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Abstract
Objective  This study aimed to comprehensively review the effects of repetitive peripheral magnetic stimulation 
(rPMS) alone or in combination with repetitive transcranial magnetic stimulation (rTMS) on improving upper limb 
motor functions and activities of daily living (ADL) in patients with stroke, and to explore possible efficacy-related 
modulators.

Methods  A literature search from 1st January 2004 to 1st June 2024 was performed to identified studies that 
investigated the effects of rPMS on upper limb motor functions and ADL in poststroke patients.

Results  Seventeen studies were included. Compared with the control, both rPMS alone or rPMS in combination 
with rTMS significantly improved upper limb motor function (rPMS: Hedge’s g = 0.703, p = 0.015; rPMS + rTMS: Hedge’s 
g = 0.892, p < 0.001) and ADL (rPMS: Hedge’s g = 0.923, p = 0.013; rPMS + rTMS: Hedge’s g = 0.923, p < 0.001). However, 
rPMS combined with rTMS was not superior to rTMS alone on improving poststroke upper limb motor function and 
ADL (Hedge’s g = 0.273, p = 0.123). Meta-regression revealed that the total pulses (p = 0.003) and the number of pulses 
per session of rPMS (p < 0.001) correlated with the effect sizes of ADL.

Conclusions  Using rPMS alone or in combination with rTMS appears to effectively improve upper extremity 
functional recovery and activity independence in patients after stroke. However, a simple combination of these two 
interventions may not produce additive benefits than the use of rTMS alone. Optimization of rPMS protocols, such as 
applying appropriate dosage, may lead to a more favourable recovery outcome in poststroke rehabilitation.

Keywords  Stroke, Upper extremity, Peripheral magnetic stimulation, Transcranial magnetic stimulation, Cortical 
excitability
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Introduction
Repetitive peripheral magnetic stimulation (rPMS) is a 
non-invasive therapeutic approach for facilitating motor 
recovery following neurological diseases, which was first 
proposed for the purpose of neurological rehabilitation 
in 1996 [1]. The rPMS technique employs focused mag-
netic pulses over various peripheral targets (e.g., muscles, 
nerves, or spinal roots) [2], and this technique induces 
repetitive contraction-relaxation cycles by depolarizing 
neurons [3] and then provides proprioceptive inputs to 
afferent fibers [4–7], therefore modulating sensorimotor 
plasticity. In the literature, rPMS is considered a unique, 
promising neuromodulation technique due to its advan-
tage of providing more deeply penetrating, focused, pain-
less stimulation than conventional electrical stimulation 
provides [5, 8, 9].

In 2023, rPMS was delivered using a transcranial mag-
netic stimulator, which was originally used for repetitive 
transcranial magnetic stimulation (rTMS), and has been 
approved by the US Food and Drug Administration for 
relieving chronic pain [10]. In poststroke rehabilitation, 
rPMS is different from rTMS in the neural mechanism 
- rTMS has been extensively used to facilitate motor 
recovery by modulating cortical plasticity in a top-down 
approach [11] whereas rPMS is adopting a bottom-up 
approach through recruitment of proprioceptive affer-
ents thus up-regulate the excitability of the sensorimotor 
areas via the ascending pathway [2, 6]. Therefore, com-
bining central and peripheral magnetic stimulation may 
produce a synergistic effect on the facilitation of motor 
recovery after stroke [12].

The effects of rPMS for motor function of the hemi-
plegic upper extremity or ADL after stroke have been 
reviewed in previous systematic reviews, which gener-
ally have reported positive effects of rPMS [2, 8, 13–18]. 
However, these reviews are not free from methodological 
limitations. Firstly, a few reviews did not perform meta-
analysis to quantitively evaluate the treatment effects [2, 
14, 18]. Secondly, in the previous meta-analytic reviews, 
no detailed subgroup analysis or meta-regression was 
performed to identify the influence of different stimula-
tion protocols, patient demographics, or patients’ clini-
cal profiles on the treatment effect sizes [8, 13, 15, 16]. 
Thirdly, some reviews covered a wide range of neuro-
logical disease conditions, so the specific effect of rPMS 
in stroke rehabilitation was still not conclusive [2, 17]. 
Lastly, these reviews did not systematically investigate 
the effect of rPMS alone or in combination with rTMS to 
elaborate the possible synergistic effect of the combined 
interventions [2, 8, 13–18].

