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review and meta-analysis
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Abstract

Objective This study aimed to comprehensively review the effects of repetitive peripheral magnetic stimulation
(rPMS) alone or in combination with repetitive transcranial magnetic stimulation (rTMS) on improving upper limb
motor functions and activities of daily living (ADL) in patients with stroke, and to explore possible efficacy-related
modulators.

Methods A literature search from 1st January 2004 to 1st June 2024 was performed to identified studies that
investigated the effects of rPMS on upper limb motor functions and ADL in poststroke patients.

Results Seventeen studies were included. Compared with the control, both rPMS alone or rPMS in combination
with rTMS significantly improved upper limb motor function (rPMS: Hedge's g=0.703, p=0.015; rPMS +rTMS: Hedge's
g=0.892, p<0.001) and ADL (rPMS: Hedge's g=0.923, p=0.013; rPMS+rTMS: Hedge's g=0.923, p <0.001). However,
rPMS combined with rTMS was not superior to rTMS alone on improving poststroke upper limb motor function and
ADL (Hedge's g=0.273, p=0.123). Meta-regression revealed that the total pulses (p=0.003) and the number of pulses
per session of rIPMS (p < 0.001) correlated with the effect sizes of ADL.

Conclusions Using rPMS alone or in combination with rTMS appears to effectively improve upper extremity
functional recovery and activity independence in patients after stroke. However, a simple combination of these two
interventions may not produce additive benefits than the use of rTMS alone. Optimization of rPMS protocols, such as
applying appropriate dosage, may lead to a more favourable recovery outcome in poststroke rehabilitation.

Keywords Stroke, Upper extremity, Peripheral magnetic stimulation, Transcranial magnetic stimulation, Cortical
excitability
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Introduction

Repetitive peripheral magnetic stimulation (rPMS) is a
non-invasive therapeutic approach for facilitating motor
recovery following neurological diseases, which was first
proposed for the purpose of neurological rehabilitation
in 1996 [1]. The rPMS technique employs focused mag-
netic pulses over various peripheral targets (e.g., muscles,
nerves, or spinal roots) [2], and this technique induces
repetitive contraction-relaxation cycles by depolarizing
neurons [3] and then provides proprioceptive inputs to
afferent fibers [4—7], therefore modulating sensorimotor
plasticity. In the literature, rPMS is considered a unique,
promising neuromodulation technique due to its advan-
tage of providing more deeply penetrating, focused, pain-
less stimulation than conventional electrical stimulation
provides [5, 8, 9].

In 2023, rPMS was delivered using a transcranial mag-
netic stimulator, which was originally used for repetitive
transcranial magnetic stimulation (rTMS), and has been
approved by the US Food and Drug Administration for
relieving chronic pain [10]. In poststroke rehabilitation,
rPMS is different from rTMS in the neural mechanism
- r'TMS has been extensively used to facilitate motor
recovery by modulating cortical plasticity in a top-down
approach [11] whereas rPMS is adopting a bottom-up
approach through recruitment of proprioceptive affer-
ents thus up-regulate the excitability of the sensorimotor
areas via the ascending pathway [2, 6]. Therefore, com-
bining central and peripheral magnetic stimulation may
produce a synergistic effect on the facilitation of motor
recovery after stroke [12].

The effects of rPMS for motor function of the hemi-
plegic upper extremity or ADL after stroke have been
reviewed in previous systematic reviews, which gener-
ally have reported positive effects of rPMS [2, 8, 13-18].
However, these reviews are not free from methodological
limitations. Firstly, a few reviews did not perform meta-
analysis to quantitively evaluate the treatment effects [2,
14, 18]. Secondly, in the previous meta-analytic reviews,
no detailed subgroup analysis or meta-regression was
performed to identify the influence of different stimula-
tion protocols, patient demographics, or patients’ clini-
cal profiles on the treatment effect sizes [8, 13, 15, 16].
Thirdly, some reviews covered a wide range of neuro-
logical disease conditions, so the specific effect of rPMS
in stroke rehabilitation was still not conclusive [2, 17].
Lastly, these reviews did not systematically investigate
the effect of rPMS alone or in combination with rTMS to
elaborate the possible synergistic effect of the combined
interventions [2, 8, 13—18].

