generate outcomes. Also, please return gene symbols as a comma separated list. Example:
‘‘ABC1, BRAC2, BRAC1’’ or ‘‘not applicable’’ if you cannot provide the result.

Few-shot prompts Instruction:
Question: consider you are a genetic counselor. Given the phenotype description of
the patient listed above. Suggest the top [top k] genes to test. Provide the gene
symbols in a ‘‘comma-separated list’’ or ‘‘not applicable’’ if no relevant genes are identified.
Examples:
Phenotype: neoplasm
Response: PTEN, BRCA1, BRCA2, TP53, KRAS, EGFR, MYC, PALB1, RB1, VHL
Phenotype: seizure, hypotonia, global developmental delay, abnormal facial
shape, microcephaly, mandibular prognathia, severe global developmental delay
Response: SCN1A, MECP2, CDKL5, KCNQ2, STXBP1, ARX, FOXG1, PCDH19, TCF4, MEF2C
Phenotype: hello, world, Earth, peace, love, toy, hamburger, salad, apple, Google, smoke, drug
Response: not applicable
Phenotype:
Response: not applicable
–
Please answer:
Phenotype: [phenotype list]
Response:

a[Phenotype list] can be either a set of HPO-based concept names separated by ‘‘;’’ or a narrative containing phenotype descriptions extracted from the original
literature. [top k] can be either ‘‘top 10’’ or ‘‘top 50,’’ representing challenge and easy tasks, respectively.
process of designing and formulating prompts to elicit desired re-

sponses from language models.22 Considering that the funda-

mental function of an LLM is to accomplish language completion

tasks, it is reasonable to assume that the quality, clarity, and spec-

ificity of the prompt could significantly impact an LLM’s perfor-

mance.23 To assess how variations in prompts could influence

the performance, we formulated various prompts based on the

intricate interplay between roles, instructions, and model perfor-

mance (as shown in Table 2): (1) the ‘‘original’’ prompt serves as

the fundamental query to use individual phenotype features for

gene prioritization. (2) The ‘‘original þ role’’ prompt introduces a

role assignment component, casting the model in the role of a

‘‘genetic counselor.’’ While preserving the core objective of gene

prioritization, this prompt integrates a role-based perspective,

which is also endorsed as a ‘‘system’’ message by OpenAI.22 (3)

The ‘‘original þ instruction’’ prompt includes additional guidance

sentences for the model, instructing it to utilize its accumulated

knowledge without requiring real-time database access for predic-

tive purposes. (4) The ‘‘original þ role þ instruction’’ prompt inte-

grates the role of a genetic counselor with the previously

mentioned instruction, offering the most comprehensive

approach. Each input prompt was presented as a zero-shot24 sce-

nario without providing examples (except for output structure ex-

amples). Besides different prompt engineering techniques, we also

considered different factors in constructing the final prompt. We
2192 The American Journal of Human Genetics 111, 2190–2202, Oct
assessed two input categories for individual phenotypic features:

those presented throughHPO terms and those via free-text pheno-

typic descriptions (obtained as described above). In addition, we

designed an easy task (i.e., making a correct gene predictionwithin

the top 50 predictions) and a challenging (i.e., within the top 10)

task to evaluate the performance.
Experiment design
For the GPT series, we utilized the OpenAI application program-

ming interface (API), making API requests with various prompts

to retrieve the gene prioritization predictions for each prompt.

GPT-3.5-turbo was used for GPT-3.5 evaluation.We set the temper-

ature parameter to zero to make the predictions more determin-

istic. In total, we conducted 32 experiments by considering

possible combinations of various factors for each individual,

multiplying two GPT versions (GPT-4 and GPT-3.5), four types of

prompts (original, original þ role, original þ instruction, and

originalþ roleþ instruction), two phenotypic features input types

(HPO concepts and free text), and two predictive task thresholds

(top 10 and top 50).

For the Llama2 series, we utilized Replicate’s API (a cloud-based

service that provides access to a wide range of pre-built models) to

assess the three Llama2-chat models with different parameter

sizes. To save study costs, we used only the most complicated
ober 3, 2024



prompts (original þ role þ instruction) in the experiments. In to-

tal, there were 12 experiments for each input case by multiplying

three Llama2-chat versions (7b, 13b, 70b), two phenotypic fea-

tures input types, and two predictive task thresholds.

All experiments were iterated three times (i.e., three LLM re-

sponses generated independently with the same input) tomeasure

the variability of LLMs. A previous report25 demonstrated the

possible time-dependent nature of GPTs. To reduce the bias associ-

ated with calendar days and because of the closed-source nature of

GPT, we permutated the experiment sequence for the GPT series.