Therefore, a comprehensive understanding of clinical 
effectiveness as well as neural mechanisms underlying 
the therapeutic benefits of using rPMS alone or in combi-
nation with rTMS in poststroke rehabilitation is needed. 

Here, our review aimed to: (1) investigate the effects of 
these two interventional methods (using rPMS alone or 
in combination with rTMS) on upper limb motor func-
tion and ADL in poststroke patients, using meta-analysis; 
(2) identify any significant relationship between various 
rPMS parameters, patient demographics, clinical char-
acteristics, and effect sizes using subgroup analyses and 
meta-regression; and (3) clarify the mechanisms under-
lying the therapeutic effects of rPMS by qualitatively 
assessing rPMS studies using neuroimaging and/or neu-
rophysiological outcomes.

Methods
This study was reported following the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
statements (PRISMA) [19]. This review has been prospec-
tively registered in PROSPERO (ID: CRD42024547676).

Search strategy
The literature search was conducted from 1st January 
2004 to 6th February 2024, using databases including 
PubMed, MEDLINE, Web of Science, and EMBASE. 
The search was based on the Title/Abstract using the 
following keywords: “stroke” AND “upper limb” AND 
“peripheral magnetic stimulation.” A logical combination 
of keywords can be found in Table S1. Medical Subject 
Heading Terms were applied when searching PubMed. 
Two reviewers (YW and YS) independently scanned all 
titles, read the abstracts, and identified relevant studies. 
A manual screening was also conducted to identify tar-
get articles in the reference lists of previous systematic 
reviews. Before submitting our manuscript, an updated 
search from 7th February to 1st June 2024 on PubMed 
was additionally performed to identify newly published 
articles.

Selection criteria and data extraction
Studies were included in this review if they satisfied all 
of the criteria listed below. Population: (P) Studies that 
recruited adult participants diagnosed with stroke. 
Intervention (I): Interventions that used rPMS applied 
to muscles and/or peripheral nerves of upper limbs, 
or cervical spinal nerves, or in combination with rTMS 
applied to the primary motor cortex (M1) cortical rep-
resentations of the proximal or distal upper extremity; 
rPMS was delivered using a magnetic stimulator, includ-
ing a transcranial magnetic stimulator, e.g., MagVenture 
and MagStim, or other magnetic stimulation devices, 
e.g., PathleaderTM. Comparison (C): Control with sham 
or no stimulation. Outcomes (O): Studies that provided 
at least one outcome assessing upper limb motor func-
tion or ADL (for motor functions of the hemiplegic 
upper limb, the Fugl-Meyer Assessment-Upper Extrem-
ity (FMA-UE) was selected as the primary outcome in 
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our meta-analysis [20]). For measuring ADL, the modi-
fied Barthel Index (MBI) was considered; if MBI data 
were not available, the Barthel Index (BI) or the Func-
tional Independence Measure (FIM) were used because 
both instruments are similar to the MBI [21, 22]. Study 
design (S): Randomized or nonrandomized controlled 
trials were included in quantitative analysis, while studies 
without control groups were qualitatively described.

Studies meeting any of the following criteria were 
excluded: (1) the study only enrolled participants with 
other neurological disorders excluding stroke; (2) the 
study was a case study with a single participant; (3) the 
study was published as conference abstracts, disserta-
tions, or in books; or (4) the study was not published in 
English language.

