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ABSTRACT: The term glycan refers to a broad category of
molecules composed of monosaccharide units linked to each other
in a variety of ways, whose structural diversity is related to different
functions in living organisms. Among others, glycans are
recognized by proteins with the aim of carrying information and
for signaling purposes. Determining the three-dimensional
structures of protein−glycan complexes is essential both for the
understanding of the mechanisms glycans are involved in and for
applications such as drug design. In this context, molecular docking
approaches are of undoubted importance as complementary
approaches to experiments. In this study, we show how high
ambiguity-driven DOCKing (HADDOCK) can be efficiently used
for the prediction of protein−glycan complexes. Using a benchmark of 89 complexes, starting from their bound or unbound forms,
and assuming some knowledge of the binding site on the protein, our protocol reaches a 70% and 40% top 5 success rate on bound
and unbound data sets, respectively. We show that the main limiting factor is related to the complexity of the glycan to be modeled
and the associated conformational flexibility.

■ INTRODUCTION
Glycans are organic compounds with a polymeric structure
consisting of monosaccharides, small building blocks cova-
lently linked to each other in various ways through glycosidic
bonds, in linear or branched arrangements. Depending on the
number of monosaccharide units, glycans are named
disaccharides (2 units), oligosaccharides (3−10 units), and
polysaccharides (>10 units).1 For simplicity, we use here the
term “glycan” for referring to compounds with any number of
monosaccharide units.

Glycans can form complex structures. This complexity
already lies in monosaccharides themselves, which have a high
degree of intrinsic chemical variability. The second source of
complexity arises from the way monosaccharides are linked to
each other as each glycosidic bond can form two possible
stereoisomers at the anomeric carbon, i.e., the carbon whose
asymmetric center is formed upon cyclization of the
monosaccharide. Regioisomers may also exist because of the
many hydroxyl groups, which allow two monosaccharides to be
linked in several ways.2 Monosaccharides, having the ability to
create more than two glycosidic bonds, can give rise to
branched chains. The frequent occurrence of branched
patterns, as opposed to the linear patterns typically found in
most peptides and oligonucleotides, contributes to the
complexity of the glycans’ structural landscape. Besides the
very large amount of glycans that can be built starting from a
few monosaccharides, glycans show large conformational
variability at room temperature due to the low torsional
energy barriers around the glycosidic bonds.3

Glycans are ubiquitously found in living organisms, where
they can be freestanding or linked to proteins and lipids, giving
rise to glycoproteins and glycolipids, respectively. They are
involved in a variety of biological processes that can be
classified into three main categories.4 First, they can play
structural roles by either assisting in creating extracellular
scaffolds, such as cell walls and matrices, or by being involved
in protein folding and function. Second, they can serve as
crucial sources of energy metabolism. Third, they can play the
role of information carriers, being recognized by glycan-
binding proteins (GBPs). Glycans can bind proteins through
non-covalent, reversible interactions for signaling purposes,
initiating a range of biological processes in both plants and
animals.5 The role of glycans has recently been highlighted in
the context of the well-known SARS-CoV-2 spike protein. This
protein, which enters host cells by connecting to the
angiotensin-converting enzyme (ACE2), is surrounded by a
layer of glycans, which hides it from the immune system.
Casalino et al.6 showed that specific glycans play a crucial role
in the movement and structure of the part of the spike protein
that binds to ACE2. Their removal results in diminished
binding to ACE2.
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It is evident that understanding the way glycans interact with
proteins is of crucial importance. Experimental methods such
as X-ray crystallography and cryo-electron microscopy face
challenges when dealing with glycans because of their intrinsic
flexibility and heterogeneity. Computational approaches, such
as molecular docking, can provide an alternative, less
expensive, and faster way of generating three-dimensional
(3D) models of protein−glycan complexes.

