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HPV18 E7 inhibits LATS1 kinase and activates YAP1 by 
degrading PTPN14
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ABSTRACT High-risk human papillomavirus (HPV) oncoproteins inactivate cellular 
tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind 
and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization 
of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcrip
tional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity 
is inhibited by the highly conserved Hippo pathway, which is frequently inactivated 
in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase 
cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 
by phosphorylating it on amino acids including serine 127. Here, we tested the effect 
of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either 
PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation 
of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte 
differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases 
and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 
phosphatase active sites were required for PTPN14 to promote differentiation. Together, 
these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 
reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.

IMPORTANCE The Hippo kinase cascade inhibits YAP1, an oncoprotein and driver 
of cell stemness and self-renewal. There is mounting evidence that the Hippo path
way is targeted by tumor viruses including human papillomavirus. The high-risk HPV 
E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of 
high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation 
could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 
activates YAP1 has not been elucidated. Here we report that by degrading the tumor 
suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation 
on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to 
activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human 
epithelial cells.

KEYWORDS human papillomavirus, differentiation, tumor suppressor, keratinocyte, 
YAP1, Hippo, PTPN14

H uman papillomaviruses are double-stranded DNA viruses with a tropism for 
keratinocytes in stratified squamous epithelia (1). The human papillomavirus (HPV) 

E6 and E7 proteins target host cellular proteins to reprogram cell signaling pathways, 
thereby enabling HPV replication and persistence. A subset of HPVs are the “high-risk” 
genotypes that cause many anogenital and oropharyngeal cancers (2). High-risk HPV 
E6 and E7 proteins have biological activities that are not shared among the E6 and E7 
proteins encoded by other HPVs, and high-risk HPV E6 and E7 expression can drive the 
immortalization and oncogenic transformation of human keratinocytes (1, 3).
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One well-documented activity of many high-risk and low-risk (non-oncogenic) HPV 
E7 proteins is to bind and inactivate the retinoblastoma tumor suppressor (RB1) (4). 
RB1 inactivation drives the transcription of E2F target genes, thereby promoting the cell 
cycle progression that is required for HPV DNA replication (5, 6). In addition to binding 
RB1, high-risk HPV E7 proteins also target it for proteasome-mediated degradation (7). 
However, evidence from keratinocyte immortalization assays, other cell-based assays of 
HPV E7 transforming activity, and studies of HPV E7 activity in transgenic mouse models 
supports that RB1 inactivation is necessary, but insufficient for the carcinogenic activity 
of high-risk HPV E7 (8–17).

We and others have determined that many HPV E7 proteins also target a second 
tumor suppressor, Protein Tyrosine Phosphatase Non-receptor Type 14 (PTPN14) (18–20). 
Several amino acids, including a highly conserved arginine in the HPV E7 C-terminus, 
enable E7 to bind directly to PTPN14 (21, 22). A conserved acidic amino acid in the 
HPV E7 N-terminus binds to the ubiquitin ligase UBR4, which is required for PTPN14 
degradation and the transforming activity of high-risk HPV E7 (13, 18). PTPN14 degra
dation by high-risk HPV E7 inhibits keratinocyte differentiation and extends primary 
epithelial cell lifespan, contributing to the immortalization of keratinocytes in culture (18, 
21).

PTPN14 is mutated or its expression is reduced in several cancer types, and data from 
human cancer studies and cell-based assays provide evidence for the tumor suppressive 
activity of PTPN14 (23–34). The phosphatase domain of PTPN14 likely lacks enzymatic 
function, and the putative catalytic site does not appear important for tumor suppressive 
activity (29, 30, 35). The best-characterized mechanism by which PTPN14 acts as a tumor 
suppressor is by inactivating the YAP1 oncoprotein, a potent driver of cell stemness and 
self-renewal (29, 31–34, 36). YAP1 is a transcriptional coregulator that is active when 
localized to the nucleus and bound to transcription factors including Transcriptional 
Enhanced Associate Domain (TEAD) proteins (37).

YAP1 and its paralog TAZ are normally repressed by the Hippo signaling pathway, 
and Hippo pathway components are frequently mutated in human cancers (36, 38). The 
MST1/2 and LATS1/2 kinases form the core of the conserved Hippo kinase cascade (39, 
40). MST1/2 activates LATS kinases at sites including threonine 1079 on LATS1 (41). Active 
LATS1/2 then phosphorylate YAP1 at serine 127 (42–45). LATS-dependent phosphoryla
tion causes YAP1 to interact with 14-3-3 proteins and be retained in the cytoplasm 
where it is transcriptionally inactive and targeted for degradation (36, 38, 40, 45). Many 
additional protein-protein interactions regulate Hippo kinase activity and influence the 
assembly of Hippo components at the plasma membrane (36, 39). SAV1 promotes MST1 
binding to LATS1 and MOB1A/B promotes LATS1 binding to YAP1 (41, 46–49).

Other proteins including NF2 and WWC1/2/3 likely participate in and influence Hippo 
protein interactions (50, 51). The NF2 protein localizes to the plasma membrane in 
proximity to cytoskeletal scaffold elements and interacts with LATS1/2 (52–54). NF2 
recruits LATS to the plasma membrane and promotes LATS kinase activity and Hippo 
signaling, but without affecting the MST kinase activity (51). WWC1 (KIBRA) and its 
paralogs WWC2 and WWC3 have been proposed to bind and regulate LATS kinase 
activity, perhaps by helping recruit LATS1/2 to the MST1/2-containing complex (55–57). 
Other data support that WWC proteins interact with NF2 (58–61). Of the three WWC 
paralogs, WWC1 has been studied most extensively (57).

Many of the interactions between Hippo components are mediated by the binding 
of PPxY motifs in one protein to WW domains in another. Initial overexpression studies 
suggested that PPxY motifs in PTPN14 bound to WW domains in YAP1 (29, 31, 32). 
However, later biochemical experiments revealed that a separate set of PPxY motifs 
in PTPN14 make an exceptionally high-affinity interaction with WW motifs in WWC1, 
suggesting that the primary effect of PTPN14 does not occur through direct binding to 
YAP1 (62). The tumor suppressive activity of WWC1 requires PTPN14 (63).