To elaborate the effect of using rPMS alone or in com-
bination with rTMS, we performed the following three 
subgroup meta-analyses:

Group A  rPMS alone versus sham or no stimulation.

Group B  rPMS combined with rTMS versus sham or no 
stimulation.

Group C  rPMS combined with rTMS versus rTMS alone.

Data extraction and quality assessment
Relevant data and methodological quality of the included 
articles were extracted and assessed by two authors 
independently (YW and YS). Furthermore, we used the 
Physiotherapy Evidence Database (PEDro) rating scale to 
appraise the methodological quality of controlled trials 
included in the meta-analysis [23]. Any discrepancy was 
resolved through discussion with a third reviewer (JZ).

Data analysis
Quantitative analysis was performed using the Compre-
hensive Meta-Analysis, version 3.0. In absence of meta-
analyzable data (i.e., mean and standard deviation), we 
first contacted the corresponding authors via email to 
obtain raw data. In the case of non-responsive authors, 
we transferred the reported data (such as median/inter-
quartile ranges) to mean and SD, using previously vali-
dated methods [24, 25]. The change scores of outcomes 
(post minus pre) were included in the calculation of 
effect sizes in the form of Hedges’ g, which corrected the 
possible bias of the small sample sizes [26]. The Higgins 
I² statistic was used to evaluate the level of heterogeneity 
between studies [27]. A random-effects model was used 
for all meta-analyses [28].

Meta-regression analysis was performed to explore any 
associations between characteristics at study level (e.g., 
time since stroke, baseline function level, type of stroke, 
demographics) or rPMS parameters (e.g., frequency, total 

number of delivered pulses, number of pulses per ses-
sion, doses per stimulation site, number of training ses-
sions) and effect sizes of upper limb motor function and 
ADL [29]. Additionally, possible publication bias was sta-
tistically examined using the Egger’s test [30]. The level of 
significance was set at two-tailed p < 0.05 for all statistical 
analyses, except that p < 0.10 in the Egger’s test [31].

Results
Study search results
A total of 17 studies involving 657 participants were 
included in our systematic review. The process of study 
selection was shown in Fig.  1. Finally, we included five 
trials with 186 subjects which focused on the combined 
effects of rPMS and rTMS [12, 32–35] and 12 studies 
with 471 subjects investigating the effect of rPMS alone 
[36–47], 12 of which were included in our meta-analysis 
[12, 32–34, 36–38, 40, 43–45, 47]. The characteristics of 
the included studies are presented in Table 1.

Methodology quality assessment
The rating score on the PEDro scale ranged from 5 to 
10, with a mean score of 8.08, which indicated that the 
included studies had moderate to high methodological 
quality (Table S2). In addition, after evaluating the fund-
ing sources for the studies included in the review, we 
found no evidence that funding agencies influenced the 
interpretation of results.

Stimulation protocols
rPMS-alone stimulation protocols
In these studies, the number of rPMS pulses per stimula-
tion target per training session ranged from 600 to 6000. 
High-frequency (≥ 5  Hz) rPMS protocols were used in 
all included studies, ranging from 5  Hz [43, 44], 10  Hz, 
20 Hz [37, 38, 43, 46], 25 Hz [45], 30 Hz [36, 40–42, 47] 
and theta burst (50  Hz bursts repeated at 5  Hz) [39]. 
Regarding intensity, a supra-threshold intensity (which 
can evoke visible muscle contraction or significant distal 
movement) was most frequently used [36–40, 42–46], 
while some studies applied increasing intensity until any 
further increase induced pain or discomfort [41, 47].

