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ABSTRACT: In the field of drug discovery, identifying compounds
that satisfy multiple criteria, such as target protein affinity,
pharmacokinetics, and membrane permeability, is challenging because
of the vast chemical space. Until now, multiobjective optimization via
generative models has often involved linear combinations of different
reward functions. Linear combinations solve multiobjective optimiza-
tion problems by turning multiobjective optimization into a single-
objective task and causing problems with weighting for each objective.
Herein, we propose a scalable multiobjective molecular generative
model developed using deep learning techniques. This model integrates
the capabilities of recurrent neural networks for molecular generation
and Pareto multiobjective Monte Carlo tree search to determine the
optimal search direction. Through this integration, our model can
generate compounds using enhanced evaluation functions that include important aspects like target protein affinity, drug similarity,
and toxicity. The proposed model addresses the limitations of previous linear combination methods, and its effectiveness is
demonstrated via extensive experimentation. The improvements achieved in the evaluation metrics underscore the potential utility of
our approach toward drug discovery applications. In addition, we provide the source code for our model such that researchers can
easily access and use our framework in their own investigations. The source code and pretrained model for Mothra, developed in this
study, along with the Docker image for the Pareto front explorer and compound picker, designed to streamline the selection and
visualization of optimal chemical compounds, are released under the GNU General Public License v3.0 and available at https://
github.com/sekijima-lab/Mothra.

■ INTRODUCTION
Research and development before a new drug is generally
approved for clinical use is a long, expensive, and challenging
process, taking 12−15 years and an average of $2.6 billion.1,2

In general, the process of drug development is a process of
target validation, compound screening, lead optimization,
preclinical testing, phases I, II, and III, and approval for
launch. The failure rate of drug development exceeds 90%
when considering both preclinical candidates and clinical
trials.3−5 90% of these failures are due to deficiencies in drug
candidates in terms of factors like clinical efficacy, toxicity, and
drug-like properties, and it is expected that mitigating these
problems leads to more successful drug discovery.4,6 The
number of new drugs approved in recent years has not
increased compared to the number of newly discovered
compounds. Therefore, a compound used as a drug must
satisfy multiple criteria. The conditions described above
illustrate the difficulty of discovering compounds with
appropriate absorption, distribution, metabolism, excretion,
and toxicity (ADMET) profiles as drugs, in addition to
considering their binding affinities to drug target proteins, in a
chemical space estimated to contain approximately 1060

different compounds.7,8 In summary, a drug candidate must
meet multiple requirements.
High-throughput screening (HTS) is widely used as a first

step in drug discovery. However, because HTS is applied to
known compound libraries, it is difficult to cover the entire vast
chemical space. This limitation underscores the need for new
discovery methods and techniques. With recent advances in
computers and algorithms, the application of computer
technologies to drug discovery has been explored, leading to
improvements in the efficiency and quality of the drug
discovery process.9−14 High-throughput virtual screening is
widely used to search hit molecules in in-silico drug
discovery15−17 however, the aforementioned limitation re-
mains. To expand the chemical space without relying on
existing compound libraries, deep-learning-based methods
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called molecular generative models have emerged, such as the
VAE-based18,19 GAN-based,20 genetic-algorithm-based,21 and
reinforcement learning22,23 -based methods. These models
have explicit or implicit objective functions. During training,
they maximize or minimize their objective functions to
optimize the functions. Optimization problems often feature
a single-objective function under several constraints. The
formulation of optimization problems predominantly incorpo-
rates a single objective function in the realm of in silico drug
discovery. For example, ChemTS24 is a normalized combined
function of the octanol−water partition coefficient logP,
synthetic accessibility score (SAscore),25 and ring penalty.
Additionally, SBMolGen26 employs a normalized function of
the docking score. Moreover, many other indicators are used in
in-silico drug discovery. The quantitative estimate of drug-
likeness (QED)27 captures the abstract notion of aesthetics in
medicinal chemistry based on Lipinski’s rule of five.28 When
the QED is high (up to 1), the molecule is estimated to be a
drug-like compound from the viewpoint of physical chemistry.
Recently, the Fsp329 indicator was proposed for HTS. As the
drug discovery stage progresses, the ratio of carbon atoms with
sp3 electrons increases. However, molecules with higher Fsp3
scores are more likely to contain chiral carbon atoms. Many
chiral carbon atoms increase the 3D structural activity but
decrease the synthetic feasibility. Other indicators that should
be optimized include membrane permeability, molecular
weight, aqueous solubility, and metabolic stability. In summary,
many metrics of drug performance and safety should be
considered during in-silico drug discovery.
Conceptually, an optimizer for multiple objective functions