Therefore, a comprehensive understanding of clinical
effectiveness as well as neural mechanisms underlying
the therapeutic benefits of using rPMS alone or in combi-
nation with rTMS in poststroke rehabilitation is needed.
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Here, our review aimed to: (1) investigate the effects of
these two interventional methods (using rPMS alone or
in combination with rTMS) on upper limb motor func-
tion and ADL in poststroke patients, using meta-analysis;
(2) identify any significant relationship between various
rPMS parameters, patient demographics, clinical char-
acteristics, and effect sizes using subgroup analyses and
meta-regression; and (3) clarify the mechanisms under-
lying the therapeutic effects of rPMS by qualitatively
assessing rPMS studies using neuroimaging and/or neu-
rophysiological outcomes.

Methods

This study was reported following the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses
statements (PRISMA) [19]. This review has been prospec-
tively registered in PROSPERO (ID: CRD42024547676).

Search strategy

The literature search was conducted from 1st January
2004 to 6th February 2024, using databases including
PubMed, MEDLINE, Web of Science, and EMBASE.
The search was based on the Title/Abstract using the
following keywords: “stroke” AND “upper limb” AND
“peripheral magnetic stimulation” A logical combination
of keywords can be found in Table S1. Medical Subject
Heading Terms were applied when searching PubMed.
Two reviewers (YW and YS) independently scanned all
titles, read the abstracts, and identified relevant studies.
A manual screening was also conducted to identify tar-
get articles in the reference lists of previous systematic
reviews. Before submitting our manuscript, an updated
search from 7th February to 1st June 2024 on PubMed
was additionally performed to identify newly published
articles.

Selection criteria and data extraction

Studies were included in this review if they satisfied all
of the criteria listed below. Population: (P) Studies that
recruited adult participants diagnosed with stroke.
Intervention (I): Interventions that used rPMS applied
to muscles and/or peripheral nerves of upper limbs,
or cervical spinal nerves, or in combination with rTMS
applied to the primary motor cortex (M1) cortical rep-
resentations of the proximal or distal upper extremity;
rPMS was delivered using a magnetic stimulator, includ-
ing a transcranial magnetic stimulator, e.g., MagVenture
and MagStim, or other magnetic stimulation devices,
e.g., PathleaderTM. Comparison (C): Control with sham
or no stimulation. Outcomes (O): Studies that provided
at least one outcome assessing upper limb motor func-
tion or ADL (for motor functions of the hemiplegic
upper limb, the Fugl-Meyer Assessment-Upper Extrem-
ity (FMA-UE) was selected as the primary outcome in
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our meta-analysis [20]). For measuring ADL, the modi-
fied Barthel Index (MBI) was considered; if MBI data
were not available, the Barthel Index (BI) or the Func-
tional Independence Measure (FIM) were used because
both instruments are similar to the MBI [21, 22]. Study
design (S): Randomized or nonrandomized controlled
trials were included in quantitative analysis, while studies
without control groups were qualitatively described.

Studies meeting any of the following criteria were
excluded: (1) the study only enrolled participants with
other neurological disorders excluding stroke; (2) the
study was a case study with a single participant; (3) the
study was published as conference abstracts, disserta-
tions, or in books; or (4) the study was not published in
English language.

To elaborate the effect of using rPMS alone or in com-
bination with rTMS, we performed the following three
subgroup meta-analyses:

Group A rPMS alone versus sham or no stimulation.

Group B rPMS combined with rTMS versus sham or no
stimulation.

Group C rPMS combined with rTMS versus rTMS alone.

Data extraction and quality assessment

Relevant data and methodological quality of the included
articles were extracted and assessed by two authors
independently (YW and YS). Furthermore, we used the
Physiotherapy Evidence Database (PEDro) rating scale to
appraise the methodological quality of controlled trials
included in the meta-analysis [23]. Any discrepancy was
resolved through discussion with a third reviewer (JZ).