Several observations highlight the potential role of YAP1, PTPN14, and the Hippo 
pathway in HPV carcinogenesis. We previously found that high-risk HPV E7 proteins 
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promote the nuclear localization of YAP1 in the basal layer of stratified epithelial cell 
cultures, dependent on the ability of E7 to degrade PTPN14 (64). We also found that 
YAP1/TEAD-dependent transcriptional activity was required for high-risk HPV E7 proteins 
to extend the lifespan of primary human keratinocytes (64). Somatic mutation data in 
human cancers also argue for the influence of an HPV oncoprotein on Hippo signaling 
and YAP1. The three mitogenic pathways most differentially altered with high mutation 
rates in HPV-negative and low mutation rates in HPV-positive head and neck squamous 
cell carcinoma (HNSCC) are p53 (targeted by E6), cell cycle/RB1 (targeted by E7), and 
Hippo/YAP1 (64, 65).

Our findings support that RB1 inactivation and PTPN14 degradation are independ
ent activities of high-risk HPV E7 that are each required for E7 transforming activity. 
The primary transcriptional readout in keratinocytes downstream of HPV E7-mediated 
PTPN14 degradation and YAP1 activation is repression of epithelial differentiation. 
However, it was not known whether or how E7 and PTPN14 act on the Hippo pathway 
to regulate YAP1. Here we report that HPV18 E7 degrades PTPN14 to inhibit LATS1 kinase 
and activate YAP1, thereby inhibiting the commitment to keratinocyte differentiation. 
PTPN14 requires NF2 and its PY1/2 motif, which binds WWC1, to promote differentiation.

RESULTS

PTPN14 knockout reduces phosphorylation on YAP1 S127 and LATS1 T1079 
in human keratinocytes

HPVs infect human keratinocytes, and PTPN14 knockout or HPV E7-mediated PTPN14 
degradation promotes YAP1 nuclear localization in the basal layer of stratified epithelia 
(64). However, the role of PTPN14 in Hippo signaling has not been tested in human 
keratinocytes, nor has the mechanism by which PTPN14 controls YAP1 been established. 
To test the hypothesis that PTPN14 degradation by E7 inhibits Hippo signaling, we 
monitored Hippo pathway activity in the presence and absence of PTPN14. First, we 
directly manipulated PTPN14. We transduced hTERT immortalized human keratinocytes 
(N/Tert-1) with lentiviral vectors to deliver Cas9 and one of two different sgRNAs 
targeting PTPN14, or non-targeting control sgRNAs. Disruption of the actin cytoskeleton 
activates Hippo kinases and we treated cells with the actin polymerization inhibitor 
cytochalasin D to induce Hippo signaling. YAP1 S127 phosphorylation (YAP1 pS127), 
which reflects decreased YAP1 activity, increased relative to total YAP1 during 90 minutes 
of cytochalasin D treatment in each nontargeting control cell line (Fig. 1A). By contrast, 
YAP1 pS127 levels were lower in PTPN14 knockout cell lines treated with cytochalasin 
D. After 90 minutes of cytochalasin D treatment, there was a statistically significant 
decrease in the ratio of YAP1 pS127/total YAP1 in PTPN14 knockout cells compared to 
control cells (Fig. 1B; Table S1).

Having observed that YAP1 pS127 was inhibited in PTPN14 knockout keratinocytes, 
we sought to determine whether PTPN14 knockout reduced phosphorylation on LATS, 
which is well established as a marker of LATS kinase activity. To complement the 
cytochalasin D treatment experiments, we induced Hippo kinase activity by detachment 
of cells from their growth substrate (66–68). Two independent sets of nontargeting 
control or PTPN14 knockout N/Tert-1 cells were cultured at low density, then detached 
by trypsinization, and incubated in suspension for 10 minutes. YAP1 pS127 levels 
increased upon suspension in control cells, but the increase in YAP1 pS127 was low or 
negligible in PTPN14 knockout cells (Fig. 2A and B). Similarly, phosphorylation on LATS1 
T1079 (LATS1 pT1079) showed a greater increase upon detachment in nontargeting 
control cells than in PTPN14 knockout cells. There was a statistically significant decrease 
in the ratio of YAP1 pS127/total YAP1 and the ratio of LATS1 pT1079/total LATS1 in each 
PTPN14 knockout cell line compared to its matched control cell line (Fig. 2C). LATS2 
protein could not be detected by Western blot in N/Tert-1 cells.

NF2 binds to LATS kinases and tethers them to the plasma membrane (53, 54, 57, 
69). Phosphorylation on NF2 S518 is reduced when Hippo signaling is active (70, 71). 
Dephosphorylated S518 indicates active NF2 and active Hippo signaling. Culturing cells 
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in suspension decreased NF2 pS518 levels in both control and PTPN14 knockout N/Tert-1 
cells (Fig. 2), indicating that PTPN14 knockout alters phosphorylation on LATS1 and YAP1, 
but not NF2.

HPV18 E7-mediated PTPN14 degradation reduced YAP1 S127 and LATS1 
T1079 phosphorylation in human keratinocytes

To test whether PTPN14 degradation by a high-risk HPV E7 oncoprotein also reduces 
YAP1 and LATS1 phosphorylation, we used N/Tert-1 cells that express HPV18 E7, HPV18 
E7 R84S, or vector control. HPV18 E7 R84S cannot bind or degrade PTPN14 but can 
destabilize RB1 (21). Again, cytochalasin D treatment or culture in suspension was 
used to stimulate Hippo activity. YAP1 pS127 increased relative to total YAP1 over 
time in cytochalasin D-treated vector control cells, but not in wild-type HPV18 E7 cells 
(Fig. 3A and B). Both PTPN14 protein levels and the induction of YAP1 pS127 upon 
cytochalasin D treatment were partially restored in HPV18 E7 R84S cells. Stimulating 
Hippo kinase activity using cell detachment had a similar effect. YAP1 pS127 and LATS1 
pT1079 increased after cell detachment in vector control and HPV18 E7 R84S cells, but 
the detachment-dependent increase was smaller in the wild-type HPV18 E7 cells (Fig. 
3C and D). Overall, these data support that HPV18 E7 can inhibit Hippo-dependent 