is significantly different from that of a single function. In actual
drug discovery, it is necessary to simultaneously optimize
several situation-specific physical property indicators. How-
ever, simultaneously optimizing multiple objective functions
results in the problem of Pareto optimality. Some recently
published studies avoided the problem of Pareto optimality by
converting multiple evaluation indices into a single evaluation
function using linear summation30 or multiplier-adjusted
multiplication.31,32 These methods are based on the same
optimizing strategy of desirability score (DScore). However,
these methods have the common problem of adjusting the
weights of the evaluation indices. For example, a QED score of
“0.5” should differ from a docking score of “0.5”. Additionally,
assigning weights to the evaluation indices requires comparing
the values in different objective functions. the weighted sum is
not suited. In manufacturing, the cost and risk of the process
are trade-offs that cannot be added together for maximization
or minimization.33 Li et al.34 constructed a multiobjective de
novo drug design system with a conditional variational
autoencoder (CVAE);35 however, this method cannot
explicitly handle multiple objective functions. Reutlinger et
al.36 introduced the Gaussian process for regression37 to
multiobjective optimization (MOO). However, this method
cannot handle explicit objective functions.
Simultaneous optimization of multiple objectives is a

common challenge in drug development. For example, many
metrics with different objectives, such as drug efficacy, safety,
and production costs, must be optimized simultaneously.
Because these objectives are often in a trade-off, optimizing
one objective can worsen the others. MOO with a Pareto front
has been proposed as a general approach for solving such
multiobjective-function optimization problems. The Pareto
front represents the set of solutions for which all objective

functions are optimal, with the property that no solution on
the front can improve any other objective without worsening
any of the objectives. Therefore, the Pareto front can be used
to determine the optimal solution while considering multiple
objective functions simultaneously. Recent methods in MOO
considering the Pareto frontier have been proposed using the
genetic algorithm (GA).38−41 GA-based algorithms generally
search for molecules by evaluating their hidden vectors. Thus,
GA-based algorithms make it difficult to obtain the
information on generated molecules in a search. However,
Monte Carlo tree search (MCTS) contains a simulation step.
In the simulation step on each search epoch, the scores
calculated on the basis of the generated molecules are fed back
to the search tree. MCTS obtains the information on generated
molecules during the search. Thus, the MCTS method is
suitable for modifying generated molecules because the search
tree enables the search for structurally similar molecules by
fixing the heads of molecules in SMILES strings.
Molecules can be represented in a variety of ways, including

chemical fingerprinting techniques such as extended-con-
nectivity fingerprints (ECFPs),42 which use fixed vectors for
different substructures, and the simplified molecular input line
entry system (SMILES),43 which represents molecules in a
string format. In particular, SMILES can accurately capture
structural variations, including the chirality of compounds.
However, the use of SMILES in deep learning-based molecule
generation models presents unique challenges, particularly in
the hit-to-lead process. Generating molecules from predefined
structures remains a significant challenge, and most SMILES-
based methods cannot reliably generate valid molecules from a
starting point. However, a new approach presented in
MERMAID44 combines a Monte Carlo tree search and
recurrent neural networks to introduce a SMILES-based
generative model that can start from a specific molecule.
In this research, we developed a de novo molecular

generation model for easily extendable multiple objective
functions using SMILES via Pareto-based multiobjective
MCTS. To evaluate the molecule, we set the docking score
using SBMolGen,26 QED score, and estimated toxicity
probability45 as reward functions. Additionally, the SAscore25