Despite the growing attention that is being given to the
carbohydrates field,7,8 the modeling of protein−glycan
complexes by docking has only received limited attention
compared to that of other biomolecular complexes. A few
protocols have been developed in the past years, such as
GlycanDock based on Rosetta,9 a heparin-specific protocol
based on PIPER/ClusPro,10 Vina-Carb,11 GlycoTorch Vina,12

RosettaCarbohydrate,13 and ATTRACT.14 Recently, a new
version of Alphafold,15 Alphafold3,16 that can handle
glycosylated proteins, has been published. It, however, does
not allow one to model protein−glycan complexes. State-of-
the-art protein−ligand docking software encounters challenges
in addressing the conformational variability of glycans as they
are usually developed for dealing with small, more rigid
molecules.9

In this study, we use high ambiguity-driven DOCKing
(HADDOCK)17,18 to address the protein−glycan interaction
prediction problem. HADDOCK is an information-driven
docking approach that can harvest knowledge about binding
sites to drive the docking process (see below). Note that
HADDOCK18 has already been applied to glycan model-
ing19,20 but, to date, without an exhaustive benchmarking.
Here, we first benchmark the baseline performance of
HADDOCK in predicting the 3D structures of protein−glycan
complexes on a bound data set composed of 89 high-resolution
experimental complexes from the Protein Data Bank (PDB)21

assuming an ideal scenario in which the binding interfaces on
both protein and glycan are known in order to drive the
docking process. A protocol is then proposed to deal with a
realistic scenario in which the bound conformations of the
partners are unknown. The GLYCAM-Web web server22,23 is
used for the generation of glycan unbound structures, while the
unbound protein structures are retrieved from the PDB.
Finally, to address the conformational flexibility challenge of
glycans, we assess whether providing an ensemble of glycan
conformations generated through a short conformational
sampling carried out with HADDOCK prior to the docking
process can improve the performance of the protocol, next to
the standard semi-flexible refinement of the interface.

■ METHODS
Benchmark Data Set Preparation. HADDOCK’s17,18

performance in reproducing the binding geometries of
protein−glycan complexes was evaluated by exploiting an
adapted version of the data set provided in GlycanDock.9 It is
composed of 109 experimentally determined high-resolution
(<2.0 Å) protein−glycan complexes collected from the PDB.
By discarding the entries containing glycans not yet supported
by HADDOCK (refer to https://rascar.science.uu.nl/
haddock2.4/library for a list of supported glycans), a data set
of 89 complexes was obtained, which will be referred to as the
bound data set from now on. The protein receptors in this data
set include 8 antibodies, 21 carbohydrate-binding modules, 18
enzymes, 27 lectins or glycan-binding proteins (GBPs), and 15
viral glycan-binding proteins. The length of the glycans ranges

from 2 to 7 monosaccharide units, 72 of which are linear
glycans and the remaining 17 branched ones. This structural
diversity is considered in the analysis of the docking
performance.

With the aim of evaluating HADDOCK’s performance in a
realistic unbound docking scenario, a subset of 55 complexes
(out of 89) was defined for which unbound protein forms were
available in the PDB. The glycans’ unbound conformations
were generated with the GLYCAM-Web web server.22,23 This
data set of 55 unbound conformations of both proteins and
glycans will be referred to as the unbound data set from now
on. It contains 47 linear and 8 branched glycans; 25 glycans are
composed of three or fewer monosaccharide units, while 30
have more than three units. For the evaluation of
HADDOCK’s performance on the unbound data set, all the
complexes including glycans made up of three or fewer
monosaccharide units are treated together and referred to with
the label SL-SB (short linear-short branched). For the larger
bound data set, linear (SL) and branched (SB) short glycans
are analyzed separately. The complexes including glycans
composed of more than three units (L for long) are divided
into linear (LL, 23 cases) and branched (LB, 7 cases). Glycans
and protein structures were prepared for docking as described
in Supporting Information Text S1. Details on the two data
sets are reported in Supporting Information File 1, and the
Symbol Nomenclature for Glycans24,25 (SNFG) is given in
Supporting Information Table S1. All HADDOCK-ready
bound and unbound conformations, together with restraints,
HADDOCK configuration files, and analysis scripts, are
provided in the following GitHub repository: https://github.
com/haddocking/protein-glycans.
HADDOCK General Protocol and Scoring Function.

Docking calculations were performed with HADDOCK3
(https://github.com/haddocking/haddock3, DOI:10.5281/
zenodo.10527751), the new, modular version of the well-
established HADDOCK 2.X software.26 The original HAD-
DOCK protocol consists of three successive steps: (i) full
randomization of the orientations and docking by rigid-body
energy minimization; (ii) semi-flexible refinement by simulated
annealing in torsion angle space during which the interfaces are
considered flexible; and (iii) final refinement, either by energy
minimization (current default) or by a short molecular
dynamics simulation in explicit solvent. HADDOCK3 over-
comes this rigid workflow structure as its constituent modules
can be freely combined and interchanged by the user. A
description of the HADDOCK3 modules used in this study is
given in Supporting Information Text S2.