FIG 1 Phosphorylation on YAP1 S127 is reduced in PTPN14 knockout keratinocytes. N/Tert-1 keratinocytes were transduced with LentiCRISPRv2 vectors 

encoding spCas9 and a sgRNA sequence targeting PTPN14 or a nontargeting control sequence. sgRNA sequences were chosen from the Broad Institute Brunello 

Library. Four cell lines were generated using two different non-targeting control (sgNT-1 and sgNT-2) and two different PTPN14 (sgPTPN14-1 and sgPTPN14-3) 

sgRNAs. Cells were treated with cytochalasin D for up to 90 minutes and whole-cell lysates were harvested at 30-minute intervals. (A) Whole-cell protein lysates 

were separated by SDS-PAGE and proteins were detected by immunoblotting for YAP1, YAP1 pS127, PTPN14, and actin. (B) Western blot band intensity for three 

independent experiments was measured using ImageJ. The graph displays the ratio of YAP1 pS127/total YAP1 band intensity from three biological replicate 

experiments, plotted as mean ± standard deviation. Significance was determined by a two-way ANOVA with Holm-Šidak’s multiple comparisons test (*P < 0.05).
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phosphorylation on LATS1 T1079 and YAP1 S127, dependent on its ability to bind and 
degrade PTPN14.

PTPN14 promotes differentiation and Hippo pathway activity

PTPN14 knockout reduces the expression of epithelial differentiation genes and inhibits 
the expression of differentiation genes induced by cell detachment (18, 21). To test 
whether the effects of PTPN14 on differentiation correlate with its effects on YAP1 
phosphorylation, we first tested the effect of PTPN14 knockout on differentiation in N/
Tert-1 cells. Calcium treatment induces differentiation gene expression in keratinocytes 
and we confirmed that transcript levels for the differentiation marker genes Keratin 
10 (KRT10) and involucrin (IVL) were reduced in calcium-treated PTPN14 knockout cells 
compared to matched controls (Fig. 4).

FIG 2 Phosphorylation on LATS1 T1079 is reduced in PTPN14 knockout keratinocytes. Control and PTPN14 knockout N/Tert-1 cells generated using Lenti

CRISPRv2 vectors were trypsinized and kept in suspension for 10 minutes. Whole-cell protein lysates were separated by SDS-PAGE and proteins were detected 

by immunoblotting for YAP1, YAP1 pS127, LATS1, LATS1 pT1079, NF2, NF2 pS518, PTPN14, and actin. Panels (A and B) show replicate experiments using the 

same four distinct cell lines as in Fig. 1. (C) Western blot band intensity for three independent experiments was measured using ImageJ. The graph displays the 

ratio of YAP1 pS127/total YAP1, LATS1 pT1079/total LATS1, or NF2 pS518/total NF2 band intensity from three biological replicate experiments, plotted as mean ± 

standard deviation. Significance was determined by a two-way ANOVA with Holm-Šidak’s multiple comparisons test (*P < 0.05; **P < 0.01; ***P < 0.001).
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The observation that PTPN14 limits the expression of differentiation genes promp
ted us to test whether the converse was also true: that elevated PTPN14 levels could 
increase differentiation gene expression. N/Tert-1 keratinocytes were transduced with 
a lentivirus encoding HA-tagged doxycycline-inducible PTPN14 (pLIX-PTPN14). IVL and 
KRT10 transcript levels increased in doxycycline-treated N/Tert-pLIX-PTPN14 cells (Fig. 
5A), a finding consistent with our previous report that PTPN14 overexpression increased 
the expression of differentiation marker genes KRT1 and IVL in primary human foreskin 
keratinocytes (HFKs) (64). Having established that increased PTPN14 could promote 
differentiation in N/tert-1 cells, we tested whether it altered phosphorylation on Hippo 
proteins. Doxycycline treatment induced PTPN14, increased YAP1 pS127 and LATS1 
pT1079, and modestly decreased NF2 pS518 (Fig. 5B). Overall, PTPN14 overexpression 
increased phosphorylation on YAP1 pS127 and LATS1 pT1079 and promoted differentia-
tion gene expression. Conversely, PTPN14 knockout inhibited YAP1 pS127 and LATS1 
pT1079 and reduced differentiation gene expression.

FIG 3 HPV18 E7-mediated PTPN14 degradation reduces phosphorylation on YAP1 S127 and LATS1 T1079. N/Tert-1 keratinocytes that stably express HA-tagged 

HPV18 E7 or HA-tagged HPV18 E7 R84S, which is unable to bind or degrade PTPN14, were used in assays of Hippo pathway activity. Cells transduced with 

empty vectors were included as a control. (A) Cells were treated with cytochalasin D for up to 90 minutes and whole-cell lysates were harvested at 30-minute 

intervals. Whole-cell protein lysates were separated by SDS-PAGE and proteins were detected by immunoblotting for YAP1, YAP1 pS127, PTPN14, RB1, HA, and 

actin. (B) Western blot band intensity for three independent experiments was measured using ImageJ. The graph displays the ratio of YAP1 pS127/total YAP1 

band intensity from three biological replicate cytochalasin D experiments, plotted as mean ± standard deviation. Significance was determined by a two-way 

ANOVA with Holm-Šidak’s multiple comparisons test (*P < 0.05). (C) Cells were trypsinized and kept in suspension for 10 minutes. Whole-cell protein lysates were 

separated by SDS-PAGE and proteins were detected by immunoblotting for YAP1, YAP1 pS127, LATS1, LATS1 pT1079, HA, PTPN14, and actin. (D) Western blot 

band intensity for three independent experiments was measured using ImageJ. The graph displays the ratio of YAP1 pS127/total YAP1 or LATS1 pT1079/total 

LATS1 band intensity from three biological replicate detachment experiments, plotted as mean ± standard deviation. Significance was determined by a two-way 

ANOVA with Holm-Šidak’s multiple comparisons test (*P < 0.05; **P < 0.01).
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The PTPN14 PY1/2 motifs are required to induce keratinocyte differentiation