The final OpenAPI execution date was in August 2023 (except

for the sensitivity analysis as described below). For the Llama2 se-

ries, we did not have that concern due to its open-source nature.
Evaluation metrics
We assessed the performance of the LLMs on three outcomes,

including the task completeness of the output, accuracy of gener-

ated gene lists, and adherence to specified output structural re-

quirements. The evaluation metrics were specified as follows.

Task completeness measures whether LLMs can produce a ‘‘true’’

gene list for gene prioritization tasks. This metric assesses whether

GPT behaves like a layperson, understanding the question and at-

tempting to complete the task meaningfully. More specifically, if

fewer than half of the expected number of genes were returned

(e.g., <25 out of the top 50 predictions), we considered that LLMs

did not complete the task. It’s important to note that we excluded

fabricated genes and counted duplicated genes in the prediction

list only once. If LLMs declined to produce prediction results, we

also considered it as an incomplete task. Figure S1 presents two in-

stances of LLM responses indicating task incompletions.

Accuracy of gene predictions (or Precision@K) evaluates whether

the true diagnosed gene is identified within the top (10 or 50)

predicted gene list generated by LLMs. Two sub-metrics were de-

signed. The first is completed accuracy, which considers only ex-

periments that completed the task as mentioned above for accu-

racy assessment. The second is overall accuracy, which includes

all experiments. For experiments where the tasks were not

completed, we considered the gene prediction results to be incor-

rect for the overall accuracy calculation. Figure S2 presents exam-

ples of correct or incorrect predictions made by an LLM.

Output structure compliance evaluates whether LLMs’ re-

sponses adhere to the specified output format requirement. Given

an LLM’s tendency to provide free-text responses, we deemed the

outcome compliant if a portion of the response matched a set of

predefined regex patterns. As we instructed the LLM to generate

‘‘[not applicable]’’ for tasks that could not be completed, we could

independently evaluate this metric regardless of task complete-

ness. Figure S3 presents examples of an LLM’s output being non-

compliant with the output structure instruction. This metric is de-

signed to assess whether LLMs can be seamlessly integrated into

an informatics pipeline.

For each experiment e, we calculated the task completeness rate

(or gene prediction accuracy rate, output structure compliance

rate) p
ðtÞ
e ¼ PM

m¼1
IðtÞðm;eÞ

M for each repetition t ðt ¼ 1; 2; 3Þ, where

M is the total number of samples for evaluation in this experiment

(for completed accuracy, M is the total number of samples

completed in the task), and IðtÞðm;eÞ ¼ 1 if the task was completed

(or gene prediction is accurate, output structure is compliant). For

each metric, we then calculated the average outcome by averaging

over three iterations. To provide more information about the pre-

cision and reliability, we also calculated 95% confidence intervals
The American Jo
(95% CIs) for the average outcome using a bootstrap approach

with replacement over 100 iterations.

Due to the substantialnumberof experiments and the significant

humaneffort required to assess theoutcomes,wedevelopeda script

to automate themeasurementof the three aforementionedmetrics.

To assess whether a task was completed, we parsed the responses

and compared them against HUGO Gene Nomenclature Commit-

tee (HGNC) gene symbols (including previous symbols and alias

symbols) using regular expression while excluding common gene

name errors (e.g., SEPT1, MAR1) as detailed in the Gene Name Er-

rors Screen project.26 This script was also used tomeasure the accu-

racy of gene predictions by comparing the responses with the diag-

nosed gene HGNC symbols (including previous symbols and alias

symbols). To evaluate adherence to the output format, we estab-

lished regular expression patterns based on the prompt’s require-

ments and searched for these patterns within LLMs’ responses.

The output of this script was inspectedmanually on 250 randomly

selected experiments, and 100% accuracy was achieved.

Sensitivity analysis
To enhance our understanding of factors affecting LLM perfor-

mance, we conducted sensitivity analyses. We tested few-shot

learning prompts, a method where the model is provided with a

small number of example prompts and responses to guide its predic-

tions, which has been shown to improve LLMperformance.27,28We

aimed to evaluate the effectiveness of this approach by comparing

the top 10 gene predictions from few-shot prompts (Table 2; few-

shot prompts) with the original þ role þ instruction zero-shot

prompt using HPO concepts in the GPT series.

Previous studies have revealed that ChatGPT might suffer from

data contamination on the evaluation benchmark.29 To address

concerns about potential data leakage, we compiled a new dataset

(Table 1; Post2023) from Post2023 publications. This involved

searching genes from the final diagnosed pool in the original set

and randomly collecting cases from case reports. Both the new da-

taset and the original were analyzed/re-analyzed during the same

week in June 2024.