was used as a thresholding for highly difficult-to-synthesize
molecules. However, in more practical and precise cases, if
users have knowledge of organic chemistry and know the
substructures that they want to avoid, they can implement
filters based on the substructures of the method. The simulator
used to calculate the docking score was AutoDock Vina.46 The
proposed method succeeded in generating multiobjective
optimized molecules in a target protein and is available on
GitHub. Furthermore, the viewer available in the same
repository on GitHub enables users to dive into the chemical
space. The existing methods often rank generated molecules.
The act cannot capture the trade-off relationship. The viewer
provides the dots corresponding to the generated molecules,
such as the following figures in this paper and shows the
molecular structures and docking poses. With the viewer, users
easily access the chemical space only by clicking.

■ METHOD
Mothra Overview. Mothra is a Pareto Monte Carlo tree

search-based molecular optimizer. As a structure generator, we
used both the recurrent neural network (RNN)47-based
structure generator installed in both ChemTS24 and
MERMAID44 and a multiobjective Monte Carlo tree search
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(MOMCTS)33 -based exploration system. ChemTS is a
prototype of the molecular generator. To direct the exploration
without calculating the DScore, that is, without adjusting the
weights, we employed Pareto optimization. Pygmo48 based on
NSGA-II49 was applied to estimate whether the molecule was
in the Pareto front or not. The Monte Carlo tree search
(MCTS) has four steps in every search. Using the first two
steps, Mothra searches for and determines the heads of the
molecules. In the last two steps, Mothra generates and
evaluates molecules, followed by a series of evaluations in an
MOO framework, which can be extended to accommodate
drug design requirements.

Selection: Each node in the search tree contains one
character in the SMILES43 vocabulary, which may
represent an element or a structure. In the selection
step, an expandable node is selected through the tree
policy while considering the Pareto front. The path from
the root node to the selected (leaf) node is a substring at
the beginning of the SMILES-represented molecules
currently being searched.
Expansion: One node is added to the search tree as a
child node of the selected node. Thus, the addition of
this node adds one character in the SMILES grammar to
the end of the substring obtained in the selection step.
Simulation: The pretrained RNN acts as the default
policy to complement the molecule in the simulation
step. After completing the SMILES string, the string is
checked to express a valid molecule. The molecules are
evaluated to obtain reward vectors, each of which is

compared with each vector in the Pareto front to
determine whether it is a dominant vector or not.
Backpropagation: The reward vectors are fed back to all
parent nodes, backtracking along the same path used in
the selection step.

The workflow of Mothra is illustrated in Figure 1. This
workflow was derived from the MCTS. Mothra starts with a
search tree having only a root node. The root node
corresponds to the starting token. The starting token
represents the beginning SMILES strings. In the following
steps, leaves are added to the search tree. In particular, the
following two points have been changed: (i) A reward used to
backpropagate is not a scalar value but a multidimensional
vector. This change affects the simulation and backpropagation
steps. (ii) To consider the Pareto front, the Pareto front engine
is applied in the simulation step. The selection step uses the
calculated Pareto front to choose a leaf node.
Pareto Front. Mothra adopts MOO. In MOO, Pareto

dominance describes the relationship between two solution
points in reward space. Given two points and their reward
vectors r r r r, , ...,x x x xd1 2= { } and r r r r, , ...,y y y yd1 2= { }, point x
is Pareto dominant over y if rxi is not less than ryi for i = 1··· d.If
a point is not dominated by any other point, it is defined as a
nondominated point. A Pareto front is the set of non-
dominated points (as shown in eq 1).

P r A r A r r: s.t.A = { } (1)

where A is a set of reward vectors. PA is referred to as the
Pareto front in A.