HADDOCK’s scoring function (HS) includes the inter-
molecular electrostatic (Eelec) and van der Waals (EvdW)
energies (calculated with the OPLS force field27), an empirical
desolvation energy term (Edesolv),

28 the buried surface area
(EBSA), and the ambiguous interaction restraint energy (Eair)
(see below). The combination and weights of those terms
depend on the stage of the protocol. In the present study, we
compare the default scoring function at the rigid-body stage
(eq 1) with one in which the weight of the van der Waals
energy term was increased from 0.01 to 1.0 (eq 2) as
recommended for small-molecule docking with HADDOCK.29

The scoring function in eq 2 will be referred to with the name
vdW to be distinguished from the default one. For the flexible
refinement stage, the default scoring function is used (eq 3).
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HS(rigid body default)

0.01E 1.0E 1.0E 0.01E 0.01Evdw el desolv air BSA= + + +
(1)

HS(rigid body vdW)

1.0E 1.0E 1.0E 0.01E 0.01Evdw el desolv air BSA= + + +
(2)

HS(flexref default)

1.0E 1.0E 1.0E 0.1E 0.01Evdw el desolv air BSA= + + +
(3)

Restraints to Drive the Docking. Experimental or
predicted information about binding sites can be introduced
as restraints for guiding the docking process and scoring the
generated models (Eair in eqs 1−3). Interface information is
typically introduced as ambiguous interaction restraints
(AIRs),18 which are defined from lists of residues divided
into two groups: active and passive. Active residues are those
of central importance for the interaction. They are restrained
to be part of the interface throughout the docking and
refinement process; if an active residue is not part of the
interface in a model, it generates restraint energy (and
corresponding forces). Passive residues are those that could
contribute to the interaction, being among the possible
interaction partners of the active residues defined on the
other molecules; if a passive residue is not in the interface of a
given model, there is no restraint energy generated.

The functional form of the restraint energy function is
similar to the distance restraining function introduced by
Nilges,30 namely, a flat bottom function which is harmonic for
short violations and then transits to a linear form, thus
ensuring stable force computations.

In this work, two scenarios in terms of AIRs were
considered: (i) true-interface scenario (ti-aa), where active
residues, corresponding to the interface residues within 3.9
Å31,32 from the partner, are defined for both the protein and
the glycan; (ii) true-interface-protein−full glycan passive
scenario (tip-ap), where active residues are still defined for
the protein interface, but all residues of the glycan are listed as
passive. By default, HADDOCK randomly discarded 50% of
the defined AIRs for each docking model. This is done to

account for possible wrong information (false positives) in the
experimental data.
Docking Protocols for Bound and Unbound Data

Sets. Two different protocols were used for the bound and
unbound data sets. For the bound data set, a workflow
consisting of the following six modules was defined for running
HADDOCK3 (details in Supporting Information Table S2 and
the corresponding config file available in the GitHub
repository):

1 topoaa: creation of the topologies of the two partners
during which any missing atoms are automatically
added.

2 rigidbody: AIR-driven generation of rigid-body models.
3 caprieval: models’ quality analysis (see below).
4 rmsdmatrix: calculation of the RMSD matrix between all

the models based on either all the interface residues
(when ti-aa AIRs are used) or the protein interface
residues and the whole glycan (when tip-ap AIRs are
used).

5 clustrmsd: RMSD-based agglomerative hierarchical
clustering of the models using the average linkage
criterion and a distance cutoff of 2.5 Å. Only clusters
containing four or more models are evaluated.

6 caprieval: cluster-based evaluation of the quality of the
models.

As the starting structures are already in their bound
conformations, no flexible refinement was performed.

For the unbound data set (details in Table S3 and the
corresponding config file available in the GitHub repository),
the workflow consisted of the following 12 modules:

1 topoaa: creation of the topologies of the two partners
during which any missing atoms are automatically
added.

2 rigidbody: AIR-driven generation of rigid-body docking
models (1000 by default) with increased sampling (200
per conformation) when starting from an ensemble of
conformations.

