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Abstract
Oral bacteria naturally secrete extracellular vesicles (EVs), which have attracted attention for their promising biomedical 
applications including cancer therapeutics. However, our understanding of EV impact on tumor progression is hampered 
by limited in vivo models. In this study, we propose a facile in vivo platform for assessing the effect of EVs isolated from 
different bacterial strains on oral cancer growth and dissemination using the larval zebrafish model. EVs were isolated 
from: wild-type Aggregatibacter actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin 
(CDT) or lipopolysaccharide (LPS) O-antigen; and wild-type Porphyromonas gingivalis. Cancer cells pretreated with EVs 
were xenotransplanted into zebrafish larvae, wherein tumor growth and metastasis were screened. We further assessed the 
preferential sites for the metastatic foci development. Interestingly, EVs from the CDT-lacking A. actinomycetemcomitans 
resulted in an increased tumor growth, whereas EVs lacking the lipopolysaccharide O-antigen reduced the metastasis rate. 
P. gingivalis-derived EVs showed no significant effects. Cancer cells pretreated with EVs from the mutant A. actinomy-
cetemcomitans strains tended to metastasize less often to the head and tail compared to the controls. In sum, the proposed 
approach provided cost- and labor-effective yet efficient model for studying bacterial EVs in oral carcinogenesis, which can 
be easily extended for other cancer types. Furthermore, our results support the notion that these nanosized particles may 
represent promising targets in cancer therapeutics.
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Introduction

Oral squamous cell carcinoma (OSCC) is among the most 
common malignancies worldwide, accounting for more than 
90% of oral cavity cancers [1, 2]. The majority of OSCC 
cases are diagnosed at locoregionally advanced stages, 
leading to high morbidity and mortality rates. Hence, the 

5-year survival rate of these patients has remained stagnant 
at approximately 50% over the past decades [3, 4]. The main 
risk factors for OSCC are smoking, alcohol abuse and the 
consumption of tobacco products [5]. In addition, recent 
evidence suggests that oral microbiota may play a role in 
oral carcinogenesis [6]. Oral dysbiosis, an imbalance of oral 
bacteria, can promote various chronic inflammatory diseases 
including periodontitis, which has been linked to OSCC [7, 
8]. On the contrary, some bacteria showed anti-tumorigenic 
effects and were associated with favorable prognostic out-
comes [6]. Furthermore, oral microbiota was shown to dif-
fer between OSCC patients with and without lymph node 
metastasis [9]. Therefore, bacterial species and their role in 
cancer can vary across different individuals [10].

Oral bacteria actively secrete extracellular vesicles (EVs), 
which are important immunomodulators carrying multiple 
virulence factors [11]. Importantly, these nanosized parti-
cles have attracted attention for their biomedical applications 
such as vaccination and cancer therapy [12, 13]. However, 
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despite the recent increasing interest in bacterial EVs, their 
role in cancer remains elusive with limited studies [14, 15]. 
EVs from the Gram-negative Aggregatibacter actinomycet-
emcomitans carry a variety of cargo, including the cytolethal 
distending toxin (CDT)—a genotoxin with DNase activity 
that has been implicated in head and neck cancers [16–19]. 
In addition, the immunomodulator lipopolysaccharide 
(LPS) is a major constituent of A. actinomycetemcomitans 
EVs and it has been suggested as a target in cancer therapy 
[20–22]. Importantly, loss of the LPS O-antigen significantly 
altered the pathogenic and immunostimulatory features of 
A. actinomycetemcomitans [23, 24]. Another Gram-negative 
anaerobic bacterium, Porphyromonas gingivalis, is one of 
the most studied periodontopathogens in OSCC, revealing 
mostly pro-tumorigenic effects [25]. Recently, we showed 
that EVs isolated from A. actinomycetemcomitans and P. 
gingivalis differentially influenced the behavior of OSCC 
cells in vitro [26]. Furthermore, P. gingivalis-derived EVs 
promoted OSCC cell migration and invasion in vitro [27]. 
However, research exploring the role of bacterial EVs in 
cancer is still limited, to our knowledge, with only three 
studies in OSCC to date [26–28].

In vivo studies exploring the bacterial role in cancer are 
currently conducted using patient-derived murine xenografts 
[28–32]. However, the utility of these models is dampened 
by cost, time, and labor challenges, thus hindering advance-
ment in this new field. During recent years, zebrafish larvae 
have emerged as a favorite organism for wide-ranging stud-
ies of cancer [33–36]. Herein, we aimed to assess the utility 
of zebrafish larvae as a facile and rapid in vivo model for 
studying the influence of EVs from different A. actinomy-
cetemcomitans strains and wild-type P. gingivalis on OSCC 
growth and metastasis.