Next, we used PTPN14 overexpression to determine which region(s) of PTPN14 
upregulate differentiation. Several protein components of the Hippo pathway interact 
with one another via complementary WW domains and PPxY (PY) motifs (62, 72). 
PTPN14 contains two sets of PY motifs and has a C-terminal protein tyrosine phospha
tase domain. However, the amino acid sequence of the PTPN14 phosphatase domain 
diverges from the consensus sequence in active protein tyrosine phosphatases and 
it is likely to have little or no catalytic activity (35). We designed two mutants, each 
lacking a PY motif pair, and a third containing a serine point mutant C1121S at the 
conserved reactive cysteine of the putative phosphatase active site (Fig. 6A) (73, 74). We 
transduced HFKs with lentiviruses encoding wild type (WT) and mutant PTPN14, then 
measured KRT1 differentiation marker transcript levels (Fig. 6B). KRT1 levels increased in 
WT PTPN14, PTPN14 ∆PY3/4, and PTPN14 C1121S cells, but not in PTPN14 ∆PY1/2 cells. 
The PTPN14 PY1/2 motifs bind with high affinity to the WW domain region of WWC1 
(KIBRA) (62). We, therefore, tested whether WT or PY mutant forms of PTPN14 bound 
to WWC1 in human keratinocytes. N/Tert-Cas9 cells were transfected with a PTPN14 
sgRNA to eliminate endogenous PTPN14, then transduced with pLIX vectors encoding 
WT or mutant HA-tagged PTPN14. Although the steady-state level of PTPN14 ∆PY1/2 was 
lower than that of WT PTPN14 or PTPN14 ∆PY3/4, some PTPN14 ∆PY1/2 was expressed 
and immunoprecipitated in the experiment. PTPN14 and KRT10 protein levels increased 
upon induction of WT PTPN14 (Fig. S1). Cells were treated with doxycycline and lysates 
subjected to anti-HA immunoprecipitation. Wild-type PTPN14 and PTPN14 ∆PY3/4 
co-immunoprecipitated comparable amounts of WWC1 (Fig. 6C). Even accounting for 
the lower expression of the PTPN14 ∆PY1/2 mutant, a negligible amount of WWC1 was 
co-immunoprecipitated by PTPN14 ∆PY1/2 compared to WT PTPN14 or PTPN14 ∆PY3/4. 
We conclude that the ability of PTPN14 to induce keratinocyte differentiation requires 
the PY motifs that bind to WWC1, but not the PTPN14 C1121 residue.

LATS kinases are required for PTPN14 to induce keratinocyte differentiation

We previously used siRNA knockdown combined with PTPN14 overexpression to 
demonstrate that YAP1 is required for PTPN14 to promote differentiation gene expres
sion (64). The finding was based on the observation that although the knockdown of 
YAP1 and its paralog TAZ increased differentiation gene expression, PTPN14 overexpres
sion could not further increase the levels of differentiation genes in YAP1/TAZ-depleted 
cells. Our data further supported that the predominant effect of PTPN14 on differentia-

FIG 4 PTPN14 knockout impairs keratinocyte differentiation. (A) N/Tert-1 cells stably expressing Cas9 were transfected with sgRNA targeting PTPN14 (Synthego) 

or mock transfected and PTPN14 knockout was validated by immunoblot. (B) Mock transfected and PTPN14 knockout N/Tert-1 cells were cultured in media 

containing 1.5 mM calcium and harvested for RNA analysis at indicated times. KRT10 and IVL RNA levels were analyzed by qRT-PCR and normalized to G6PD. 

Graphs show values for technical duplicate experiments. Error bars display mean ± range.
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FIG 5 PTPN14 promotes keratinocyte differentiation and Hippo pathway activity. N/Tert-1 keratinocytes 

that express endogenous PTPN14 were transduced with a lentiviral vector encoding doxycycline-induci

ble PTPN14 (pLIX-PTPN14). Cells were treated with 1 µg/mL doxycycline for 24 hours or left untreated. 

(A) KRT10 and IVL RNA levels were measured by qRT-PCR and normalized to GAPDH. Graphs show data 

points for two technical replicate experiments. Error bars display mean ± range. (B) Whole-cell protein 

lysates were separated by SDS-PAGE and proteins analyzed by immunoblotting for YAP1, YAP1 pS127, 

LATS1, LATS1 pT1079, NF2, NF2 pS518, PTPN14, and actin. Bands for YAP1, YAP1 pS127, LATS1, LATS1 

pT1079, NF2, and NF2 pS518 were quantified by densitometry. Values reflect the ratio of phosphopro

tein/total protein band density.
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FIG 6 PTPN14 PY1/2 motifs are required to induce differentiation. (A) Schematic of PTPN14 domains and location of PPxY motifs. (B) HFK were transfected with 

lentiviral constructs encoding GFP, WT PTPN14, or PTPN14 mutants as indicated. Total cellular RNA was collected and KRT1 transcript levels were analyzed by 

qRT-PCR and normalized to GAPDH. Graph shows individual data points for three independent experiments. Data are plotted as mean ± standard deviation. 

Significance was determined by ANOVA with Holm-Šidak’s multiple comparisons test (ns, not significant; ****P < 0.0001). (C) N/Tert-1 immortalized keratinocytes 

transduced with pLIX-PTPN14 were treated with 1 µg/mL doxycycline for 48 hours to induce HA-tagged PTPN14 expression. Whole-cell protein lysates were 

collected and PTPN14 immunoprecipitated with anti-HA agarose beads. Protein lysates from input and elution fractions were separated by SDS-PAGE and 

proteins were analyzed by immunoblotting for WWC1, PTPN14, and actin. Bands for WWC1 and PTPN14 in the IP fraction were quantified by densitometry. 

Values reflect the ratio of WWC1/PTPN14 band intensity.
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tion is mediated by YAP1, not TAZ. We also observed that the knockdown of either LATS1 
or LATS2 in HFK reduced basal levels of differentiation gene expression (64).