3 caprieval: models’ quality analysis (see below).
4 rmsdmatrix: calculation of the RMSD matrix between all

the models based on either all the interface residues
(when ti-aa AIRs are used) or the protein interface
residues and the whole glycan (when tip-ap AIRs are
used).

Figure 1. Schematic representation of the docking protocol for the unbound data set. First, rigid-body docking is performed. The models are then
clustered based on RMSD. The best-scoring models of each cluster are then subjected to a flexible refinement (interface), and the resulting models
are again clustered and analyzed.
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5 clustrmsd: RMSD-based agglomerative hierarchical
clustering of the models using the average linkage
criterion. Here, 50 (150 when the ensemble of glycan
conformations is used) clusters are created.

6 seletopclusts: selection of the top 5 models of the
existing clusters.

7 caprieval: cluster-based evaluation of the quality of the
models.

8 flexref: semi-flexible refinement through a simulated
annealing protocol in torsion angle space in which first
side-chains and then side-chains and backbone of
interface residues are treated as flexible.

9 caprieval: models’ quality analysis.
10 rmsdmatrix: calculation of the RMSD matrix between all

the models, as in point 4.
11 clustrmsd: RMSD-based clustering of the models as in

point 4 but here using a distance cutoff of 2.5 Å as in the
bound scenario.

12 caprieval: cluster-based evaluation of the quality of the
models.

The workflow for the unbound data set with the RMSD
clustering of the rigid-body models followed by semi-flexible
refinement is schematically represented in Figure 1.
Model Quality Assessment. The quality of the models

was evaluated using interface-ligand RMSD (IL-RMSD) with
respect to the experimental structures. We did not use the
fraction of native contacts (Fnat) as its values are typically
quite high irrespective of the pairwise orientation between the
molecules and thus unable to highlight small conformational
differences, especially for small glycans. The IL-RMSD is
calculated by first superimposing the model onto the reference
structure by using the backbone atoms of the protein interface
residues and then calculating the RMSD on the heavy atoms of
the oligosaccharide. This is motivated by the fact that the
protein interface is larger compared to the glycan interface and
would dominate the RMSD calculation if the standard
CAPRI33 interface RMSD (I-RMSD) metric was used. The
IL-RMSD gives a better measure of variations in the position

of the ligand compared to the I-RMSD. The cutoffs used to
define the quality of the models based on IL-RMSD are

• high-quality models: IL-RMSD ≤ 1.0 Å
• medium-quality models: IL-RMSD ≤ 2.0 Å
• acceptable-quality models: IL-RMSD ≤ 3.0 Å
• near acceptable-quality models: IL-RMSD ≤ 4.0 Å

Supporting Information Figure S1 shows examples of
docking models falling into these four categories for short-
and long-linear glycans and for branched glycans, highlighting
how the near acceptable threshold is only appropriate when
dealing with long glycans, being too permissive for short
monosaccharide chains.

HADDOCK3′s performance is evaluated by calculating
success rates (SRs), defined as the fraction of complexes
having at least one high-, medium-, acceptable-, or near-
acceptable-quality model among the top N models ranked
according to the HADDOCK score. The cluster-based SR is
also calculated by considering the top 4 scoring models within
each cluster and assigning a given quality to a cluster if any of
the top 4 members of the cluster reaches the corresponding
quality cutoff. Note that the clustering step after rigid-body
docking considers the 5 top models of each cluster.
Glycans’ Conformational Sampling. Conformational

sampling of the glycans was carried out with the HADDOCK3
water refinement module (mdref26), starting from the models
generated with the GLYCAM-Web web server.22,23 Different
scenarios were tested in terms of the number of molecular
dynamics integration steps and the number of models
generated (each simulation starting with a different random
seed). The RMSD of the generated models with respect to the
bound glycan conformation was calculated with the rmsdma-
trix module. The generated models were clustered using
RMSD-based hierarchical clustering,34,35 requesting 20 clus-
ters. The centers of each cluster were then used to define an
ensemble of starting unbound conformations for docking.
Further details of the conformational sampling can be found in
Supporting Information Text S3.