Data analysis

Quantitative analysis was performed using the Compre-
hensive Meta-Analysis, version 3.0. In absence of meta-
analyzable data (i.e., mean and standard deviation), we
first contacted the corresponding authors via email to
obtain raw data. In the case of non-responsive authors,
we transferred the reported data (such as median/inter-
quartile ranges) to mean and SD, using previously vali-
dated methods [24, 25]. The change scores of outcomes
(post minus pre) were included in the calculation of
effect sizes in the form of Hedges’ g, which corrected the
possible bias of the small sample sizes [26]. The Higgins
I? statistic was used to evaluate the level of heterogeneity
between studies [27]. A random-effects model was used
for all meta-analyses [28].

Meta-regression analysis was performed to explore any
associations between characteristics at study level (e.g.,
time since stroke, baseline function level, type of stroke,
demographics) or rPMS parameters (e.g., frequency, total
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number of delivered pulses, number of pulses per ses-
sion, doses per stimulation site, number of training ses-
sions) and effect sizes of upper limb motor function and
ADL [29]. Additionally, possible publication bias was sta-
tistically examined using the Egger’s test [30]. The level of
significance was set at two-tailed p<0.05 for all statistical
analyses, except that p<0.10 in the Egger’s test [31].

Results

Study search results

A total of 17 studies involving 657 participants were
included in our systematic review. The process of study
selection was shown in Fig. 1. Finally, we included five
trials with 186 subjects which focused on the combined
effects of rPMS and rTMS [12, 32-35] and 12 studies
with 471 subjects investigating the effect of rPMS alone
[36—47], 12 of which were included in our meta-analysis
[12, 32-34, 36-38, 40, 43—45, 47]. The characteristics of
the included studies are presented in Table 1.

Methodology quality assessment

The rating score on the PEDro scale ranged from 5 to
10, with a mean score of 8.08, which indicated that the
included studies had moderate to high methodological
quality (Table S2). In addition, after evaluating the fund-
ing sources for the studies included in the review, we
found no evidence that funding agencies influenced the
interpretation of results.

Stimulation protocols

rPMS-alone stimulation protocols

In these studies, the number of rPMS pulses per stimula-
tion target per training session ranged from 600 to 6000.
High-frequency (=5 Hz) rPMS protocols were used in
all included studies, ranging from 5 Hz [43, 44], 10 Hz,
20 Hz [37, 38, 43, 46], 25 Hz [45], 30 Hz [36, 4042, 47]
and theta burst (50 Hz bursts repeated at 5 Hz) [39].
Regarding intensity, a supra-threshold intensity (which
can evoke visible muscle contraction or significant distal
movement) was most frequently used [36—40, 42-46],
while some studies applied increasing intensity until any
further increase induced pain or discomfort [41, 47].

Combined stimulation protocols

Five studies investigated the combined stimulation proto-
cols (Table S3), with four of these studies using high-fre-
quency rTMS [32-35] and the fifth using low-frequency
rTMS [12]. Among the four studies using high-frequency
rTMS, three applied excitatory stimulation to the ipsile-
sional hemisphere [32—34], while one applied it to the
contralesional hemisphere due to participants having
undergone contralateral seventh cervical nerve transfer
surgery [35].
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Fig. 1 Flowchart of literature search

High-frequency (=5 Hz) rPMS was applied in these five
studies [12, 32—-35]. Four studies applied rPMS and rTMS
sequentially [12, 33-35], while one study synchronized
the rPMS and rTMS in a paired, associative-stimulation
manner [32]. In terms of rPMS intensity, when used in
conjunction with rTMS, a muscle-contraction threshold
was commonly applied [12, 33-35], while one study used
a lower stimulation intensity with reference to the rest-
ing motor threshold (RMT) measured by TMS (i.e., 80%
RMT [32]).

Upper extremity motor impairment

A total of 12 studies with 16 units of analysis were
included in the meta-analysis of FMA-UE scores [12,
32-34, 36-38, 40, 43-45, 47]. When compared to the
control group, the results of the meta-analysis (as shown
in Fig. 1) showed that significant therapeutic effects
were found in interventions both with rPMS alone and
with rPMS in combination with rTMS (rPMS alone:
Hedges’ g=0.703, p=0.015, 1°=85.06; rPMS+rTMS:
Hedges’ g=0.892, p<0.001, I’=0.00; Fig. 2), and the over-
all significance in each group was robust to leave-one-
out sensitivity analysis (rPMS alone: Hedges’ g from
0.139 to 1.267; rPMS+rTMS: Hedges’ g from 0.475 to
1.308). Additionally, regarding the promotion of upper
limb function recovery, there was not a statistically sig-
nificant difference after combined stimulation protocols

were compared to the use of rTMS alone (Hedges’
g=0.273, p=0.123, 1>=0.00). No significant publica-
tion bias was observed according to the result of Egger’s
test (rPMS+rTMS vs. control: p=0.64; rPMS+rTMS
vs. r'TMS: p=0.40), except for the rPMS-alone group
(p=0.05) (Figures S1-S3).