Here we used the same knockdown plus overexpression strategy to determine which 
of several additional components of the Hippo pathway are required for PTPN14 to 
induce keratinocyte differentiation. We transfected HFKs with siRNA targeting YAP1 
and TAZ, LATS1 and LATS2, or a non-targeting control. Twenty-four hours post-transfec
tion, cells were transduced with lentiviruses encoding PTPN14 or GFP, and then total 
cellular RNA was harvested 72 hours post-transfection. In siControl-treated cells, PTPN14 
expression increased the levels of KRT10, KRT1, and IVL (Fig. 7; Fig. S2). Consistent 
with our previous finding, YAP1 and TAZ knockdown in HFK increased the expression 
of differentiation genes, but PTPN14 could not further increase differentiation in cells 
depleted of YAP1/TAZ compared to those transfected with siControl. Although PTPN14 
retained some ability to increase KRT10, KRT1, and IVL RNA in cells treated with two 
different sets of siRNAs targeting LATS1 and LATS2 (Fig. 7A; Fig. S2), levels of all three 
differentiation marker genes remained low in LATS knockdown cells throughout the 
experiment. In the absence of LATS kinases, PTPN14 did not increase the levels of KRT10, 
KRT1, or IVL beyond the amount observed in untreated control cells. Knockdowns and 
PTPN14 overexpression were validated by qRT-PCR (Fig. S3).

Next, we tested whether PTPN14 required MST1 and MST2, NF2, or WWC1 and its 
paralogs WWC2 and WWC3 to induce differentiation. We transfected HFK with siRNA 
targeting MST1 and MST2, NF2, or all three WWC genes, transduced the cells with 
lentiviruses encoding GFP or PTPN14, and measured KRT10 transcript levels. Depletion of 
MST1 and 2 did not interfere with the ability of PTPN14 to induce KRT10 (Fig. 7B). Similar 
to the knockdown of LATS1 and LATS2, knockdown of NF2 limited, although did not 
completely eliminate, the ability of PTPN14 to induce KRT10 (Fig. 7C). Depletion of WWC 
genes had an intermediate effect, but PTPN14 was still able to induce KRT10 several folds 
in the absence of WWC1/2/3. The magnitude of reduction in PTPN14-induced differentia-
tion correlated with the magnitude of depletion of WWC1 (Fig. 7D; Fig. S3). These data 
support that LATS kinases and NF2 are required for full induction of differentiation by 
PTPN14.

PTPN14 knockout promotes anchorage-independent growth and reduces 
YAP1 pS127 in HEK TER cells

Finally, we tested the effect of PTPN14 knockout in a human cell transformation assay. 
HEK TER cells are human embryonic kidney (HEK) cells that express the catalytic subunit 
of human telomerase (hTERT), Simian Virus 40 (SV40) Large T antigen (LT), and an 
oncogenic allele of ras (H-ras V12) (75, 76). The cells are immortalized but do not 
grow without attachment to a substrate. HEK TER cells acquire the capacity for anchor
age-independent growth upon expression of SV40 Small T (ST) antigen. ST activates 
YAP1 and transforms HEK TER cells by interacting with a PP2A subunit of the STRIPAK 
complex upstream of the Hippo pathway (77). We previously reported that HPV16 E7 
could promote the anchorage-independent growth of HEK TER cells (11). The HPV16 
E7 transforming activity in HEK TER cells mapped broadly to the regions required to 
degrade PTPN14 (13, 19).

To test whether PTPN14 knockout promotes the anchorage-independent growth of 
HEK TER cells, we generated CRISPR/Cas9 edited HEK TER cells that do not express 
PTPN14. LATS1/2 knockout HEK TER cells were included to verify that Hippo pathway 
inhibition promoted HEK TER growth and HEK TER cells stably expressing SV40 ST (11) 
were included as a positive control. HEK TER cells depleted of PTPN14, LATS1/2, or that 
expressed SV40 ST readily formed colonies in soft agar assays (Fig. 8A), whereas HEK 
TER cells transfected with non-targeting sgRNA exhibited minimal anchorage-independ
ent growth. Consistent with our findings in human keratinocytes and with the previ
ous report that SV40 ST reduces YAP1 phosphorylation (77), cytochalasin D treatment 
induced YAP1 pS127 more strongly in HEK TER sgNT cells than in cells depleted of 
PTPN14, LATS1 and LATS2, or that expressed SV40 ST (Fig. 8B and C). Using a second set 
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of sgRNAs directed against PTPN14 and LATS1 and LATS2 resulted in a similar trend in 
colony formation (Fig. S4).

DISCUSSION

YAP1 is a transcriptional coactivator that promotes epithelial cell stemness and self-
renewal, limiting differentiation (42, 50, 78–85). We previously reported that oncogenic 
high-risk HPV E7 proteins bind and target PTPN14 for proteasome-mediated degradation 

FIG 7 LATS kinases and NF2 are required for PTPN14 to induce KRT10 expression. HFK were transfected with siRNA and then transduced with lentiviruses 

encoding GFP or PTPN14 at 24 hours post-transfection. Total cellular RNA was collected 72 hours post-knockdown and 48 hours post-transduction. RNA 

transcripts for KRT10 were measured by qRT-PCR and normalized to GAPDH. Six individual experiments were conducted, each in technical duplicate. Each 

experiment included a siControl condition, a YAP1 and TAZ siRNA-treated condition, and siRNAs targeting additional component(s) of the Hippo pathway. Each 

component of the Hippo pathway was targeted with two different siRNAs per gene, denoted as A and B. Panels display data from knockdowns as follows: 

(A) LATS1 and LATS2, (B) MST1 and MST2, (C) NF2, or (D) WWC1, WWC2, and WWC3. Data are graphed as mean ± standard deviation of combined replicate data. 

PTPN14/GFP denotes the ratio of KRT10 level in PTPN14 transduced cells vs GFP transduced cells in each siRNA-treated condition. Since Experiment 3 included 

several siRNAs (Control, YAP1/TAZ, MST1/2, NF2, WWC1/2/3), the same siControl and siYAP1/TAZ data from experiment 3 is included in panels B, C, and D.
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(19, 86). The HPV18 E7-mediated degradation of PTPN14 results in increased nuclear 
YAP1 localization and the maintenance of basal epithelial identity in three-dimensional 
models of stratified epithelial tissue (64). However, we had not tested whether or how 
HPV E7-mediated degradation of PTPN14 alters Hippo pathway activity, which controls 
YAP1, in keratinocytes.