Figure 2. Comparison of bound docking success rates obtained with the default (w_vdW = 0.01) and vdW (w_vdW = 1.0) scoring functions (eqs 1
and 2) as a function of the number of top-ranked models (T = 1, 5, 10, 50, 100, and 200) selected using true interface residues of both protein and
glycan to define the ambiguous interaction restraints (ti-aa AIRs).
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■ RESULTS AND DISCUSSION
This section is structured as follows. First, the impact of the
rigid-body scoring function on HADDOCK3’s performance is
discussed based on docking calculations performed on the
bound data set. The performance of the docking is then
analyzed considering structural features of the glycans (length
and branching) and the definition of the AIRs. We then focus
on the more realistic scenario of unbound docking, assessing the
best way of selecting the rigid-body models to be refined and
the impact of the flexible refinement on the quality of the final
models. Finally, the impact and limitations of using an
ensemble of glycans as starting points for the docking are
discussed.
Bound Docking Performance and the Impact of the

Rigid-Body Scoring Function in the Ranking of Models.
We first assessed the accuracy of the rigid-body scoring
function in ranking the generated models by comparing the
default scoring function (eq 1) to the one recommended for
small ligands, in which the van der Waals energy weight is
increased from 0.01 to 1.0 (vdW scoring function, eq 2). This
was assessed by running docking calculations on the bound
data set with true interface restraints (ti-aa AIRs). A
comparison of success rates (SRs) obtained with the default
(eq 1) and vdW (eq 2) scoring functions is shown in Figure 2.

The vdW scoring function with increased van der Waals
energy weight (w_vdW = 1.0) performs much better than the
default function (w_vdW = 0.01) with remarkably higher
success rates. This highlights the importance of the van der
Waals energy term in scoring protein−glycan models. For
example, considering T1 and T5 high-quality models, the
improvement is around 30%. Even when considering the top
200 models (the default number of models passed to the
flexible refinement stage in a standard HADDOCK2.X
workflow), a slight improvement is observed in both number
and quality of acceptable or better models. Results are
consistent if we consider the cluster-based success rate (see
Methods), with 66% of top-ranked clusters falling into the
acceptable category in the vdW settings, compared to 33% of
the default scenario. Glycans, despite all of their polar groups,
have quite hydrophobic properties, especially in their ring
structure. A similar behavior was observed in previous work
when docking cyclic peptides36 and small ligands.29 Based on
these results, all subsequent docking calculations were
performed with the vdW scoring function.
Impact of Glycan Structural Features and AIR

Definition on the Bound Docking Performance. The
dependency of the structural features of the glycans on the SR
was then assessed using the true-interface AIR restraints (ti-aa)
and vdW scoring function scenario. SRs were calculated
grouping the complexes based on the size of the glycans
(glycans composed of three or fewer units, labeled with S, or
more than three, with L) and connectivity (linear, L, or
branched, B). The SR, shown in the first column of Supporting
Information Figure S2, indicates that HADDOCK3 performs
better for long-linear (LL) and long-branched (LB) glycans.
The bound SR for T1 high-quality models is 45, 17, 74, and
73% for SL, SB, LL, and LB glycans, respectively (50, 33, 79,
and 82%, respectively, for T1 acceptable or better-quality
models). When considering a larger number of models, the
SRs become rather similar for the various types of glycans
(70−80% for T50 and 80−90% for T200), except for the
short-branched (SB) ones (∼70%). The lower performance on

the short-branched glycans and, to a lesser extent, on the SL
ones could be due to the fact that smaller ligands could be
accommodated into the protein-binding site with a greater
variability of positions and orientations, while the range of
possible docking orientations is more restricted for larger
ligands.

The impact of defining the glycan as passive (tip-ap) was
then investigated. A slight decrease in the SR can be observed
(second column of Supporting Information Figure S2), with
respect to the ti-aa scenario, for LB glycans and, to a lesser
extent, for SB ones. This can be explained by noting that most
of the linear-long (LL) glycans (27/34) have all of their
residues involved in the binding to the protein, whereas the
same is true for only half (5/11) of the long-branched (LB)
ones. Branched glycans are thus more difficult to model when
no information about their interface is available. Overall,
HADDOCK3’s performance on protein−glycan complexes is
not much affected by defining the glycan as passive (tip-ap
AIRs). As experimental interface information for the glycans
might not always be available in a realistic scenario, the
remainder of the paper will discuss docking calculations only
with tip-ap AIRs. Note that, for example, nuclear magnetic
resonance (NMR) can provide specific information about
which groups of a glycan are involved in the binding, as
demonstrated for the modeling of the complex between sialic
acid and the N-terminal domain of the SARS-Cov2 spike
protein using NMR saturation transfer experiments.37