Figure 1. Workflow of Mothra. Subfigures located near the step diagram show the contents of each step. A node in a search tree corresponds to a
SMILES character. This workflow consists of four steps: selection, expansion, simulation, and backpropagation. (I) Selection step: Choose a leaf
node considering the current Pareto front. (II) Expansion step: Add a child node to a selected node. (III) Simulation step: Complete the substrings
of molecules and evaluate their rewards. In addition, update the Pareto front. (IV) Backpropagation step: Feedback rewards to the nodes on the
path.
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There is no natural priority of the points in the Pareto front.
Still, the hyper-volume indicator can impose an order on the
set of points,50 which is illustrated on a two-dimensional
reward space in Figure 2 and defined as eq 2.

HV A z x r A r x z( ; ) ( : s.t. )d= { } (2)

In eq 2, z is a reference point, and μ is the Lebesgue measure
on d.
One approach to transforming a multiobjective problem into

a single-objective problem is the linear combination of all
objectives. To avoid setting weights in the linear combination,
another approach is to use the contribution to the hyper-
volume of issues as a single reward called MOMCTS.33 In
MOMCTS, the points that maximize the hyper-volume are
from the Pareto front. In the selection step, nodes that belong
to the Pareto front but do not contribute to expanding the
hyper-volume are penalized according to the distance between
the point and the projected point on the Pareto front,
illustrated in Figure 2.
Pareto MCTS. The MCTS requires an objective function.

For a multiobjective search, the objective function can be set in
two ways. One is the linear combination of multiple objective
functions, which results in a scalar value. However, this method
retains the weight-setting problem. The other method is to use
Pareto MOMCTS.33 There are two major differences between
the Pareto MCTS and MCTS: multidimensional reward
vectors and Pareto front calculation. One solution for the
latter is NSGA-II49 implemented in pygmo, the Python version
of pagmo.48 The multidimensional reward vector affects the
selection step.
On selection nodes in the selection step, nodes in the Pareto

front should be sorted in some order via short calculation. One
approach to sorting the dominant points is called Pareto rank.
This method sorts each point into different layers, like the
Pareto front. Nodes in the same layer are nondominant relative
to each other. This option requires the maintenance of all
nodes, which is too computationally expensive. Instead, this
research uses a hypervolume indicator with a projected
distance penalty to rank Pareto front nodes. The upper
confidence bound (UCB) rs controls the balance between

exploitation and exploration. The score is estimated using the
cumulative reward. The cumulative reward score is calculated
using the node visit state. The cumulative reward is defined in
eq 3.

r
n

n r r1
1

( )s
s

s s u+
× +

(3)

In eq 3, ru is a reward of a new evaluation, and ns is the
number of visits of state s.
UCB rs is defined in eq 4.

r r c n n( ln( )/ )s
i

d

s i i parent s
1

;= +
= (4)

In eq 4, ci is the exploration vs exploitation parameter for the i-
th component of the reward vector.
An upper bound U(s) using the hyper-volume (HV)

indicator of rs with Pareto front P is given in eq 5.

U s V r HV P r z( ) ( ( ; )s s= = { } (5)

In eq 5, where z is the reference point of the hyper-volume
indicator, U(s) provides a scalar evaluation of a node s.
However, it maintains a constant value if any point in the
Pareto front dominates rs .
Although it would be sufficient to calculate a hypervolume

indicator at all points, it would be very computationally
expensive; therefore, Mothra used the projection distance
penalty, which can be calculated more quickly. U(s) is updated
to W(s).

W s U s r r( ) ( ) s
p

s 2= | | (6)

In eq 6, rs
p is a projection of rs onto the upper bound of the

Pareto front.
The pseudocode for Mothra is described in Algorithm 1.

Figure 2. Hyper-volume in a two-dimensional reward space, where the reference point z is the original point, and the purple part is the hyper-
volume. (a) The X marks represent points belonging to the Pareto front. Black indicates points that contribute to expanding the hyper-volume, and
red indicates points that do not. (b) The perspective projection on the Pareto front.33
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RNN Training.Mothra uses the de novo molecular structure
generator ChemTS. Similarly, RNN consists of an 81-
dimensional embedding layer and two 256-dimensional GRU
layers. The hyperboric tangent activation function is used. In
this research, an RNN model was used as a ligand generator.
The RNN model was pretrained and remained identical during
the ligand search process.
The training of RNN was conducted using the Adam

optimizer and the following parameters: a learning rate of 0.01,
a batch size of 256, and a total of 100 epochs.
Data Set. The data set for RNN training was obtained from