Combined stimulation protocols
Five studies investigated the combined stimulation proto-
cols (Table S3), with four of these studies using high-fre-
quency rTMS [32–35] and the fifth using low-frequency 
rTMS [12]. Among the four studies using high-frequency 
rTMS, three applied excitatory stimulation to the ipsile-
sional hemisphere [32–34], while one applied it to the 
contralesional hemisphere due to participants having 
undergone contralateral seventh cervical nerve transfer 
surgery [35].
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High-frequency (≥ 5 Hz) rPMS was applied in these five 
studies [12, 32–35]. Four studies applied rPMS and rTMS 
sequentially [12, 33–35], while one study synchronized 
the rPMS and rTMS in a paired, associative-stimulation 
manner [32]. In terms of rPMS intensity, when used in 
conjunction with rTMS, a muscle-contraction threshold 
was commonly applied [12, 33–35], while one study used 
a lower stimulation intensity with reference to the rest-
ing motor threshold (RMT) measured by TMS (i.e., 80% 
RMT [32]).

Upper extremity motor impairment
A total of 12 studies with 16 units of analysis were 
included in the meta-analysis of FMA-UE scores [12, 
32–34, 36–38, 40, 43–45, 47]. When compared to the 
control group, the results of the meta-analysis (as shown 
in Fig.  1) showed that significant therapeutic effects 
were found in interventions both with rPMS alone and 
with rPMS in combination with rTMS (rPMS alone: 
Hedges’ g = 0.703, p = 0.015, I²=85.06; rPMS + rTMS: 
Hedges’ g = 0.892, p < 0.001, I²=0.00; Fig. 2), and the over-
all significance in each group was robust to leave-one-
out sensitivity analysis (rPMS alone: Hedges’ g from 
0.139 to 1.267; rPMS + rTMS: Hedges’ g from 0.475 to 
1.308). Additionally, regarding the promotion of upper 
limb function recovery, there was not a statistically sig-
nificant difference after combined stimulation protocols 

were compared to the use of rTMS alone (Hedges’ 
g = 0.273, p = 0.123, I²=0.00). No significant publica-
tion bias was observed according to the result of Egger’s 
test (rPMS + rTMS vs. control: p = 0.64; rPMS + rTMS 
vs. rTMS: p = 0.40), except for the rPMS-alone group 
(p = 0.05) (Figures S1–S3).

Due to the limited number of articles, we only per-
formed meta-regression on the rPMS subgroup. Using 
univariate meta-regression, we failed to find any signifi-
cant predictors regarding the effect size of rPMS inter-
vention on upper limb motor function (Table S4).

Activities of daily living
A total of six studies with 10 units of analysis were 
included in the meta-analysis of ADL [12, 32–34, 36, 
38]. The results of meta-analysis showed that both rPMS 
alone and rPMS in combination with rTMS showed more 
significant benefits than the control group in improv-
ing the activity levels of the participant (rPMS: Hedges’ 
g = 0.923, p = 0.013; rPMS + rTMS: Hedges’ g = 0.923, 
p < 0.001; Fig.  3), and the significant results were robust 
to leave-one-out sensitivity analysis (rPMS: Hedges’ g 
from 0.198 to 1.647; rPMS + rTMS: Hedges’ g from 0.505 
to 1.34). However, rPMS combined with rTMS was not 
more effective than the use of rTMS alone (Hedges’ 
g = 0.278, p = 0.117). There was no evidence of publication 
bias in meta-analyses of all subgroups (Figures S4–S6).

Fig. 1  Flowchart of literature search
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Fig. 2  Forest plots of the pooled outcome (FMA-UE) of upper extremity motor impairment. Group A: Hedges’ g = 0.703, p = 0.015; I²=85.06%; Egger’s test: 
p = 0.05; Group B: Hedges’ g = 0.892, p < 0.001; I²=0.00%; Egger’s test: p = 0.64; Group C: Hedges’ g = 0.273, p = 0.123; I²=0.00%; Egger’s test: p = 0.40)
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Univariate meta-regression revealed that total pulses 
(p = 0.003), number of pulses per session (p < 0.001), total 
pulses per site (p = 0.005) and number of pulses per site 
per session (p < 0.001) were significant predictors regard-
ing the benefits from rPMS intervention on ADL (Table 
S5). However, from the scatter plots, the significant find-
ings seemed to be driven by the study by Fawaz et al. 
After removing this study, number of pulses per session 

(p = 0.029) remained a significant predictor of effect sizes 
of ADL (Figure S7).