Additionally, we employed RAG using the LlamaIndex library

(https://github.com/jerryjliu/llama_index).30,31 This technique be-

gins by indexing a collection of documents where each document

is associated with a gene or a phenotype. The index is built on

LLM-generated embeddings, allowing us to query relevant docu-

ments based on their similarity to a given prompt. For indexing,

we used two approaches, both structured around HPO annotations.

(1) The first is gene-to-phenotype (G2P): each document in this in-

dex associates a specific gene with a list of phenotypes. The docu-

ments are structured to contain a narrative such as ‘‘The phenotypes

associated with gene [gene_name] include [list of phenotypes].’’ (2)

The second is phenotype-to-gene indexing (P2G): conversely, in

this approach, each document lists genes associated with a specific

phenotype. We employed two different sizes of text embeddings

(text-embedding-3-large and text-embedding-3-small) provided by

OpenAI to create the indices. The top 10 similar documents were

retrieved for GPT-4 response generation using the original þ role þ
instruction prompt. The experiments were executed in June 2024.
Results

Accuracy of gene predictions among different models

Figure 1A shows the overall prediction accuracy rate of

LLMs when utilizing the original þ role þ instruction
urnal of Human Genetics 111, 2190–2202, October 3, 2024 2193
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Figure 1. Gene prediction accuracy across different LLMs and datasets
(A) Accuracy rate across different LLMs with original þ role þ instruction prompt. Error bars represent standard deviation.
(B) Prediction accuracy across different datasets for GPT-4; TAF1 datasat was excluded because all the prediction accuracywas 0. Error bars
represent standard deviation.
(C) Comparison between LLMs against other bioinformatics tools in predicting top 50 candidate genes in the DGD dataset. ACC, accu-
racy, defined as the proportion of correct predictions out of the total predictions made in completed experiments; OACC, overall accu-
racy, which includes all experiments. If the tasks were not completed, overall prediction accuracy results were considered incorrect.
prompt. On average, GPT-4 achieved the highest overall

prediction accuracy rate of 13.9% (95% CI: 11.73%–

15.85%) and 17% (95% CI: 14.59%–19.16%) for the

top 10 and top 50 tasks, respectively, followed by

GPT-3.5 (10.1%, 95% CI: 7.99%–11.78%; 15.3%, 95% CI:

13.33%–17.18%), Llama2-70b-chat (6.2%, 95% CI:

4.38%–7.70%; 6.7%, 95% CI: 5.15%–8.13%), Llama2-

13b-chat (6.6%, 95% CI: 5.13%–8.02%; 4.7%, 95% CI:

3.37%–5.90%), and Llama2-7b-chat (4.7%, 95% CI:

3.45%–5.76%; 2.6%, 95% CI: 1.24%–3.50%). The accuracy

rate among completed tasks showed a similar trend but

with smaller gaps among different models. Figure 1B

further demonstrates GPT-4’s accuracy among different da-

tasets for the top 50 tasks. As the best-performed LLM,

GPT-4 displayed the highest average overall accuracy

rate of 29.51% (32.24% among completed) in CSH, closely

followed by ColumbiaU (27.16%, 30.03% among

completed). In the context of the top 10 tasks, GPT-4 per-

formed best in ColumbiaU, with CSH in close pursuit. The

performance in DGDwas noted at 24.71% (27.21% among

completed), while the performance in AJHG was only

0.75% (0.89% among completed), and TAF1 exhibited

the lowest rate of 0% (not shown in the figure) because

TAF1 was never predicted by GPTs. This result deviates

from the trends observed in the results from other tools,

where TAF1 typically showed the best performance with
2194 The American Journal of Human Genetics 111, 2190–2202, Oct
close to perfect accuracy, followed by ColumbiaU, DGD,

AJHG, and CSH. In general, even the best-performing

LLM still lags behind traditional bioinformatics tools. For

instance, the best-performing GPT model demonstrated

an average accuracy rate of 26.91% in the CSH dataset

(24.31% for top 10 and 29.51% for top 50), which is lower

than Phen2Gene’s accuracy (35.3% for top 10 and 55.3%

for top 50 on the same CSH dataset).6 Other methods,

such as Phenolyzer and AMELIE (using only HPO), also

showed approximately 40% accuracy for the top 50 predic-

tion,32 outperforming the best GPT models. Additionally,

‘‘real-world’’ accuracy can be even lower because LLMs

cannot always guarantee task completion or proper output

formatting, which can be automated in a workflow. An

example of comparing performance between LLMs and

traditional bioinformatics tools was shown in Figure 1C,

where the accuracy of predicting the top 50 candidate

genes in the DGD datasets is plotted.