Due to the limited number of articles, we only per-
formed meta-regression on the rPMS subgroup. Using
univariate meta-regression, we failed to find any signifi-
cant predictors regarding the effect size of rPMS inter-
vention on upper limb motor function (Table S4).

Activities of daily living

A total of six studies with 10 units of analysis were
included in the meta-analysis of ADL [12, 32-34, 36,
38]. The results of meta-analysis showed that both rPMS
alone and rPMS in combination with rTMS showed more
significant benefits than the control group in improv-
ing the activity levels of the participant (rPMS: Hedges’
g=0.923, p=0.013; rPMS+rTMS: Hedges’ g=0.923,
p<0.001; Fig. 3), and the significant results were robust
to leave-one-out sensitivity analysis (rPMS: Hedges' g
from 0.198 to 1.647; rPMS+rTMS: Hedges’ g from 0.505
to 1.34). However, rPMS combined with rTMS was not
more effective than the use of rTMS alone (Hedges’
g=0.278, p=0.117). There was no evidence of publication
bias in meta-analyses of all subgroups (Figures S4—S6).
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Wu et al., 2023c 0.311
Fujimura et al., 2024 0.134
0.703
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Study name Hedges’
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Wu et al., 2023a 0.736
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Random-effects model
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g P-value
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0.414
0.721
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0.385
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S

g P-value
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0.003

0.000

Test for overall effect: Z=4.197, P<0.001
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Liang et al., 2024b 0.005
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Chang et al., 2024 0.248
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Random-effects model
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Test for overall effect: Z=1.54, P=0.123

g P-value
0.990

0.450
0.110
0.501

0.123
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Hedges’ g and 95% CI
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Control rPMS

Hedges’ g and 95% CI

¢

-4.00 -2.00 0.00 2.00 4.00
Control rPMS+TMS

Hedges’ g and 95% CI

-4.00 -2.00 0.00 2.00 4.00
rTMS rPMS+rTMS

Fig. 2 Forest plots of the pooled outcome (FMA-UE) of upper extremity motor impairment. Group A: Hedges'g=0.703, p=0.015; I’=85.06%; Egger’s test:
p=0.05; Group B: Hedges'g=0.892, p < 0.001; ’=0.00%; Egger’s test: p=0.64; Group C: Hedges'g=0.273, p=0.123; I’=0.00%; Egger’s test: p=0.40)
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Siﬁ?ly name Hedges’ g P-value Hedges’ g and 95% CI
Fawaz et al., 2023 1.425 0.000 B
Jiang et al., 2022 1.101 0.001 . 2
Wu et al., 2023¢c 0.145 0.684 &
0.923 0.013 <&

Random-effects model
Heterogeneity: I>=77.19%

-4.00-2.00 0.00 2.00 4.00

Test for overall effect: Z=2.495, P=0.013 Control PMS

(B)

Study name Hedges’ g P-value Hedges’ g and 95% CI

Liang etal., 2024a  0.943 0.012 -

Wu et al., 2023a 0.986 0.009 -

Qin et al., 2023a 0.850 0.017 . =
0.923 0.000 <

Random-effects model
Heterogeneity: I>=0.00%

-4.00-2.00 0.00 2.00 4.00

Test for overall effect: Z=4.331, P<<0.001 Control rPMS+rTMS
©
Study name Hedges’ g P-value Hedges’ g and 95% CI
Liang et al., 2024b 0.054 0.879
Wu et al., 2023b 0.517 0.152
Qin et al., 2023b 0.287 0.393
Chang et al., 2024 0.261 0.480
0.278 0.117