Materials and methods

Bacterial strains and growth conditions

Four different strains of A. actinomycetemcomitans were 
used in this study (Table 1). A. actinomycetemcomitans 
D7SS is a serotype a, naturally genetic competent, smooth-
colony derivative of wild-type strain D7S, which is isolated 
from a patient with aggressive periodontitis [37]. D7SS 
cdtABC is a mutant derivative of D7SS created via a knock-
out method [38]. Hereafter, they are referred to as D7SS-
WT, and D7SS-cdt, respectively. A. actinomycetemcomitans 
strains SA3138 [39] and SA3139 [39, 40] were recovered 
from a patient with periodontitis, and the latter strain natu-
rally lacks LPS O-antigen [40]. Hereafter these are referred 
to as SA3138-WT, and SA3139-LPS-O, respectively. In 
addition, P. gingivalis ATCC 33277 (American Type Culture 
Collection) was used [41] (Table 1). Briefly, A. actinomyce-
temcomitans strains were cultured on blood agar plates (5% 
defibrinated horse blood, 5 mg hemin/l, 10 mg Vitamin K/l, 
Columbia agar base; Oxoid Ltd., Basingstoke, Hampshire, 
UK), in air supplemented with 5%  CO2, at 37 °C. The D7SS 
strains were cultivated for 4 days and SA3138 and SA3139 
for 5 days. P. gingivalis was cultured in an anaerobic envi-
ronment (10%  H2, 5%  CO2, 85%  N2) at 37 °C first on blood 
agar plates for 3 days and then for additional 48 h in liquid 
broth fastidious anaerobe agar (FAA; Neogen®, Heywood, 
UK). Bacterial procedures were conducted according to the 
guidelines of the local ethics committee at the Medical Fac-
ulty of Umeå University.

EV isolation and analyses

The EV isolation was conducted by ultracentrifugation as 
recently reported [24, 42]. In brief, bacterial cells were har-
vested from agar plates and suspended in phosphate-buffered 
saline (PBS) or liquid broth. The optical density (OD) values 
of the 25 ml suspensions at 600 nm were: 0.76 (D7SS-WT), 

Table 1  Characteristics of bacterial extracellular vesicles

cdtABC cytolethal distending toxin subunit A, B and C gene, LPS lipopolysaccharide, ATCC American Type Culture Collection
* Protein concentration of the vesicle samples was measured with NanoDrop 100 spectrophotometer (Thermo Fisher Scientific)

Bacterium Strain Source EV protein con-
centration (mg/
ml)*

Aggregatibacter actinomycetemcomitans D7SS wild-type Patient with periodontitis 1.987
Aggregatibacter actinomycetemcomitans D7SS cdtABC mutant Patient with periodontitis 1.258
Aggregatibacter actinomycetemcomitans SA3138 wild-type Patient with periodontitis 7.813
Aggregatibacter actinomycetemcomitans SA3139 naturally lacking LPS 

O-antigen
Patient with periodontitis 8.732

Porphyromonas gingivalis ATCC 33277 ATCC (Gingival sulcus) 2.132
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0.56 (D7SS-cdt), 1.12 (SA3138-WT), 1.38 (SA3139-LPS-
O) and 1.00 (P. gingivalis). The number of agar plates used 
for harvesting the bacterial cells was 5 (D7SS-cdt), 10 
(D7SS-WT, SA3138-WT and SA3139-LPS-O). The suspen-
sions were centrifuged at 12.096×g for 30 min at 4 °C in a 
JA-25.50 rotor (Beckman Instruments Inc.). Supernatants 
were filtered through syringe filters (0.45 and 0.2 µm, Filtro-
pur, Sarstedt) and centrifuged at 85.000×g for 2 h at 4 °C in 
a 70 Ti rotor (Beckman Instruments Inc.). Then pellets were 
washed with PBS twice (85.000×g for 2 h at 4 °C in a Sw60 
Ti rotor (Beckman Instruments Inc.) and suspended in PBS. 
Absence of contamination was tested by cultivating small 
EV sample aliquots on blood agar plates in air supplemented 
with 5%  CO2 at 37 °C for 3 days. EV protein concentra-
tion was determined by NanoDrop 100 spectrophotometer 
(Thermo Fisher Scientific) and further analyzed by nano-
particle tracking analysis software Zetaview (Particle Met-
rix, Germany). A protein gel electrophoresis was conducted 
with Pierce™ Silver Stain Kit (Thermo Fisher Scientific) 
according to the manufacturer’s instructions to visualize 
EV proteins. We used the Criterion™ TGX™ Precast Gels 
and Precision Plus Protein™ Standard All Blue (Bio-Rad). 
Images were taken with ChemiDoc™ MP imaging system.