Gene-dependent prediction bias analysis

A further investigation of the LLM’s response revealed po-

tential gene-dependent bias associated with the LLMs,

which might explain the variations in accuracy observed

across datasets. Figure 2A shows the top 10 genes most

frequently predicted by GPT-4 across all experiments,

with six of them not appearing in the diagnosed gene
ober 3, 2024
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Figure 2. Gene-dependent bias analysis
(A) Genes most frequently predicted by LLMs across all experiments. The green bar represents the number of times each gene was pre-
dicted in the challenging task (top 10), the blue bar shows the number of times each gene was predicted in the easier task (top 50), and
the red bar indicates the number of times each gene appeared in the final diagnosed gene pool (i.e., ground truth occurrence). An asterisk
(*) denotes genes that never appeared in the final diagnosed gene pool, indicating a high false-positive potential of LLMs for these genes.
(B) Correlation between Google Scholar counts and the odds ratio, which is calculated as the observed prediction times versus expected
prediction times for truly diagnosed genes across differentmodels for all experiments. The correlation between log-scaledGoogle Scholar
count and odds ratio is categorized into four groups.
pool. For example, FOXG1 consistently appeared in GPT-

4’s output despite never occurring in the diagnosed pool,

with 2,125 experiments (22.1%) in the top 10 predictions

and 2,791 experiments (29%) within the top 50 predic-

tions. Overall, 6,383 genes never occurred in the final diag-

nosed pool but were predicted by at least one of the LLMs.

In contrast, genes that frequently appeared in the diag-

nosed gene pool, such as DHX30 (previously "DDX30" in

HGNC nomenclature), were notably absent from both

the top 10 and top 50 predictions among all experiments

from all LLMs. Table S1 shows the odds ratio calculated

as the observed prediction times versus expected predic-

tion times for truly diagnosed genes across different

models for all experiments. Furthermore, considering the

165 genes in the final diagnosed pool given the

originalþ roleþ instruction prompt, GPT-4 did not predict

88 genes (OR¼ 0), and GPT-3.5 failed to predict 107 genes.

Llama2-70b-chat missed predictions for 135 genes,

Llama2-13b-chat for 140 genes, and Llama2-7b-chat for

151 genes. A deeper investigation revealed that genes over-

predicted by LLMs received substantial attention in

research studies, with a higher number of Google Scholar

search results. Figure 2B illustrates the correlation between

the count of publications on a log scale and the odds ratio.
The American Jo
As the count of publications increases, the odds ratio tends

to increase (i.e., more likely being predicted). For genes

that were not predicted accurately, the number of Google

search (as of April 2024) hits was often less than 10,000

(e.g., TAF1: 9,950; DHX30: 1,010; WDR26: 972). In

contrast, genes that were predicted with high accuracy

had a significantly larger number of search hits (e.g.,

BRCA1: 471,000; TP53: 424,000; PTEN: 673,000), except

for CDKL5 (8,350), which had fewer cases than TAF1 but

still exhibited high accuracy in some LLMs.

Effect of different factors in predicting accuracy

Tables S2–S5 show the gene prediction accuracy rate under

different settings in GPTs and Llama2 series for the top 10

and top 50 prediction tasks, respectively. As expected, the

average gene prediction accuracy for the more challenging

task (i.e., making correct predictions within the top 10)

was lower (12.11%, 95% CI: 11.30%–12.97%; 10.15%

overall, 95% CI: 9.69%–10.78%) than the easier task

(17.41%, 95% CI: 16.43%–18.32%; 13.06% overall, 95%

CI: 12.43%–13.80%). However, the differences between

these two tasks do not seem as large as expected. In fact,

the Llama2-7b-chat and Llama2-13b-chat models dis-

played the opposite trend, especially for the overall
urnal of Human Genetics 111, 2190–2202, October 3, 2024 2195



accuracy, which might be due to the large number of sam-

ples that did not complete the top 50 tasks. These results

could indicate that LLMs may either make correct predic-

tions early in the sequence of output or cannot make cor-

rect predictions at all.

In the top 50 tasks (Tables S4 and S5), HPO concept in-

puts achieved an average accuracy rate of 20.67% (95%

CI: 19.03%–22.24%) for GPT-4 (18.18% overall; 95% CI:

17.21%–19.60%), whereas free-text inputs had an average

accuracy rate of 12.52% (95% CI: 9.95%–14.15%) (11.67%

overall; 95% CI: 9.72%–12.98%). GPT-3.5 and Llama2-se-

ries showed the same tendency. A similar trend was

observed in the top 10 tasks but with less discrepancy

(Tables S2 and S3), suggesting that despite LLMs’ ability

to understand narratives, structured input can lead to bet-

ter prediction accuracy.