Unbound Docking. In a realistic scenario, the bound
conformations of the docking partners are unknown, and only
unbound structures or models will be available. As such,
conformational rearrangements may be required during
binding. We therefore assessed HADDOCK3’s performance
on the unbound data set consisting of 55 complexes. The
starting point for the docking was the unbound form of the
protein taken from the PDB and models of the glycans
obtained with the GLYCAM-Web web server22,23 (see
Methods section Benchmark Data Set Preparation). When
dealing with unbound structures, the flexible refinement stage
of the workflow might allow some conformational changes to
occur. As only a fraction (typically around 20%) of the models
is subjected to flexible refinement, ranking and selection of
models after the rigid-body docking stage become crucial. We
tested two scenarios: (1) the “classical” scenario in which the
top 200 ranked models are passed to the flexible refinement
stage; (2) a cluster-based selection, made possible by the
modular and flexible structure of HADDOCK3. In the second
scenario, the rigid-body models are first clustered based on
their RMSD similarity; then, the top 5 models of all 50 clusters
(150 when the ensemble is used, see below) are selected. In
this way, models that might not rank high enough to be
selected in an individual model ranking might still get selected
and subjected to the flexible refinement, thus increasing the
diversity of refined models (potentially at the cost of
decreasing the overall number of acceptable or better models
in the final set of refined models, which is not an issue
provided that the scoring function can identify the near native
models). Since we are using an agglomerative hierarchical
clustering method allowing the desired number of clusters to
be defined, clusters with less than 5 models might be obtained,
and for this reason, a different number of models might be
subjected to the flexible refinement for each complex. The
overall docking performance and the performance by glycan
size and branching are shown in Figure 3.
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The comparison of the rigid-body SR obtained on the single
models (column “rigid” in Figure 3) with the SR obtained on
the clustered models (column “rigid + clustering” in Figure 3)

reveals that, overall, the selection of clustered models is
beneficial to the docking success rate. This is particularly
helpful for the long-branched (LB) glycans (fourth row of

Figure 3. HADDOCK3’s performance on the unbound data set using the vdW scoring function and tip-ap AIRs (true interface on the protein
defined as active and the glycan residues as passive). The success rates (SRs) (Y axis), defined as the percentage of complexes for which acceptable-,
medium-, or high-quality models are generated, are calculated on the top 1 (T1) to top 200 (T200) ranked rigid-body models (column “rigid”), T1
to T50 rigid-body clusters, considering the top 5 models of each cluster (column “rigid + clustering”), the T1 to T200 ranked refined models
(column “flexref”), and the T1 to T10 refined clusters, considering the top 4 models of each cluster (column “flexref + clustering”). SRs are shown
separately for the whole data set (first row) and for the three categories of complexes grouped by glycan size and connectivity: SL-SB (second row),
LL (third row), and LB (fourth row).
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Figure 3), with the clustering of the rigid-body models allowing
us to retrieve more than 40% acceptable-quality models (70%
near-acceptable-quality) compared to 15% acceptable-quality
models (30% near-acceptable-quality) for the single model
selection. Overall, for all types of glycans, selecting the rigid-
body models after clustering is the best way to choose the
structures for the refinement stage.

The introduction of flexibility in the interface region strongly
improves the quality of the models. Comparing the T200
refined models (column “flexref” in Figure 3) with the selected
T50 rigid-body clusters (column “rigid + clustering”), for short
(SL-SB) glycans, almost 10% high-quality models are obtained,
while there were none before, and almost 60% of the models
fall within the medium-quality cutoff, to be compared with
around 30% at the rigid-body stage. For the long-linear (LL)
glycans, the acceptable-quality success rate increases from
around 25% (rigid-body stage) to 61%. The improvement is
also substantial for the LB glycans, for which the flexible
refinement allows us to obtain medium-quality models, which
were not present at the rigid-body stage, and an increase in
acceptable-quality SR from 43 to 57%.

Finally, clustering of the refined models (fourth column in
Figure 3) slightly improves the success rate compared to T10
single refined models, with around 50% of the glycans having
an acceptable or better model in the top 10 clusters.