ZINC.51 ZINC is a free public database for ligand discovery
that includes more than 20 million molecules in biologically
relevant representations. This research used randomly selected
approximately 250,000 randomly selected ligand-like molecules
represented in SMILES. The data set is the same as that of
ChemTS. The ZINC data set could consider the vast chemical
space beyond existing drug-like compounds. The data set is
provided on the GitHub repository of ChemTS.52

3D structural data of the proteins for ligand generation were
obtained from the Protein Data Bank (PDB). A kinase (the
discoidin domain receptor type 1 (DDR1) kinase) (PDB ID:
3ZOS)53 is present. Table 1 lists the SMILES vocabulary used
in this study. This vocabulary includes “&” and “\n” as start
and end symbols, respectively.
Objective Functions. De novo drug design attempts to

create structurally novel lead compounds with desired
properties, such as affinity with the target protein, solubility,
and membrane permeability. In this research, the docking
score, QED, and toxicity probability were set as objective
functions.
The docking score evaluates the binding energy between

molecules and the target protein. The lower the binding energy
is, the better the binding of the molecule to the target protein.

The same is true of the docking score on the binding energy.
However, when applied to the reward, the higher the reward
calculated from the docking score is, the better it could be. The
reward function of the docking score is shown in eq 7

r
S

S
(DS( ) DS ) 0.1

1 (DS( ) DS ) 0.1docking
BASELINE

BASELINE
= *

+ | * | (7)

In eq 7, DS(S) represents the current docking score, and
DSBASELINE represents the base score for each protein; in this
research, it is 0. This function was inspired by SBMolGen.26

This function is monotone-increasing. Thus, this function does
not sort the docking scores.
The QED27 evaluates the drug-likeness of generated

molecules on a scale from 0 to 1. The higher the score, the
more likely the molecule will become a drug. The reward
function of the QED score is as follows (eq 8).

r SQED( )QED = (8)

The eToxPred45 system estimates the toxicity probability of
generated molecules on a scale from 0 to 1. The higher the
score, the more harmful it is for people to take the molecule.
The reward function of the toxicity probability is shown below
(eq 9).

r P S1 ( )tox etoxpred= (9)

where Petoxpred is the toxicity probability estimated using the
eToxPred system. The prediction model for the eToxPred
system was retrained using the eToxPred-provided data set for
compatibility.
The SAscore25 evaluates the synthesis accessibility of

generated molecules on a scale from 1 to 10. A better SAscore
represents a more difficult synthesis. This research uses the
SAscore as a filter instead of the final evaluation. The threshold
value for the SAscore was 3.5.
Docking Simulations. To evaluate the binding affinity

toward the targeted protein, Mothra opted for AutoDock
Vina.46 After the protein structure was obtained from PDB,
hydrogen atoms were added to the structure via AutoDock
tools. The binding pocket of the targeted protein was defined
as the rectangular prism set up to completely cover the ligand,
starting from the same center as the ligand registered in the
PDB. “Exhaustiveness” in the AutoDock Vina options was set
to 1 because Mothra must perform docking simulations as
many times as the number of compounds generated. The 3D
conformations of the generated molecules were transformed by
Open Babel54 Open Babel, which generated a single conformer
or isomer per ligand by selecting the lowest energy.
Main Search Setting. Before the main search is executed

using MOMCTS, the RNN generator must be trained. In the

Table 1. SMILES Vocabulary

SMILES description

Atom C,c,o,O,N,F,n,S,s,Br,I,P
Bonds - = # $:/\
Functional group [C@@H], [O-], [C@H], [NH+], [C@], [nH],

[NH+2], [C@@], [N+], [nH+], [S@], [N-],
[n-], [OH+], [NH-], [P@@H], [P@@], [PH2],
[o+], [CH2-], [CH-], [SH+], [O+],
[S-], [S+], [S@@+], [NH3+], [n+].
[S@@], [P@], [P+], [PH], [s+], [PH+]

Terminator \n
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main search, Mothra searched for 14 days on a computer
including two Intel Xeon E5−2680 V4 processors and four
NVIDIA Tesla P100 GPUs. A tool that selects molecules by
considering a searched chemical space is available on the same
GitHub link running on the Docker system.