We did not observe a significant effect of prompts on the

accuracy of gene predictions in GPT-4. However, we found

that the prompt matters in GPT-3.5, especially for overall

accuracy, where more detailed prompts generally yield bet-

ter accuracy. The original prompt yielded 2.41% (95% CI:

1.64%–3.55%) overall accuracy in predicting the top 50

genes, while the original þ role þ instruction prompt

showed 15.3% (95% CI: 13.00%–16.85%) (Table S4),

which can be explained by the significant impact of

prompts on the task completion rate observed in GPT-3.5

(described in the section below). A similar trend was

observed in the predictions of the top 10 genes, albeit

with less discrepancy.

Task completeness among different models

The overall average task completion rate was 78.34%,

with the average for GPT models at 79.42% (95% CI:

78.95%–79.96%) and for Llama2 models (using the

original þ role þ instruction prompt) at 75.45% (95% CI:

74.66%–76.28%). Similar to the accuracy rate, larger

models tended to achieve higher task completion rates.

Specifically, GPT-4 achieved an almost perfect average

completion rate of 94.22% (95% CI: 93.74%–94.82%)

across all scenarios, which decreased to 64.62% (95% CI:

63.54%–65.66%) for GPT-3.5. This trend was also observed

in the Llama2 series (using the originalþ roleþ instruction

prompt only), where the 7b-chat model had a completion

rate of 70.70% (95% CI: 68.65%–72.41%), the 13b-chat

model 72.82% (95% CI: 71.20%–75.03%), and the 70b-

chat model 82.83% (95% CI: 81.31%–84.34%).

The prompts significantly influenced GPT-3.5. As shown

in Table S6, the average completion rate for GPT-3.5 was

23.15% (95% CI: 20.96%–24.78%) with the simplest

prompt, increasing to 93.93% (95% CI: 93.14%–94.87%)

with the most complex prompt.

All LLMs weremore likely to complete easier tasks except

the Llama2-70b-chat model. When requesting only the

top 10 genes, an average completion rate of 83.82%

(GPT-4, 98.86%; GPT-3.5, 68.79%; Llama2-7b-chat,

87.11%; Llama2-13b-chat, 91.85%; Llama2-70b-chat,

82.46%) was achieved. However, extending the request
2196 The American Journal of Human Genetics 111, 2190–2202, Oct
to include the top 50 responses resulted in a lower rate of

75.02% (GPT-4, 89.59%; GPT-3.5, 60.45%; Llama2-7b-

chat, 54.28%; Llama2-13b-chat, 53.78%; Llama2-70b-

chat, 83.21%) (Table S6). Further investigation revealed

that the largest discrepancies occurred when GPT-3.5 was

tasked with generating the top 50 results with the original

prompt and free-text input, showing a 31.73% difference

in average task completion rates compared to the same

setting with the top 10 generating task (top 10, 52.00%;

top 50, 20.27%) (Table S8). One possible explanation is

that GPT-3.5 may undergo post-release alignment16 to

adhere to ethical guidelines (https://openai.com/index/

openai-safety-update/). This alignment could lead it to

refuse to answer certain questions, including those related

to politics33 or medicine.

Similarly, input type also had an impact. Across the

models, GPT-4 models generally had higher completion

rates on free-text input; for GPT-4, it ranged from 93.40%

(95% CI: 92.96%–93.99%) for HPO to 96.03% (95% CI:

95.38%–96.65%) for free-text, and for GPT-3.5, rates

ranged from 62.79% (95% CI: 61.59%–64.04%) to

68.67% (95% CI: 66.78%–69.93%). However, two out of

three Llama2-chat models had higher completion rates

with HPO input: Llama2-7b-chat achieved 71.56% (95%

CI: 69.48%–73.41%) with HPO and 68.80% (95% CI:

64.40%–72.99%) with free text, while Llama2-70b-chat

had 85.27% (95% CI: 83.40%–87.08%) with HPO and

77.47% (95% CI: 74.62%–81.45%) with free text.

Conversely, Llama2-13b-chat showed the opposite trend,

with 70.89% (95% CI: 68.41%–73.07%) for HPO and

77.07% (95% CI: 73.68%–80.17%) for free text (Table S6).