Several reports indicate that PTPN14 can inhibit YAP1 activity, although the 
mechanistic basis of such inhibition is incompletely understood (24, 29–34, 55, 64). Initial 
studies suggested that PTPN14 bound directly to YAP1 via the second set of PTPN14 
PY motifs (PY3/4 in this paper), but more recent analysis of PY-WW interactions among 
Hippo components determined that the PTPN14 PY1/2 tandem motif has a nanomolar 
affinity for WW domains in Hippo components including WWC1 (31–33, 62). These and 
other data support that PTPN14, WWC1, and LATS1/2 work together to inhibit YAP1 (24, 
55, 56), but not by binding YAP1 directly. Certain assays of tumor suppression show a 
mutual requirement for PTPN14 and WWC1 (KIBRA) (55, 62, 63, 87, 88), but potential 
contributions of WWC2 and WWC3 in the same assays have not been thoroughly tested 
(59). Other data indicate that PTPN14 and/or WWC proteins act through NF2, which 
interacts with LATS1/2 and recruits LATS1/2 to a plasma membrane-associated complex 
that also contains MST1/2 and its cofactor SAV1 (51, 60, 61, 70, 89–91).

Our data strengthen the model that PTPN14 regulates LATS kinases in a manner 
that also requires NF2 and the PTPN14 PY1/2 motif, which binds WWC1. In support 
of this model, we found that either PTPN14 knockout or HPV18 E7-mediated PTPN14 
degradation reduced the levels of LATS1 pT1079 and YAP1 pS127, indicating that PTPN14 

FIG 8 PTPN14 knockout promotes anchorage-independent growth and reduces YAP1 phosphorylation in HEK TER cells. (A) HEK TER cells expressing spCas9 

were transfected with sgRNA targeting PTPN14 or LATS1 and LATS2. HEK TER cells expressing SV40 ST were used as a positive control for colony formation. 

Cells were plated in soft agar in technical triplicate and incubated at 37°C for 18 days, then photographed. Colonies were counted and quantified using ImageJ 

software. Graphs show individual data points for each plate and indicate mean ± standard deviation. Statistical significance of the nontargeting control condition 

compared to experimental conditions was determined by ANOVA with Dunnett’s multiple comparisons test (*P < 0.05; ***P < 0.001). (B) Cells were treated with 

cytochalasin D for up to 90 minutes and whole-cell lysates were harvested at 30-minute intervals. Whole-cell protein lysates were separated by SDS-PAGE and 

proteins were detected by immunoblotting for YAP1, YAP1 pS127, PTPN14, LATS1, and actin. (C) Band intensity for blots of two independent experiments was 

measured by ImageJ. The graph displays the ratio of YAP1 pS127/total YAP1 band intensity from two biological replicate cytochalasin D experiments as mean ± 

range. The blots shown in panel B are from experiment 1.
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degradation reduces Hippo activity and activates YAP1 (Fig. 1 to 3). The effect of HPV18 
E7 on YAP1 was independent of its ability to degrade RB1 (Fig. 3). Conversely, PTPN14 
overexpression increased phosphorylation on LATS1 T1079 and YAP1 S127 (Fig. 5).

We established the connection between PTPN14, YAP1 activity, and keratinocyte 
differentiation [Fig. 4 and 5 (18)] and used keratinocyte differentiation as a readout 
to probe the effect of PTPN14 on Hippo signaling. We found that the induction of 
differentiation by PTPN14 required its PY1/2 motifs, which bind WWC1, but not the 
catalytic cysteine of the putative active site (Fig. 6). PTPN14 required LATS1/2 kinases 
and NF2 to promote differentiation (Fig. 7), further supporting that PTPN14 acts on 
LATS kinases only in the presence of NF2. Our finding that PTPN14 could still induce 
differentiation in cells transfected with MST1/2 siRNAs is consistent with the finding that 
MST1/2 is not required for PTPN14 overexpression to induce LATS1 phosphorylation (55). 
It is possible that one of several other kinases can phosphorylate LATS in the absence of 
MST1/2 (59, 92–96). There are at least two separate branches of the Hippo pathway that 
can activate LATS1/2, one converging on MST1/2 kinases and the other converging on 
MAP4K4 (95–98). MST1/2 kinases are not active in stratified epithelial cells (99, 100), and 
further experiments will be required to determine whether PTPN14 degradation alters 
the activity of the MAP4K4 branch of the Hippo pathway.

PTPN14 could still promote differentiation in cells treated with WWC1/2/3 siRNA, even 
though the WWC1 binding motif was required for PTPN14 to promote differentiation 
(Fig. 6B and 7). It is possible that incomplete siRNA-based depletion of WWC1/2/3 
resulted in a weaker phenotype than that observed with the PTPN14 ∆PY1/2 deletion 
mutant. It is also possible that WWC1/2/3 and NF2 act synergistically to regulate YAP1 in 
a way that is not reflected in our experiments so far. In 293A cells, YAP1 phosphorylation 
in response to serum stimulation was partially inhibited by NF2 knockout and minimally 
inhibited by WWC1/2/3 triple knockout but was strongly inhibited by the combined 
knockout of NF2 and WWC1/2/3 (59). WWC1/2/3 may act together with NF2 to regulate 
YAP1 phosphorylation. Finally, our finding that in anchorage-independent growth assays 
PTPN14 knockout promoted colony formation and reduced the levels of phosphoryla
tion on YAP1 S127 (Fig. 8) further strengthens the connection between YAP1, PTPN14, 
and oncogenic transformation.