To demonstrate how flexible refinement affects both glycans’
conformations and models’ ranking, the best-scoring refined
models of three representative complexes are shown in Figure
4, superimposed onto their corresponding rigid-body models
and reference structures. These are representative of the SL-
SB, LL, and LB groups. The refinement stage results in both
better ranking and a better quality (lower IL-RMSD values) of
the models. Overall, longer glycans are more challenging to
refine than short ones. A high-quality model is produced for
the 1C1L complex (SL, IL-RMSD = 0.52 Å after refinement),
an acceptable-quality model for 5VX5 (LL, IL-RMSD = 2.22
Å), while for 1OH4 (LB, IL-RMSD = 4.42 Å), the quality is
still not acceptable, although it improved after the refinement
stage.

We assess the overall impact of the refinement by measuring
how much closer to the target structure is the best refined
model with respect to the best model prior to the refinement
stage; this analysis shows an average improvement of 0.43 Å on
our data set with a maximum observed improvement of 3.73 Å.
Of course, not all models improve after refinement, but those
that do improve also tend to be ranked higher by the
HADDOCK scoring function, as shown in Figure 3. Proteins
containing long-linear glycans show the most substantial
improvement (1.0 Å on average, with a maximum of 3.02
Å). Short- (SL-SB) and long-branched (LB) glycans show a
negligible improvement (0.03 and 0.02 Å, respectively),
although this is dependent on the specific glycan. For example,
considering SL-SB glycans, we observe a maximum improve-
ment of 3.73 Å (PDB 3AOF), while for some other models,
the flexible refinement worsens their quality. For LB glycans, a
maximum improvement of 2.13 Å is obtained (3AP9). Overall,
the flexible refinement affects most LL glycans.

We investigated whether increasing the length of the flexible
refinement protocol would further improve the glycan
conformations. This did not improve the success rates
significantly or in a uniform way as it seemed to depend on
the number of models passed to the refinement and the group
of glycans considered (data not shown). It further comes at

increased computational costs. As this behavior could not be
rationalized in a simple way, this approach was discarded.
Can an Ensemble of Presampled Glycan Conforma-

tions Improve the Docking Performance? While the
performance in the unbound docking scenario is already quite
high, unsurprisingly, it does not reach the bound docking
performance. One limiting factor here could be the unbound
glycan conformations used for docking. Comparison of the
conformations generated by the GLYCAM-Web web server
with respect to the bound ones reveals a strong dependency of
the RMSD to the bound form on both the glycan’s size and
connectivity with mean RMSDs increasing from 0.89 Å for
short-linear glycans to 1.74 Å for long-branched ones (see
Supporting Information Figure S3).

As HADDOCK can take an ensemble of conformations as
the starting point for the docking, we investigated if sampling
conformations prior to docking could improve the overall
docking performance. We used the water refinement module of
HADDOCK, varying the number of models generated and the
length of the molecular dynamics sampling. Six different

Figure 4. Superimposition of the best-scoring flexible refinement
models (orange) and the rigid-body models (teal) to the reference
structures (gray) for the complexes 1OH4 (LB), 5VX5 (LL), and
1C1L (SL) and the unbound docking scenario carried out with vdW
scoring potential and tip-ap AIRs. Oxygen atoms of the glycans are
shown in red in all the structures, nitrogen atoms in blue, and
hydrogens are not shown. Ranking and IL-RMSD values with respect
to the reference structures for the flexref and rigid-body models are
shown as well.
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protocols were investigated (Table S4). The RMSD distribu-
tions from the bound glycan conformation of the various
protocols are shown as box plots in Supporting Information
Figure S4 and compared to the distribution of the original
GLYCAM server conformations. From this analysis, the
protocol that generates conformations closest to the bound
form consists of sampling 400 models, with a 16 times longer
refinement protocol (sf400-x16) (which still remains a very
short refinement protocol). With this sampling scenario, the
average RMSD to the bound conformation decreases from
0.93 to 0.54 Å for SL-SB glycans, from 1.65 to 1.26 Å for LL
glycans, and from 1.70 to 1.25 Å for LB glycans. An analysis of
the glycosidic linkages indicates that the force field does
describe favorable conformations (also during the flexible
refinement stage of the docking), but the sampling protocol is
too limited to generate conformations very different from
those of the starting models generated by GLYCAM (see
Supporting Information Figures S8 and S9). Some minor
improvements toward the bound form are however observed in
some cases.