Structure compliance

Table S7 demonstrates the output structure compliance

rate for various experiments. Across nearly all settings,

GPT-3.5 struggled to generate compliant output responses,

achieving an average compliance rate of 27.32% (95% CI:

26.40%–28.29%). Llama2 models almost did not generate

any compliant responses. Interestingly, in contrast to the

task-completeness assessment, the original prompt

achieved the highest average compliance rate of 62.97%

(95% CI: 60.72%–65.22%) in GPT-3.5, while additional

prompts significantly decreased output structure compli-

ance to 30.59% (95% CI: 29.08%–32.40%) with

original þ role, 15.46% (95% CI: 13.81%–16.88%) with

original þ instruction, and 0.25% (95% CI: 0%–0.48%)

with original þ role þ instruction. In contrast, GPT-4 ex-

hibited a significantly higher and more robust output

structure compliance rate with an average of 79.28%

(95%CI: 78.49%–80.07%). Furthermore, the task difficulty

level was crucial; in GPT-4, the top 10 tasks achieved

99.98% (95% CI: 99.96%–100.00%), while the top 50

achieved 58.58% (95% CI: 57.28%–60.27%). This trend

was similarly observed in GPT-3.5, albeit with a smaller

discrepancy of 31.17% (95% CI: 29.63%–32.42%) for the

top 10 and 23.46% (95% CI: 22.32%–24.65%) for the top

50. Input types also impacted compliance, with HPO
ober 3, 2024
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Figure 3. Performance comparison for zero-shot and few-shot prompts across GPT-3.5 and GPT-4 models
(A) Overall accuracy rate across different versions of GPTmodels with different prompts based on HPO concepts input and top 10 exper-
iment results. Error bars represent standard deviation.
(B) Task completeness rate across different versions of GPT models with different prompts based on HPO concepts input and top 10
experiment results. Error bars represent standard deviation.
(C) Structural compliance rate across different versions of GPT models with different prompts based on HPO concepts input and top 10
experiment results. Error bars represent standard deviation.
inputs achieving an average compliance rate of 80.01%

(95% CI: 79.00%–80.83%) with GPT-4 compared to

77.67% (95% CI: 76.20%–78.99%) for free-text inputs. A

similar trend was observed in GPT-3.5.

Performance based on sensitivity analysis

Figure 3 compares the performance of zero-shot (with the

original þ role þ instruction prompt) and few-shot

learning under the same settings (i.e., top 10 and HPO-

based input). While few-shot learning slightly improved

overall accuracy (Figure 3A) in GPT-3.5, it reduced the

accuracy in GPT-4. It also did not help in completing

tasks (Figure 3B). Notably, the overall accuracy gains in

GPT-3.5 were mainly attributed to the enhanced structure

compliance, which averaged only 0.24% in zero-shot

learning scenarios (95% CI: 0%–0.48%) but escalated to

87.18% (95% CI: 82.15%–93.04%) with few-shot learning

(Figure 3C).

Figure 4 compares different RAG approaches with the

original experiment results under the same settings (i.e.,

top 10 and HPO-based input with the original þ role þ in-

struction prompt). RAG involves retrieving relevant infor-

mation from a database and using this information to

generate responses, effectively updating the prompt with

relevant data. The original method makes predictions

without any prior examples, relying solely on the model’s

pre-trained knowledge and the provided prompt. Perfor-

mance decreased significantly with RAG methods, but

the P2G approach significantly outperformed the G2P

method with an average accuracy gain of 3.8%. In both

P2G and G2P methods, larger embeddings consistently

show better accuracy, with an increase of 0.4%–1.1%.

Figure 5 compares the overall accuracy rate among three

sets of experiments under the same settings (free-text-

based, top 10 predictions only): (1) the original dataset

(cases prior to 2021) with experiments executed in August

2023, (2) in June 2024, and (3) a new dataset (Post2023),
The American Jo
with experiments executed in June 2024. The differences

between experiments using the same dataset in different

months are small. However, the experiment with the

new dataset in June 2024 showed a higher accuracy rate

of 44.44% (95% CI: 41.38%–48.59%). A possible explana-

tion for this performance gain could be the biased collec-

tion of this new dataset, where relevant articles are identi-

fied through Google searches of gene names, potentially

increasing the inclusion of highly cited genes in this data-

set. As an unbiased analysis, Figure S4 provides a gene-level

comparison for those overlapped in both datasets. These

findings indicate that, for this specific task, contamination

in GPTs is not a significant concern when evaluating

performance.

Stability analysis of GPT

We investigated the stability of GPT-generated responses.

By combining all experiments, including sensitivity anal-

ysis, there are 10,671 unique experiments. Of these,

1,166 (10.9%; 13.0% of those completed the task in at least

one iteration) yielded different completion results across

three iterations. In terms of overall accuracy, 341 (3.2%;

27.5% of those making accurate predictions in at least

one iteration) arrived at different accuracies across the

three iterations. Regarding structure compliance, among

the 5,296 experiments, 1,120 (13.3%; 24.7% of those

yielding compliant results) exhibited differences in

compliance across the three iterations. Tables S9–S11

display the variability in outcome ratios across three itera-

tions, breaking down the contributing factors. Few-shot

learning demonstrates higher variability for all outcomes.