Upper limb muscle spasticity
Due to insufficient data (< 3 studies in each subgroup), we 
were not able to conduct a quantitative analysis of muscle 
spasticity. Among six controlled studies, four revealed 
positive effects on relieving spasticity [12, 39, 43, 45], 
including one study combining rPMS and rTMS [12] and 

Fig. 3  Forest plots of the pooled outcomes. Activities of Daily Living (ADL): Group A: Hedges’ g = 0.923, p = 0.013, I²=77.19; Egger’s test: p = 0.29; Group B: 
Hedges’ g = 0.923, p < 0.001, I²=0; Egger’s test: p = 0.15; Group C: Hedges’ g = 0.278, p = 0.117, I²=0; Egger’s test: p = 0.88)
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three studies using rPMS alone [39, 43, 45], while two 
studies reported no significant effects following treat-
ment with rPMS alone [38, 47]. Additionally, two single-
group studies, one of which used rPMS alone [46] and 
the other of which applied combination intervention [35], 
reported positive effects regarding reduced spasticity.

Neuromodulatory effects
A total of three studies evaluated changes in neuro-
imaging or neurophysiological outcomes, using elec-
troencephalography (EEG) [43], functional magnetic 
resonance imaging (fMRI) [12], and TMS-based out-
comes [32]. Qin et al. demonstrated that the cortical sen-
sorimotor area and cerebellum were activated following 
the combined use of low frequency rTMS and rPMS, 
compared to sham stimulation. Furthermore, Liang et al. 
reported a significant decrease of short interval intracor-
tical inhibition (SICI) in the contralesional hemisphere 
induced by rPMS associated with high frequency rTMS. 
Similarly, event-related desynchronization (ERD, an 
index of cortical activation) in contralesional hemisphere 
was decreased after a single rPMS session [43]. In sum-
mary, rPMS alone or in combination with rTMS seems to 
be able to modulate the bilateral hemispheric activities in 
poststroke brains.

Discussion
The main results of meta-analysis revealed that (1) rPMS 
alone and rPMS combined with rTMS both significantly 
improved upper limb motor function recovery and activ-
ities independence in poststroke patients, as compared 
to the control; (2) the number of stimulation pulses per 
session and total pulses were positively correlated with 
the effect size of rPMS on ADL, indicating that the effect 
of rPMS may demonstrate a dose-dependent outcome; 
and (3) no statistical evidence was found to support 
the hypothesis that a combined use of rPMS and rTMS 
is more effective than rTMS alone on improving motor 
function and ADL.

Despite this, the parameters and timing of the rPMS 
may affect the treatment effect—for example, frequency, 
doses, targets, and time since stroke could all play roles 
in the treatment’s effectiveness [48, 49]. In the present 
review, the dose of rPMS pulses appeared to have a sig-
nificant impact on the effects in activities participation. 
Behavioral changes could result from improved neuro-
plasticity induced by interventions in stroke rehabilita-
tion [50]. Similarly, Gallasch et al. also revealed that a 
total number of 15,000 single pulses of rPMS drives 
sensorimotor cortical excitability over the contralateral 
M1 and S1, but this effect was not observed after deliv-
ering a low dose of 6000 stimulation pulses [51]. It may 
be because the effect of rPMS on ADL was dose-depen-
dent and that therefore the insufficient dose was not 

strong enough to elicit cortical plasticity changes. This 
was parallel with the dose-dependent effect of rTMS 
reported by previous studies. A higher dose of rTMS 
was also associated with a higher level of cortical excit-
ability and a greater increase in clinical effectiveness in 
poststroke motor rehabilitation than lower dose proto-
cols [52–54]. Therefore, non-invasive neuromodulation 
therapy, applied over either the peripheral or central ner-
vous system, appears to elicit a dose-dependent response 
in poststroke rehabilitation. Additionally, we observed 
numerically larger effect sizes in the two studies involv-
ing acute stroke patients (within one month after stroke 
onset) [38, 44]. However, our regression analysis using 
the mean months after stroke did not reveal an impact of 
chronicity on recovery outcomes. This may be due to the 
fact that many of the included studies featured a mixed 
stage of stroke patients, which may have diluted the 
effects associated with chronicity and obscured potential 
trends in recovery outcomes.