Metrics. To assess the quality of Mothra as a molecular
optimizer, the following metrics, which are often used in
evaluating molecular generative models were calculated. The
duplication ratio is the rate at which the generated molecules
are the same (even if their SMILES representations differ).

Figure 3. Population of molecules produced for each metric for compound generation by targeting DDR1 kinase (PDBID: 3ZOS). Figure (a), (b),
and (c) show the population of molecules in Docking score, QED, and toxicity probability, respectively.

Figure 4. Scatter plot of Pareto front. Figures (b),(c), and (d) draw the relevance between the docking score and QED, QED and the toxicity
probability, and toxicity probability and the docking score, respectively. Green crosses correspond to known molecules binding to the target protein
registered in the ChEMBL database. The colors of dots correspond to timesteps. Pareto fronts were calculated when 100, 500, 1000, and 2664
molecules were generated.
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The novelty55 is the ratio of valid and unique molecules absent
in the training data set, provided in ChemTS in this case. The
internal diversity is the mean over the Tanimoto similarity
between the generated molecules.56 The uniqueness is the
ratio of the number of valid and unique molecules.

■ RESULTS
In this experiment, we validated the performance of Mothra’s
multiobjective molecular generation using DDR1 kinase (PDB
ID: 3ZOS) as the target protein. Potatinib, the cocrystal ligand
of 3ZOS, revealed a docking score of −9.4 kcal/mol.
Figure 3 shows the distribution of generated molecules in

each objective function. In the following figures, because the
docking score axis shows raw values, lower values indicate
stronger binding. Each distribution on each axis is a single-peak

distribution with broad bases on both sides of the peak;
therefore, Mothra accomplished a broad search.
Figure 4a shows the docking score, QED, and toxicity

probability of the optimized compounds for DDR1 kinase.
Figure 4b−d shows the two-dimensional point clouds obtained
by projecting the three-dimensional point cloud shown in
Figure 4a onto the plane of the two objective functions. As
time passed, a search was carried out to increase the HV,
resulting in better molecules. Some generated molecules are
optimized beyond known ligands registered in the ChEMBL
database. However, even in the Pareto front, some molecules
have a low value in one index despite having high values in
others. These molecules are considered to be weak Pareto
optimal solutions. Such solutions are inevitably included
during the calculation of the Pareto front; however, they can

Figure 5. Generated molecules with DDR1 kinase and their docking poses. Figure (a) shows the first generated molecule and Figure (b) to (d)
show molecules in the last Pareto front with DDR1 kinase and their docking poses. The list [A, B, C] shows the evaluation score on each caption. A
corresponds to the docking score [kcal/mol], B to the QED score, and C to the toxicity probability.

Table 2. Metrics for Assessing the Molecular Generative Modelsabc

Method PDBID Validity Uniqueness Internal Diversity

MOO−DENOVO39 3B7E 0.995 0.986 0.733
DeLA-DrugSelf41 6KPC 1.000 0.802 0.84
Mothra 3ZOS 0.735 ± 0.00496 0.976 ± 0.00712 0.886 ± 0.00142

aThe data of existing methods are referred to in each paper. bThe PDBID column shows the PDBIDs of the target protein. cMothra was run five
times, so the results are shown in both means and s.d.s.