Cancer cell lines and growth conditions

To investigate tumor cell metastasis in vivo, we used the 
highly metastatic OSCC cell line HSC-3 (JCRB Cell Bank, 
Japan). Cancer cells were cultured in 1:1 DMEM/F-12 
medium which was supplemented with 10% heat-inactivated 
fetal bovine serum (Gibco), penicillin–streptomycin (Gibco), 
250 ng/mL amphotericin B (Sigma-Aldrich, St. Louis, MO, 
USA), 50 µg/mL ascorbic acid (AppliChem, Chicago, IL, 
USA), and 0.4 µg/mL hydrocortisone (Sigma-Aldrich, St. 
Louis, MO, USA). Cell maintenance and incubations were 
done at 37 °C, 5%  CO2 concentration and 95% relative 
humidity unless otherwise indicated. HSC-3 cell line was 
authenticated by Technology Centre, Institute for Molecular 
Medicine Finland FIMM, University of Helsinki.

Zebrafish larvae xenograft

The effect of bacterial EVs on OSCC tumor area and metas-
tasis in vivo was investigated using zebrafish larvae [36]. 
HSC-3 cells (4 ×  106) were challenged with EVs (10 µg/
ml) for 12 h. The control cells were cultured in the same 
DMEM medium but without EVs. The selected EV con-
centration was based on recent studies [27, 28, 43, 44]. 
The next day, cells were dyed with CellTrace™ Far Red 
Cell Proliferation Kit (Thermo Fisher Scientific, Cat. No. 
C34564) prior to implantation into the zebrafish larvae via 
microinjection. All zebrafish larvae wild-type (AB strain) 
were used at two-day post-fertilization (dpf). Fish were 

dechorionated and anesthetized with 0.04% Tricaine before 
microinjection to the perivitelline space, mimicking a sub-
cutaneous injection in mouse model, with a 4 nl suspen-
sion of HSC-3 cells (1500 cells/4 nl/larva). Fish microin-
jection and experiments were conducted at the Zebrafish 
Unit (University of Helsinki) and approved by the ethical 
permission from the regional state administrative agency 
(ESAVI/13139/04.10.05/2017). After microinjection, the 
larvae were transferred to a 24-well plate containing 1000 µl 
fresh embryonic medium (Merck) and stored at 34 °C. Each 
group included 19–25 larvae, divided into wells with a maxi-
mum of five fish per well. After 72 h, the zebrafish larvae 
were fixed with 4% paraformaldehyde overnight. The next 
day, they were washed twice with 1% PBS and mounted on 
slides with SlowFade™ Gold Antifade Mountant (Thermo 
Fisher Scientific, S36837).

Imaging and image analysis

The mounted zebrafish larvae were imaged using a Leica 
Thunder Imager 3D Cell Culture microscope with Plan Fluo-
tar 10×/0.32NA objective at the Biomedicum Imaging Unit, 
University of Helsinki, Finland. The tumor area was meas-
ured using Fiji ImageJ software (Wayne Rasband, National 
Institute of Health, Bethesda, MD, USA).

Statistical analyses

Statistical analyses were performed with GraphPad Prism 
Software version 9.4.1 (San Diego, California, USA). The 
Grubbs` test was used to identify and remove the outlier 
values, which were considered significant when p < 0.01. 
The analysis included groups of 18–25 fish per condition 
which were pooled together. As the variation in tumor area 
between experiments was significant, the two-way ANOVA 
with Dunnett`s multiple comparison test was used to deter-
mine statistical significance. Differences in metastasis 
between each condition and control were calculated with 
Fisher`s exact test with Bonferroni correction. Statistical 
significance was set to p < 0.05, * indicates p-values < 0.05. 
Data are represented as mean ± standard deviation (SD) or 
as quartiles with range from minimum to maximum with 
median and mean. The experiments were repeated three 
times independently.