Random-effects model
Heterogeneity: I =0.00%
Test for overall effect: Z=1.569, P=0.117

-4.00 -2.00 0.00 2.00 4.00
rTMS tPMS+TMS

Fig. 3 Forest plots of the pooled outcomes. Activities of Daily Living (ADL): Group A: Hedges'g=0.923, p=0.013, ’=77.19; Egger’s test: p=0.29; Group B:
Hedges'g=0.923, p <0.001, I’=0; Egger’s test: p=0.15; Group C: Hedges'g=0.278, p=0.117, ’=0; Egger’s test: p=0.88)

Univariate meta-regression revealed that total pulses
(p=0.003), number of pulses per session (p<0.001), total
pulses per site (p=0.005) and number of pulses per site
per session (p<0.001) were significant predictors regard-
ing the benefits from rPMS intervention on ADL (Table
S5). However, from the scatter plots, the significant find-
ings seemed to be driven by the study by Fawaz et al.
After removing this study, number of pulses per session

(p=0.029) remained a significant predictor of effect sizes
of ADL (Figure S7).

Upper limb muscle spasticity

Due to insufficient data (<3 studies in each subgroup), we
were not able to conduct a quantitative analysis of muscle
spasticity. Among six controlled studies, four revealed
positive effects on relieving spasticity [12, 39, 43, 45],
including one study combining rPMS and rTMS [12] and
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three studies using rPMS alone [39, 43, 45], while two
studies reported no significant effects following treat-
ment with rPMS alone [38, 47]. Additionally, two single-
group studies, one of which used rPMS alone [46] and
the other of which applied combination intervention [35],
reported positive effects regarding reduced spasticity.

Neuromodulatory effects

A total of three studies evaluated changes in neuro-
imaging or neurophysiological outcomes, using elec-
troencephalography (EEG) [43], functional magnetic
resonance imaging (fMRI) [12], and TMS-based out-
comes [32]. Qin et al. demonstrated that the cortical sen-
sorimotor area and cerebellum were activated following
the combined use of low frequency rTMS and rPMS,
compared to sham stimulation. Furthermore, Liang et al.
reported a significant decrease of short interval intracor-
tical inhibition (SICI) in the contralesional hemisphere
induced by rPMS associated with high frequency rTMS.
Similarly, event-related desynchronization (ERD, an
index of cortical activation) in contralesional hemisphere
was decreased after a single rPMS session [43]. In sum-
mary, rPMS alone or in combination with rTMS seems to
be able to modulate the bilateral hemispheric activities in
poststroke brains.

Discussion

The main results of meta-analysis revealed that (1) rPMS
alone and rPMS combined with rTMS both significantly
improved upper limb motor function recovery and activ-
ities independence in poststroke patients, as compared
to the control; (2) the number of stimulation pulses per
session and total pulses were positively correlated with
the effect size of rPMS on ADL, indicating that the effect
of rPMS may demonstrate a dose-dependent outcome;
and (3) no statistical evidence was found to support
the hypothesis that a combined use of rPMS and rTMS
is more effective than rTMS alone on improving motor
function and ADL.

Despite this, the parameters and timing of the rPMS
may affect the treatment effect—for example, frequency,
doses, targets, and time since stroke could all play roles
in the treatment’s effectiveness [48, 49]. In the present
review, the dose of rPMS pulses appeared to have a sig-
nificant impact on the effects in activities participation.
Behavioral changes could result from improved neuro-
plasticity induced by interventions in stroke rehabilita-
tion [50]. Similarly, Gallasch et al. also revealed that a
total number of 15,000 single pulses of rPMS drives
sensorimotor cortical excitability over the contralateral
M1 and S1, but this effect was not observed after deliv-
ering a low dose of 6000 stimulation pulses [51]. It may
be because the effect of rPMS on ADL was dose-depen-
dent and that therefore the insufficient dose was not
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strong enough to elicit cortical plasticity changes. This
was parallel with the dose-dependent effect of rTMS
reported by previous studies. A higher dose of rTMS
was also associated with a higher level of cortical excit-
ability and a greater increase in clinical effectiveness in
poststroke motor rehabilitation than lower dose proto-
cols [52-54]. Therefore, non-invasive neuromodulation
therapy, applied over either the peripheral or central ner-
vous system, appears to elicit a dose-dependent response
in poststroke rehabilitation. Additionally, we observed
numerically larger effect sizes in the two studies involv-
ing acute stroke patients (within one month after stroke
onset) [38, 44]. However, our regression analysis using
the mean months after stroke did not reveal an impact of
chronicity on recovery outcomes. This may be due to the
fact that many of the included studies featured a mixed
stage of stroke patients, which may have diluted the
effects associated with chronicity and obscured potential
trends in recovery outcomes.