For docking, we want to limit the number of models in an
ensemble to allow for sufficient sampling of each starting
model combination without having to increase the sampling
too much. To this end, we clustered the sampled glycan
conformations using the rmsdmatrix and clustrmsd modules in
HADDOCK3, requesting either 10 or 20 clusters from the
ensemble of conformations. RMSDs from the bound
conformation were calculated for the centers of each cluster
with the rmsdmatrix module. Requesting 20 clusters results in
the best sampling of the overall glycan RMSD distribution of
the ensemble of 400 models, retaining low RMSD con-
formations. The cluster centers, however, rarely correspond to
the best RMSD sampled, which results in some rather limited
loss in RMSD to the bound form (see Supporting Information
Figure S5). Examples of such conformational ensembles for the
same glycans reported in Figure 4 are shown in Supporting
Information Figure S6.

The centers of those 20 clusters were provided as an
ensemble for unbound docking, following the same rigid-body,
cluster-based workflow described above. Only limited improve-
ments are observed in single-structure ranking performance
after flexible refinement compared to that of the single
unbound conformer protocol (see Supporting Information
Figure S7). For example, a higher number of medium-quality
models for long-linear glycans is obtained, together with more
high-quality models for SL-SB glycans. No improvement is
observed for long-branched glycans. This can be attributed to
the rather limited conformational sampling during the still
short water refinement protocol (Supporting Information
Figure S6). Better sampling strategies, possibly based on
more extensive MD simulations, will be required. Another
issue is related to the selection of the relevant representative
conformations while limiting their number for docking
purposes.

■ CONCLUSIONS
In this study, we have assessed HADDOCK’s ability in
modeling the 3D structures of protein−glycan complexes.
First, the baseline performance was evaluated on the rather
simple, unrealistic scenario starting from the partners in their
bound conformations and giving full information about the
interface (ti-aa AIRs). This allowed us to improve the rigid-
body scoring function for protein−glycan complexes by

increasing the weight of the intermolecular van der Waals
energy term to 1.0, as done for the docking of small molecules
to proteins.29 An analysis of the bound docking performance per
type of glycan revealed that longer glycans (in their bound
conformation) are easier to model. This is probably a
consequence of the lower number of possible orientations
that longer glycans can assume when binding the protein. In
the more realistic unbound docking scenario, in which the
glycan conformations were modeled with the GLYCAM-Web
web server and free form structures of the proteins are used,
conformational changes are required to generate native-like
poses. In this case, longer glycans are more difficult to model
with only (near-)acceptable predictions generated in most
cases.

Making use of the new modular version of HADDOCK3, we
introduced a protocol in which rigid-body models are clustered
prior to refinement, with representatives of all clusters being
passed to the flexible refinement stage of HADDOCK. This
strategy enables HADDOCK to retain 51% acceptable or
better models after rigid-body selection compared to 33%
using the standard single model selection. After flexible
refinement, the overall performance reaches an overall success
rate of 16% (respectively, 18%) and 38% (respectively, 44%)
for T1 and T5 single-structure models (respectively, clusters).

Single-structure or cluster-based selection of models at the
end of the workflow shows almost similar performance. This is
in line with what was also observed in small-molecule docking
with HADDOCK.29,38 There is, however, still room to improve
the scoring of models. One possible extension could be the
incorporation of CH-π stacking interactions into the scoring
function, as suggested in previous works.39,40

While the flexible refinement does improve the quality of the
models, it is not sufficient in cases in which large conforma-
tional changes are required. We therefore investigated whether
a limited sampling of glycan conformations prior to docking
using the water refinement module of HADDOCK could
generate conformations closer to the bound form. While we do
observe slight improvements, their impact on the docking
performance in an ensemble docking scenario is limited, thus
highlighting the need for more extensive conformational
sampling strategies, together with methods to identify the
most relevant conformations. For example, the use of a
database of glycan conformations such as GlycoShape41 could
help in improving HADDOCK’s performance in modeling
protein−glycan complexes.
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The software used in this manuscript (HADDOCK3) is
publicly available at https://github.com/haddocking/
haddock3. All input data, analysis scripts, and results presented
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haddocking/protein-glycans. A tutorial describing the model-
ing of a protein−glycan complex using HADDOCK3 is hosted
at https://bonvinlab.org/educat ion/HADDOCK3/
HADDOCK3-protein-glycan. The full runs, including docking
models from all modules of a workflow, have been deposited in
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