Results

Zebrafish larvae survival

To our knowledge, this is the first study to evaluate the 
effect of bacterial EVs on OSCC cells using zebrafish lar-
vae model. A total of 389 fish were included in the final 
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analysis from the following testing groups: no-treatment 
control; D7SS-WT; D7SS-cdt; SA3138-WT; SA3139-LPS-
O and P. gingivalis. The survival rate of the zebrafish larvae 
following xenotransplantation was 98.73%, with only a few 
fish died (n = 5) before mounting.

Tumor area

Tumor area was calculated in  pix2 using Fiji ImageJ. We 
compared the effect of EVs from CDT-expressing A. actin-
omycetemcomitans on tumor area in vivo. Interestingly, 

while there was no significant difference between D7SS-
WT-derived EVs and control, EVs from D7SS-cdt strain 
increased the tumor area significantly (p < 0.05; Fig. 1a, d). 
The effect of LPS O-antigen in A. actinomycetemcomitans 
EVs on OSCC tumor size was also tested using the wild- 
type strain SA3138-WT and SA3139-LPS-O strain which is 
naturally lacking LPS O-antigen. Both strains showed vari-
ations in the tumor area compared to the control and hence 
no statistically significant differences were noted (Fig. 1b). 
To compare A. actinomycetemcomitans strains to another 
common periodontopathogen, we tested EVs from wild-type 

Fig. 1  Tumor area of HSC-3 cells pretreated with bacterial extra-
cellular vesicles (EVs; 10  µg/ml) from: A. actinomycetemcomitans 
D7SS-WT (wild-type), D7SS-cdt (lacking the cytolethal distending 
toxin, CDT), SA3138-WT (wild-type), SA3139-LPS-O (lacking the 
lipopolysaccharide (LPS) O-antigen), and P. gingivalis (wild-type). 
a HSC-3 cells pretreated with D7SS-cdt-derived EVs formed larger 
tumors than control cells (p < 0.05). b No statistically significant 

changes were seen in the tumor area of cells pretreated with EVs 
from SA3138-WT, SA3139-LPS-O or c EVs from P. gingivalis. d 
Representative images of tumors formed by control cells and cells 
pretreated with D7SS-cdt EVs. Red areas represent tumor cells. 
*p < 0.05. Values are shown as minimum to maximum with all indi-
vidual values. All experiments were repeated independently three 
times
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P. gingivalis which, however, did not show any effects on 
tumor area compared to control (Fig. 1c).

Tumor cell metastasis

Next, we analyzed the tumor metastasis in zebrafish. Metas-
tasis was analyzed by counting the proportion of fish with 
tumor cells metastasized outside the perivitelline area, i.e., 
head or tail, in each treatment group. A cut-off value of ≥1 
cell outside the perivitelline area was considered as metas-
tasis. Percentual averages ± SD from the three experiments 
were: control, 63.52 ± 5.42%; D7SS-WT, 75.16 ± 13.50%; 
D7SS-cdt, 58.64 ± 23.28; SA3138-WT, 54.76 ± 29.90%; 
SA3139-LPS-O, 34.63 ± 6.85%; and P. gingivalis, 
62.74 ± 5.42%. The CDT expression in A. actinomycetem-
comitans EVs did not influence tumor cell metastasis, and 
neither D7SS-WT nor D7SS-cdt were significantly differ-
ent from the control (Fig. 2a). EVs from the wild-type A. 
actinomycetemcomitans strain SA3138-WT did not affect 
metastasis, but EVs from SA3139-LPS-O strain lacking 
LPS O-antigen significantly reduced metastasis compared 
to control (P < 0.05; Fig. 2b). We did not observe difference 
in metastasis between OSCC cells treated with P. gingivalis-
derived EVs and control cells (Fig. 2c).

Site of tumor dissemination

In addition to analyzing metastasis, we further screened 
whether the metastatic foci were detected in the zebrafish 
head, tail, or in both head and tail. The differences compared 

to control were not statistically significant (Fig. 3a–c). 
Though, an interesting pattern was seen that, OSCC cells 
pretreated with EVs from the mutant A. actinomycetemcomi-
tans strains D7SS-cdt and SA3139-LPS-O tended to metas-
tasize less often to the head and tail compared to the control. 
The trend was consistent in all three experiments. Percen-
tual averages ± SD from the three experiments showed that 
among all metastasis cases, control tumors metastasized 
more often to head and tail (53.04 ± 14.07%), clearly more 
than cells pretreated with D7SS-cdt EVs (26.62 ± 11.80%) 
and SA3139-LPS-O EVs (19.91 ± 23.24%) (Fig. 3a, b). Cells 
pretreated with P. gingivalis EVs metastasized a little more 
often to head and tail (33.93 ± 6.97%) but less than the con-
trols, showing a consistent, though non-significant, trend in 
all three experiments (Fig. 3c).