Figure 6. Relevance of the docking score with EGFR (target) protein and QED or toxicity index. Red points show the top 10 molecules in terms of
DScore. Blue points show the other molecules.
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easily be removed by filtering after generation. All of the
SMILES-validly generated molecules are reported in the
Supporting Information.
After filtering, we selected some drug candidates from the

generated molecules. Figure 5 show generated molecular
structures with their objective function values and docking
poses. The figures show that Mothra accurately generated
molecules in the optimal direction. These experiments were
performed with the objective function of binding affinity, so
these molecules were appropriately bound to the pocket in the
targeted protein surfaces. Comparing Figure 5b to Figure 5c,
the docking score and QED were improved, but the toxicity
probability was maintained. This result indicates that Mothra
captured the trade-off relationship by lying on the objective
functions.
The percentage of duplicates was 0.054 0.0041± . The

novelty is 1.0 0.0± . The other metrics are shown in Table 2.

From the result in the Internal Diversity, Mothra generated
diverse molecules.
To evaluate Mothra, we experimented with ChemTSv2.31

Following this study, we set EGFR as the target protein. The
other parameters were ERBB2, Abelson tyrosine-protein
kinase, proto-oncogene tyrosine-protein kinase, lymphocyte-
specific tyrosine-protein kinase, platelet-derived growth factor
receptor beta, vascular endothelial growth factor receptor 2,
and ephrin type-B receptor 4, set as low-affinity proteins.
Additionally, we developed solubility, permeability, metabolic
stability, SAscore, and QED as objective functions to be
maximized, as well as toxicity as a function to minimize. We
made a configuration file based on the template file provided in
the GitHub repository.57 We changed the duration time to 336
h (14 days) in the “setting_dscore.yaml” file because we
observed the molecules that were generated after running for
14 days (Figure 6). The experiment was run on a computer
with one Intel Xeon Gold 5318Y CPU and one NVIDIA RTX

Figure 7. Distribution of compounds generated by single-objective optimization. The docking score toward DDR1 kinase was used as the objective
function.

Figure 8. Distribution of compounds generated by MOO. The docking score toward DDR1 kinase, QED, and toxicity probability were used as the
objective function.
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4090 GPU. From the plots, ChemTSv2 did not correctly
capture the Pareto front, dropping from the estimated Pareto
front. Furthermore, ChemTSv2 did not suggest the Pareto
front but suggested molecules following the DScore reward.
ChemTSv2 hid the trade-off relationship in suitable molecules
and may lead to a misinterpretation of the results. Therefore,
Mothra is a superior method.

■ DISCUSSION
To verify the effectiveness of MOO, we compared the
distribution of compounds generated by single-objective and
MOO. For compatibility with existing code, especially in
modules for the Pareto front calculation engine, we set the
affinity and constant function as the objective functions in the
single-objective optimization, and the affinity, QED, and
toxicity probability as the objective functions in the MOO,
as in the experiment. We ran five 14-day experiments. We show
the result of one experiment. Figures 7 and 8 show the
distribution of each objective function. In single-objective
optimization (SOO), the compounds improved only in affinity
but remained low in the other indices, viz., QED and toxicity
probability. However, in MOO, good compounds were
generated in terms of each index. In all experiments, the
number of generated molecules was about 100. The less comes
from the character of MCTS. The MCTS digs the local
minima straightly. In SOO, other leaves in the search tree
might not be chosen because obtaining a high reward in the
binding affinity is difficult in the small ligands. In MOO,
however, MOMCTS could consider other objectives in every
search step. Therefore, MOO can generate compounds with
the desired properties in drug discovery scenarios more
effectively than single-objective optimization.
It is essential to note the number of objective functions.

Because this is an MOO, there is no theoretical limit to the
number of objective functions that can be used simultaneously.
However, if the number becomes too large, we cannot
efficiently search a vast chemical space. Optimization problems
with four or more objective functions are called “many-
objective” problems because of their complexity.58 To avoid
this problem, limitations on the properties of molecules are
imposed after the generation system. Using a threshold, the
generation system keeps its performance, and the probability of
obtaining the desired molecules is higher.
As shown by the above results, Mothra successfully

generated molecules in the desired direction in the multi-
objective optimization. Most of the generated molecules were
optimized beyond the first generated molecule for the target
protein.
It is worthwhile to briefly consider the differences between

the general distribution of molecules, the so-called chemical
space, and the generated molecules. Figure 9 shows the
differences between the two by overlaying images. Though the
generator of Mothra was trained in the distribution of the
ZINC (black), Mothra generated in the different molecular
distributions. Mothra can optimize molecules with Pareto
MOMCTS over a fixed RNN generator. Because Mothra starts
with a single root node, all generated molecules are found by
RNN and MOMCTS. Furthermore, the RNN was a fixed
generator. MOMCTS finds desired molecules from the general
chemical space with the information on having generated
molecules. Using Mothra, the user can search for compounds
with the desired properties in the chemical space.