We further explored the impact of different calendar

months onGPT variants by conducting identical sets of ex-

periments in August 2023 and June 2024. Out of 250

unique experiments, 211 maintained the same number

of completed iterations in both sessions. Meanwhile, 21

experiments showed changes from all iterations being
urnal of Human Genetics 111, 2190–2202, October 3, 2024 2197
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completed in three attempts to none completed or vice

versa. Regarding accuracy, 240 experiments maintained

the same accuracy, while five experiments showed

changes. For structural compliance, however, the figures

were 125 versus 118, suggesting potential calendar month

impact on GPT’s output structure.
Discussion

Previous studies have consistently shown that LLMs

achieved remarkable performance across various medical

applications, including the ophthalmology exam,34

USMLE sample exam,35 and progress notes summariza-

tion.36 A few studies have explored the application of

LLMs in the clinical genetic/genomic fields.27,37,38 Our re-

sults show current LLM-based predictions did not match

the performance of software specifically designed for this

task. Despite their ability to understand free-text input,

LLMs generally achieved better predictions when using hu-

man-curated HPO concepts instead of free-text inputs. Ac-

curacy improves with larger model sizes, and sophisticated

prompts enhance task completeness, especially in smaller

models, though they may reduce output structure compli-

ance. Bias analysis revealed that LLMsmore frequently pre-

dict highly cited genes, such as those related to cancer (e.g.,

BRCA1, TP53, and PTEN).

Base LLMs were initially designed for next-token predic-

tion,39 a task where the model predicts the next word or

token in a sequence based on the preceding context.

ChatBot-like models are required to perform this task

without extra fine-tuning. GPT-3.5 trained similarly to

InstructGPT and optimized for dialog from GPT-3 (https://

openai.com/index/chatgpt/). Llama2-chat is also fine-

tuned for dialog usage based on Llama2 starting from super-

vised fine-tuning (SFT) and then utilizing reinforcement

learning with human feedback (RLHF).17 GPT-4 also uti-

lized RLHF and supports a multimodal model.40 When we
2198 The American Journal of Human Genetics 111, 2190–2202, October 3, 2024
used the base Llama2 model, it lacked

comprehension and generated text

identical to the questions and exam-

ples mentioned in the prompts (spe-

cific prompts were designed with

‘‘answer is:’’ pending as the last few to-

kens to prompt base models for the

next token prediction task). This ten-

dency persisted regardless of the num-

ber of genes to be generated or varia-
tions in phenotypic descriptions; it always begins with a

gene provided in the prompt example (in this case,

ABCA1 orABC1) until a specified token length was satisfied.

The accuracy of gene prediction by Llama2 without being

fine-tuned for dialog was entirely random. However, once

the model is fine-tuned for conversation (GPT-3.5/GPT-4

or Llama2-chat), it can provide better-than-random guesses

for gene prediction without further fine-tuning for clinical

tasks.

Additionally, we identified instances of hallucinations

generated by all models, particularly in the top 50 predic-

tions. These occurrences were often associated with gener-

ating spurious gene symbols within a gene family.

For example, starting from OPA1, a real gene, GPT-3.5 ex-

tends to OPA50 in sequence, which are not actual genes.

Previous studies have highlighted the same limitations in

answering medical questions41,42 by attaching fabricated

references. This deficiency may explain why GPT some-

times generates fictitious gene names when dealing with

gene symbols, as gene symbols can function as both acro-

nyms and identifiers. One potential explanation is that the

byte pair-encoding (BPE) tokenizer, employed by both GPT

and Llama2, breaks down references or gene symbols, al-

lowing GPT to fabricate references or gene symbols using

partial segments.

Our findings have a few implications. First, while current

LLMs might excel at tasks that laypeople can handle, their

performance does not match that of specialized tools for

tasks requiring expert knowledge and models trained on

specialized knowledge bases. To enhance prediction accu-

racy, it is necessary to fine-tunemodels with specialized da-

tasets or knowledge resources, as seen in other tasks.43,44

Studies have shown that in differential diagnosis tasks,

the Med-PaLM2, which was fine-tuned with medical

domain data based on the LLM PaLM2,45 outperformed

regular GPT-4 in prediction accuracy by approximately

10% and even exceeded clinician performance.46 Second,

we may still want to utilize HPO or other ontologies as

https://openai.com/index/chatgpt/
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intermediaries in the era of LLMs. Even though machines