However, contrary to our expectation, after pooling the 
sample sizes of multiple experiments, we found that there 
were no stronger synergistic effects when rPMS was 
combined with rTMS, compared to using rTMS alone. 
Firstly, in these included studies the protocols of rPMS 
combined with rTMS varied. Most of studies delivered 
the rPMS and rTMS one after the other, rather than using 
paired associative stimulation [12, 33, 34], i.e., a paired, 
central-associated, peripheral stimulation involves deliv-
ering a single pulse of rTMS to the primary motor cortex 
(M1) and a single pulse of rPMS to the afferent fibers up 
to the primary somatosensory cortex (S1), alternately. In 
contrast to the effect of separate delivery of the two stim-
ulations, the timing-dependent effect of the stimulation 
relative to the afferent input may be very different. Previ-
ous studies have revealed that the form of paired associa-
tive stimulation may enhance its efficacy on modulating 
M1 excitability in healthy subjects [55, 56]. Also, PAS 
had also been reported as effective in improving motor 
learning and accelerating motor recovery in patients with 
stroke by inducing associative neuroplasticity and reduc-
ing intracortical inhibition [32, 57, 58]. Secondly, the non-
inferiority of the combined treatment may be because 
these two treatments may have similar effect mechanisms 
on improving motor performance by mediating similar 
cortex region plasticity and reducing intracortical inhibi-
tion [12, 51, 57, 59]. Previous studies have indicated that 
rTMS was very effective in facilitating motor relearning 
and recovery as well as ADL in stroke rehabilitation by 
modulating M1 excitability [60–62]. Therefore, the syn-
ergistic effects of combining the two are not additive. The 
effect of rTMS on cortical plasticity may have already 
reached a ceiling effect, so that combining it with rPMS 
cannot further increase its clinical effectiveness. Overall, 
whether rPMS was used alone or in combination with 
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rTMS, the optimal matching protocols, regarding targets, 
dose, frequency, intensity and duration, timing, and last-
ing effects need to be explored further.

Limitations
This review was not free from limitations. Firstly, due 
to heterogeneous quality of the rPMS intensity used in 
different studies, we performed a qualitative analysis. 
Because most of them applied supra-threshold stimula-
tion, subgroup analysis was not performed. Secondly, 
although we analyzed the potential relationship between 
stimulation parameters and clinical outcomes, the cur-
rent review was unable to identify clinical cutoff values 
for effective stimulation doses and the number of treat-
ment sessions due to the limited number of included 
studies. Thirdly, substantial heterogeneity and publica-
tion bias was identified in the rPMS-only intervention 
subgroup, probably due to the small sample sizes, the 
clinical characteristics of participants, and inconsistent 
rPMS protocols and methodologies among the stud-
ies. We hope that future large-scale studies will be more 
transparent in their reporting.

Conclusions
rPMS alone or in combination with rTMS can effectively 
promote upper-extremity motor functional recovery and 
activity independence in poststroke patients, indicat-
ing that both bottom-up and top-down approaches are 
equally useful. Simple combination use may not neces-
sarily produce better therapeutic effects than using rTMS 
alone, although developing rPMS protocols with higher 
doses may generate better responsiveness. Although 
rPMS is able to modulate the excitability and intracorti-
cal inhibitory activities of both hemispheres, its specific 
underlying mechanism remains largely unclear, awaiting 
further investigation.
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