Consistent with the central role of YAP1 in epithelial homeostasis and the epithelial 
tropic nature of HPV infection, there are additional links between HPV biology and YAP1/
Hippo signaling. Cutaneous HPV8 E6 can bind TEAD and activate YAP1/TEAD-dependent 
transcription (101), and HPV8 E6 can also reduce LATS phosphorylation during failed 
cytokinesis (102). HPV E6/E7 expression in cancer cell lines downregulates MST1 by 
increasing miR-18A levels (103). Both high- and low-risk mucosal HPV E6 proteins have 
some ability to promote YAP1 nuclear localization in basal epithelial cells (64, 104). 
There is growing recognition that YAP1 and Hippo signaling are affected by other DNA 
tumor viruses. SV40 ST antigen promotes the interaction between STRIPAK and MAP4K4, 
thereby decreasing MAP4K4 activity and activating YAP1 (77). The Epstein-Barr virus 
(EBV) protein LMP1 reduces phosphorylation on YAP1 S127, and the analogous TAZ 
S89 site, by increasing Src kinase activity (105). One of our important future goals is to 
determine how E7 proteins from other HPV genotypes, not just HPV18, influence YAP1 
activity. We previously reported that HPV E7 proteins from many virus genotypes can 
bind and reduce the steady-state levels of PTPN14 (19, 86), and we, therefore, predict 
that these E7 proteins can also activate YAP1. However, it will be critical to test that 
hypothesis and to determine whether the effect of diverse HPV E7 proteins on YAP1 is 
correlated with the ability of E7 to bind PTPN14, degrade PTPN14, or both.

Our findings provide the first evidence of a viral protein, HPV18 E7, targeting a 
Hippo pathway component to suppress LATS kinase activity, the central regulatory step 
immediately upstream of YAP1. PTPN14 is expressed specifically in the basal layer of 
stratified epithelia (64, 106), and so our finding that PTPN14 can control YAP1, and 
LATS phosphorylation in human keratinocytes supports that PTPN14 is a basal keratino
cyte-specific regulator of YAP1 and the Hippo pathway. Our previous work supports 
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that PTPN14 degradation and YAP1/TEAD transcriptional activity are required for the 
transforming activity of high-risk HPV E7 (21, 64). Other direct interactions between 
HPV oncoproteins and cellular targets, such as E7/RB1 and E6/p53, are essential for HPV 
carcinogenesis but so far have not been tractable targets for therapeutic intervention. 
Understanding the mechanism by which E7 degrades PTPN14 to activate YAP1 has the 
potential both to provide a new therapeutic opportunity in HPV disease and to elucidate 
details of how HPV E7 proteins promote basal epithelial identity. Our future studies will 
also use E7 and PTPN14 as tools to better understand the complex interactions that 
control Hippo signaling and YAP1 activity in human epithelial cells.

MATERIALS AND METHODS

Plasmids and cloning

MSCV-puro C-terminal FlagHA retroviral expression vectors encoding HPV18 E7, HPV18 
E7 R84S, or empty vector controls were previously described (21, 86). Sequences 
for sgRNA selected from the Broad Institute Brunello library (107) were ligated into 
LentiCRISPRv2 vectors following standard cloning protocols. A lentiviral vector (pHAGE) 
was used for PTPN14 overexpression in HFK as previously described (64). A doxycy
cline-inducible, HA-tagged PTPN14 overexpression vector was developed by cloning the 
wild-type PTPN14 coding sequence into a lentiviral vector pLIX_402, a gift from David 
Root (Addgene #41394), using Gateway recombination. More information for all plasmids 
is listed in Table S2. Mutant versions of PHAGE-PTPN14 and pLIX-PTPN14 were generated 
by site-directed mutagenesis and Gateway recombination.

Cell culture

Discarded, deidentified primary HFKs) were obtained from the Skin Biology and Diseases 
Resource-based Center (SBDRC) at the University of Pennsylvania. N/Tert-1 keratinocytes 
were the gift of James Rheinwald (108). All keratinocytes were cultured as previously 
described (64). N/Tert-1 cell lines were established by previously described methods for 
lentiviral or retroviral vector expression (18, 86). Gene knockouts in N/Tert-1 cells were 
accomplished by one of two methods. In Fig. 1 and 2, N/Tert-1 LentiCRISPR knockout cell 
lines were established by lentiviral transduction of LentiCRISPRv2 constructs encoding 
spCas9 and a sgRNA sequence selected from the Broad Institute Brunello Library for 
targeting PTPN14 or a nontargeting control, then selecting with G418. In Fig. 4 and 6C, 
N/Tert-1 Cas9 knockout cells were generated by transduction with a spCas9 lentiviral 
expression vector (Addgene # 52962) and selected with blasticidin, after which cells were 
transiently transfected with sgRNA targeting PTPN14, a non-targeting sgRNA (Synthego), 
or mock transfected (18).

Doxycycline inducible PTPN14 expressing N/Tert-1 keratinocytes (Fig. 5) were 
generated by transducing N/Tert-1 cells with the lentiviral expression vector pLIX-
PTPN14 and selecting with puromycin. In Fig. 5, the inducible PTPN14 cells were 
established using parental N/Tert-1 cells. In Fig. 6C, the inducible PTPN14 cells were 
established using N/Tert-1 Cas9:sgPTPN14 knockout cells as the starting material. 
N/Tert-1 Cas9:sgPTPN14 knockout cells were transduced with pLIX-PTPN14 lentiviral 
constructs containing the wild-type PTPN14 gene or PTPN14 ∆PY1/2, ∆PY3/4, or C1121S 
mutants and selected with puromycin.

Keratinocytes expressing HPV18 E7 were generated by transducing N/Tert-1 cells with 
MSCV-Puro retroviral vectors encoding either wild-type HPV18 E7, HPV18 E7 R84S, or 
empty control, then selecting with puromycin (Fig. 3).

HEK TER cells were described previously and cultured in Minimum Essential Media 
(MEM, Gibco) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 
and penicillin-streptomycin (76). HEK TER cells expressing spCas9 were generated by 
transduction with a Cas9 lentiviral vector followed by blasticidin selection. HEK TER Cas9 
cells were transfected with sgRNA targeting PTPN14, LATS1 and LATS2, or nontargeting 
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control (Synthego) (18). HEK TER cells stably expressing SV40 ST were described 
previously (11, 76).