can understand unstructured natural language, they still

perform better with encoded and structured phenotype

concepts. Alternatively, prompts should be designed to

break down tasks further when the input is a natural lan-

guage description, providing better guidance to LLMs

through a two-step approach, such as chain-of-thought

prompting. Lastly, general-purpose LLMs are more suscep-

tible to ‘‘common attention’’ bias. This is particularly

significant for rare disease diagnosis, as it suggests that gen-

eral-purpose LLMs like GPTs may be more inclined to pre-

dict commonly encountered cases but may not perform as

effectively with rare conditions. Similar conclusions were

drawn from the differential diagnosis tasks, where clini-

cians noted that LLMs were useful for simple cases but

had limitations for complex cases, focusing on specific as-

pects rather than holistic assessments.46

Nevertheless, the future seems promising. We consis-

tently observe that larger models achieve better results

across almost all evaluationmetrics. This aligns with previ-

ous studies that reported a positive correlation between

model size and performance. For example, GPT-4 outper-

formed GPT-3.5 in biomedical classification tasks,

reasoning tasks,47 and question-answering accuracy.16 A

similar pattern was observed in Llama2 models.48 The

parameter size of GPT-3.5 and GPT-4 is approximately

hundreds of billions to trillions, which is larger than the

7 billion, 13 billion, and 70 billion parameters in the

Llama2 series. While GPT-4 achieved the best performance

in all metrics, Llama2-70b-chat also outperformed its

smaller counterparts. This implies that even larger LLMs

might eventually match or surpass traditional knowledge

graph-based approaches. However, a plateau effect might

also exist. Given the rapid release of numerous pretrained

LLMs, it’s challenging to include and keep up with all

the latest models. Moving forward, establishing and main-

taining an updated benchmark registry for various

real-world clinical tasks is crucial. This registry would
The American Journal of Human Genet
showcase LLM performance, empow-

ering informed decision-making.

Previous studies have suggested that

the variability in results affected perfor-

mance metrics when classifying func-

tional evidence in biomedical litera-

ture.49 Another study on a biomedical

semantic question and answer task,

repeated five times with the same

model, concluded that despite the vari-
ability, its impactwasminimal.50 Inour evaluationofoverall

accuracy, despite larger variabilities compared to experi-

ments repeated within the same month, the variation in

model performance generally remained within acceptable

parameters. However, significant variability was observed

in structure compliance metrics across different months.

More investigation is needed to understand how these vari-

abilities impact downstream applications.

While studies have shown that expanding GPT with

more examples (few-shot learnings) and using retrieved

instructions (RAG) could improve performance,50–53 our

sensitivity analysis does not support this. Few-shot

learning improved structural compliance but did not

enhance prediction accuracy, likely due to overly simpli-

fied examples in the prompts. Further investigation is

needed to improve example-based prompts for better pre-

dictive performance. For RAG, the reduced performance

observed is likely due to the knowledgebase used for index-

ing already being incorporated during the LLM’s training.

Another finding highlights the importance of document

indexing for knowledge retrieval; because RAG heavily re-

lies on the retrieval steps, if relevant knowledge cannot be

retrieved using an embedding similarity-based approach,

then prediction performance may suffer.

From a practical perspective, considering that GPT-4 is

almost 35 times more expensive than GPT-3.5 (according

to the August 2023 billing policy in OpenAI, https://

openai.com/api/pricing/), using more detailed prompts

with smaller LLMs might be a more environmentally and

economically friendly solution for certain tasks. Unfortu-

nately, our study found that different prompts affected

completeness and structural compliance in opposite

ways, with no significant improvements in prediction ac-

curacy. While some studies suggest that prompt influence

is less dominant for certain tasks,54,55 we believe this re-

mains an unresolved issue, especially because crafting

efficient prompts for LLMs is still a challenge. We also

emphasize that the cost of RAG experiments in this study
ics 111, 2190–2202, October 3, 2024 2199
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is significantly higher due to the longer prompts incorpo-

rating documents from the priority-indexed knowledge-

base. Future research should focus on strategic model selec-

tion based on specific needs and constraints to optimize

both cost and computation speed.
Conclusions

In this study, we conducted a comprehensive evaluation of

the LLMs for phenotype-driven gene prioritization, a real-

world application crucial in rare genetic disorder diagnosis.

Even the best-performing model, GPT-4, still lags behind

traditional bioinformatics tools in terms of generating ac-

curate candidate gene prediction results. However, a clear

trend of LLM performance increasing with model size

is observed. Notably, LLMs’ ability to process free-text

phenotypic descriptions is advantageous, although it

may not achieve the same level of robustness as terminol-

ogy-based input. These findings contribute to the ongoing

discussion about integrating advanced LLMs into clinical

genomic analysis workflows.
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