However, contrary to our expectation, after pooling the
sample sizes of multiple experiments, we found that there
were no stronger synergistic effects when rPMS was
combined with rTMS, compared to using rTMS alone.
Firstly, in these included studies the protocols of rPMS
combined with rTMS varied. Most of studies delivered
the rPMS and r'TMS one after the other, rather than using
paired associative stimulation [12, 33, 34], i.e., a paired,
central-associated, peripheral stimulation involves deliv-
ering a single pulse of rTMS to the primary motor cortex
(M1) and a single pulse of rPMS to the afferent fibers up
to the primary somatosensory cortex (S1), alternately. In
contrast to the effect of separate delivery of the two stim-
ulations, the timing-dependent effect of the stimulation
relative to the afferent input may be very different. Previ-
ous studies have revealed that the form of paired associa-
tive stimulation may enhance its efficacy on modulating
M1 excitability in healthy subjects [55, 56]. Also, PAS
had also been reported as effective in improving motor
learning and accelerating motor recovery in patients with
stroke by inducing associative neuroplasticity and reduc-
ing intracortical inhibition [32, 57, 58]. Secondly, the non-
inferiority of the combined treatment may be because
these two treatments may have similar effect mechanisms
on improving motor performance by mediating similar
cortex region plasticity and reducing intracortical inhibi-
tion [12, 51, 57, 59]. Previous studies have indicated that
rTMS was very effective in facilitating motor relearning
and recovery as well as ADL in stroke rehabilitation by
modulating M1 excitability [60—62]. Therefore, the syn-
ergistic effects of combining the two are not additive. The
effect of rTMS on cortical plasticity may have already
reached a ceiling effect, so that combining it with rPMS
cannot further increase its clinical effectiveness. Overall,
whether rPMS was used alone or in combination with
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r'TMS, the optimal matching protocols, regarding targets,
dose, frequency, intensity and duration, timing, and last-
ing effects need to be explored further.

Limitations

This review was not free from limitations. Firstly, due
to heterogeneous quality of the rPMS intensity used in
different studies, we performed a qualitative analysis.
Because most of them applied supra-threshold stimula-
tion, subgroup analysis was not performed. Secondly,
although we analyzed the potential relationship between
stimulation parameters and clinical outcomes, the cur-
rent review was unable to identify clinical cutoff values
for effective stimulation doses and the number of treat-
ment sessions due to the limited number of included
studies. Thirdly, substantial heterogeneity and publica-
tion bias was identified in the rPMS-only intervention
subgroup, probably due to the small sample sizes, the
clinical characteristics of participants, and inconsistent
rPMS protocols and methodologies among the stud-
ies. We hope that future large-scale studies will be more
transparent in their reporting.

Conclusions

rPMS alone or in combination with rTMS can effectively
promote upper-extremity motor functional recovery and
activity independence in poststroke patients, indicat-
ing that both bottom-up and top-down approaches are
equally useful. Simple combination use may not neces-
sarily produce better therapeutic effects than using rTMS
alone, although developing rPMS protocols with higher
doses may generate better responsiveness. Although
rPMS is able to modulate the excitability and intracorti-
cal inhibitory activities of both hemispheres, its specific
underlying mechanism remains largely unclear, awaiting
further investigation.

Abbreviations

ADL Activities of daily living

FMA-UE  Fugl-Meyer Assessment-Upper Extremity
FIM Functional independence measure

M1 Primary motor cortex

MBI Modified Barthel Index

PAS Paired associative stimulation

rPMS Repetitive peripheral magnetic stimulation
rTMS Repetitive transcranial magnetic stimulation
St Primary somatosensory cortex
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