Immunoblots

Immunoblots were performed using Mini-PROTEAN or Criterion (Bio-Rad) Tris/Glycine 
4-20% polyacrylamide gradient SDS-PAGE gels. Proteins were transferred to polyviny
lidene difluoride (PVDF) membranes as previously described (19). Membranes were 
blocked in 5% nonfat dried milk (NFDM) in Tris-buffered saline, pH 7.4, with 0.05% 
Tween 20 (TBS-T) unless otherwise specified. Blots were then incubated in 5% NFDM/
TBS-T with primary antibodies listed in Table S3. Blots were incubated with anti-mouse 
or anti-rabbit secondary antibody conjugated to horseradish peroxidase, washed with 
TBS-T, and proteins detected by chemiluminescent substrate. Blots were imaged using 
a Chemidoc MP imaging system (BioRad). Membranes probed for YAP1 or with one of 
several phospho-specific antibodies (YAP1 pS127, LATS1 pT1079, and NF2 pS518) were 
blocked with TBS-based Intercept Blocking Buffer (LI-COR) and incubated with antibod
ies diluted in TBS-based Intercept Antibody Diluent (LI-COR). Blots probed for LATS1 
pT1079, YAP1 pS127, YAP1, and beta-actin were incubated with secondary antibody-
fluorophore conjugates anti-mouse IRDye 680LT (LI-COR) or anti-rabbit IRDye 800CW 
(LI-COR) diluted in Intercept Antibody Diluent (LI-COR). Blots were washed with TBS-T 
and fluorescence was detected using a LI-COR imager. Blots probed for NF2 pS518 were 
incubated with anti-rabbit secondary antibody conjugated to horseradish peroxidase, 
diluted in Intercept Antibody Diluent (LI-COR), then washed with TBS-T and detected by 
chemiluminescent substrate using a Chemidoc MP imaging system (BioRad). Individual 
Western blot bands were quantified by densitometry analysis. The mean gray pixel value 
of each band was determined by measuring the gray pixel value of the area containing 
the band of interest, and then subtracting the gray pixel value from a region of the same 
blot that did not contain a band. The same-sized area was measured for each band on 
a blot and for the background area on that blot. Values were measured with ImageJ 
software (109) (Table S1).

Immunoprecipitation

Immunoprecipitation with anti-HA-conjugated agarose beads was described previously 
(19). Whole-cell protein lysates were incubated with anti-HA agarose beads and washed 
with lysis buffer. Immunoprecipitates were eluted by boiling in a protein sample buffer. 
Elution and input samples were analyzed by SDS-PAGE and immunoblot.

Hippo activation assays

For cytochalasin D treatment, 2.5 × 105 cells were plated in 6 cm dishes and grown 
overnight before treatment with 5 µM cytochalasin D in appropriate media (MEM for HEK 
TER cells, K-SFM for keratinocytes). Plates were harvested every 30 minutes starting at 
T0 by washing once with TBS and scraping into radioimmunoprecipitation assay (RIPA) 
lysis buffer containing protease and phosphatase inhibitors. For suspension assays, 5 × 
105 cells were plated in 10 cm dishes and grown for 24 hours before treatment with 
0.05% Trypsin/EDTA for 10 minutes, then quenched with DMEM/F12 containing 10% FBS. 
Suspended cells were pelleted and washed with TBS before being pelleted again and 
resuspended in RIPA lysis buffer containing protease and phosphatase inhibitors. Control 
cells were washed once with TBS in plates and scraped into RIPA with protease and 
phosphatase inhibitors. All cell lysates were incubated on ice for at least 30 minutes to 
complete lysis and then protein concentrations were normalized by Bradford assay.

Differentiation induction with calcium

N/Tert-1 mock or sgPTPN14 cells were seeded in six-well plates at a density of 10,000 
cells per well and cultured for 4 days. Cells were then maintained in K-SFM (untreated) 
or switched to culture in Keratinocyte Basal Medium (KBM, Lonza) with CaCl2 added to 
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a final concentration of 1.5 mM. Treated and untreated cells were harvested for RNA 
analysis and qRT-PCR at times indicated.

Differentiation induction with PTPN14 mutants

HFK were seeded in 12-well plates with 5.0 × 104 cells per well and transduced with 
pHAGE lentiviral constructs encoding GFP, wild-type PTPN14, PTPN14 ∆PY1/2, PTPN14 
∆PY3/4, or PTPN14 C1121S. Total RNA was collected 48 hours post-transduction and 
analyzed by qRT-PCR for KRT1 transcripts normalized to GAPDH.

qRT-PCR

Total RNA from cell lysates was isolated with a NucleoSpin RNA purification kit 
(Macherey-Nagel). Purified whole-cell RNA was converted to cDNA using the high-
capacity cDNA reverse transcription kit (Applied Biosystems). Specific genes were 
quantified by qRT-PCR with Fast SYBR green master mix (Applied Biosystems) using a 
Quant-Studio 3 system (ThermoFisher Scientific). KiCqStart qRT-PCR primers (Millipore
Sigma) were used to quantify the following transcripts: KRT1, KRT10, IVL, PTPN14, YAP1, 
LATS1, STK3 (MST2), STK4 (MST1), NF2, WWC1, WWC2, WWC3, and GAPDH.

PTPN14 overexpression and siRNA knockdown assay

Primary HFK were reverse transfected with 40 nM siRNAs (Dharmacon) using Dharmafect 
1 transfection reagent. Transfected HFKs were transduced at 24 hours post-transfection 
with pHAGE-PTPN14 lentivirus. At 48 hours post-transfection, media was exchanged for 
1:1 DF-K/K-SFM (86). Cells were lysed and total RNA was collected 72 hours post-trans
fection for qRT-PCR analysis. The siRNAs used were as follows: nontargeting siControl 
#1, siYAP1-06, siWWTR-06, siLATS1-05, siLATS1-08, siLATS2-09, siLATS2-10, siSTK3-06, 
siSTK3-08, siSTK4-06, siSTK4-08, siNF2-05, siNF2-07, siWWC1-09, siWWC1-10, siWWC2-17, 
siWWC2-20, siWWC3-17, and siWWC3-18.

Anchorage independent growth assay

HEK TER cell lines were suspended in Dulbecco’s Modified Eagle Medium (DMEM, Gibco) 
and mixed with 0.4% Noble agar, then seeded onto 6 cm plates coated with DMEM/0.6% 
Noble agar, allowed to solidify at room temperature, then incubated at 37°C/5% CO2 (11). 
DMEM was supplemented with 10% FBS and antibiotic-antimycotic. Cells were seeded 
in triplicate plates (5.0 × 104 cells/plate) for each condition and colonies were allowed to 
form for 18 days, then photographed with a GelDoc XR+ imager (BioRad). Colonies were 
counted using ImageJ software.
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