The RNN generator learns the grammar of SMILES, not the
entire structure of the compound. For chiral carbons, we
observed cases in which absolute configurations were explicitly
generated, and cases in which they were not. In addition, the
RNN sometimes described meaningless absolute configura-
tions by adding “@” to achiral carbon atoms. Therefore, all
compounds in Figure 5 are shown without the absolute
configuration. However, transformers, which are deep neural
network generative models that are larger than RNNs, have
difficulty recognizing chirality in molecules.59 Thus, changing
the generator to use something other than RNNs or
transformers is an issue for the future.

■ CONCLUSION
In this study, we developed a multiobjective molecular
generation system, Mothra, that simultaneously optimizes
multiple properties using the Pareto optimization. Our method
is intended for use in the initial steps of drug discovery. Thus,
only objective functions and target proteins were set. Our
method provided the desired molecules. In this experiment,
there were three objective functions and a single constraint:
affinity(docking score), drug-likeness, and toxicity, as well as
synthetic accessibility. To evaluate our method, a protein was
set as a target, and the generated molecules were checked in
the chemical space. The generation results were acceptable,
based on the distribution of the molecules. Compared to a
single-objective molecular generation system, Mothra gener-
ated molecules in the desired direction using multiple objective
functions. Furthermore, Mothra captured the Pareto frontier of
the reward space while generating molecules. The previous
multiobjective molecular generative model could not handle
the Pareto optimization because its objective function is a
linear combination of all objective functions. These results
indicate that Mothra could be applied in practical drug
discovery. After structural information about target proteins is
obtained, Mothra can generate seeds for drug discovery. To
enhance the practical usability of Mothra, it would be desirable
to allow users to define objective functions according to their
specific needs flexibly.
There are still limitations to this method. In MOO, there is

no restriction on the number of functions used for evaluation,

Figure 9. Distribution of compounds. The black and green hills
indicate the distributions of ZINC and all generated molecules,
respectively. The red dots indicate the molecules belonging to the
Pareto front. The Docking Score is normalized (larger is better).
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but there are practical problems. In this study, we set three
evaluation functions and optimized them simultaneously, but
there may be more than 50 compounds that belong to the
Pareto front. The population of Pareto frontiers causes
problems extending the solution space and resulting in longer
search time. Furthermore, increasing the number of evaluation
functions increases the number of things that can be
considered, but increases the number of compounds that
belong to the Pareto front, making it difficult to proceed with
the search. On the other hand, if the number of evaluation
functions is reduced, the number of compounds belonging to
the Pareto front will be shrunk, but evaluation items that
should be considered in drug discovery cannot be considered.
When increasing the number of evaluation functions, it is also
necessary to consider the correlation between evaluation
functions. When considering the mapping of compound space,
each axis should be independent. Therefore, the absolute value
of the correlation coefficient between evaluation functions
should be closer to 0. The correlation coefficient between
QED and toxicity using ChEMBL60 as a population was 0.24,
so those two evaluation functions were adopted. When setting
more evaluation functions than this, introducing an evaluation
function with a low correlation for both QED and toxicity has
the advantage of being able to consider more evaluations than
the cost of having a large number of evaluation functions.

■ ASSOCIATED CONTENT
Data Availability Statement
The source code and pretrained model for Mothra, developed
in this study, along with the Docker image for the Pareto front
explorer and compound picker, designed to streamline the
selection and visualization of optimal chemical compounds, are
released under the GNU General Public License v3.0 and
available at https://github.com/sekijima-lab/Mothra.
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