Discussion

The present study is the first to investigate the interactions 
between bacterial EVs and OSCC in vivo using zebrafish 
larvae. Interestingly, we reported that pretreatment with EVs 
from A. actinomycetemcomitans D7SS-cdt strain resulted 
in an increased tumor area, while those from the SA3139-
LPS-O strain showed lower metastasis rates. No significant 
changes were observed in cells pre-challenged with P. gin-
givalis EVs.

Previously, several studies utilized zebrafish larvae in 
bacterial research [45–48]. For instance, zebrafish larvae 
were used to study the effect of P. gingivalis on vascular 

Fig. 2  Metastasis of HSC-3 cells pretreated with bacterial extra-
cellular vesicles (EVs; 10  µg/ml) from: A. actinomycetemcomitans 
D7SS-WT (wild-type), D7SS-cdt (lacking the cytolethal distending 
toxin, CDT), SA3138-WT (wild-type), SA3139-LPS-O (lacking the 
lipopolysaccharide (LPS) O-antigen), and P. gingivalis (wild-type). 
a Metastasis rate was not significantly affected by pretreatment with 
EVs from D7SS-WT and D7SS-cdt strains. b HSC-3 cells pretreated 

with SA3139-LPS-O-derived EVs had significantly lower metastatic 
rate than control cells. c No statistically significant changes were 
seen in the metastasis rates of HSC-3 cells pretreated with P. gingi-
valis EVs compared to controls. * p < 0.05. Values are shown as mean 
values from each experiment and line at mean. All experiments were 
repeated independently three times
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permeability and systemic dissemination [45–47]. However, 
to our knowledge, this model has not been employed for 
studying the influence of bacterial EVs on cancer cell growth 
and metastasis to date. Currently, the interactions between 
bacterial EVs and cancer are studied in vivo using patient-
derived murine xenografts [28, 44, 49, 50]. In these studies, 
EVs were administered for immunization prior cancer cell 

implantation in a model of murine melanoma [50]; intra-
venously after implantation of murine mammary, adeno-
carcinoma and melanoma cells [44]; subcutaneously after 
implantation of murine lung carcinoma cells [49]; or intra-
tumorally in OSCC tumors formed by human tongue cancer 
cells [28]. In zebrafish larvae, the studied compounds can be 
administered via immersion (i.e. from embryonic medium), 

Fig. 3  Preferential dissemination sites of the metastatic tumor cells in 
zebrafish larvae. HSC-3 cells were treated with bacterial extracellular 
vesicles (EVs; 10 µg/ml) from: A. actinomycetemcomitans D7SS-WT 
(wild-type), D7SS-cdt (lacking the cytolethal distending toxin, CDT), 
SA3138-WT (wild-type), SA3139-LPS-O (lacking the lipopolysac-
charide (LPS) O-antigen), and P. gingivalis (wild-type). A trend of 
lower metastasis rate to both head and tail was noted in cells pre-

treated with EVs from a A. actinomycetemcomitans D7SS-cdt, b A. 
actinomycetemcomitans SA3139-LPS-O and c P. gingivalis, although 
the differences were not statistically significant. d Demonstrative 
images of metastasis in head and tail of zebrafish larvae. Red areas 
represent tumor cells. Values are shown as mean ± SD. All experi-
ments were repeated independently three times



1702 M. Metsäniitty et al.

microinjection or through pretreatment of cancer cells prior 
implantation [51]. We opt herein for the latter approach and 
pretreated the OSCC cells with the EVs, based on previous 
in vitro and in vivo studies [27, 28, 52]. Alternatively, in 
a previous study, Escherichia coli cells were added to the 
embryonic medium to study hepatic and breast cancer in 
zebrafish model [48]. Adding EVs to the embryonic medium 
could also be considered, however, they might not be easily 
immersed due to the hydrophobic nature of EVs [51].

A. actinomycetemcomitans is the only known oral bacte-
rium that produces CDT [53], which is delivered into host 
cells via EVs [42]. CDT from A. actinomycetemcomitans 
showed antitumorigenic potential in leukemia, oral, prostate 
and lung cancers [16, 17, 19, 54–56] but CDT has also been 
suggested to promote carcinogenesis via DNA damage [18, 
57]. We showed that HSC-3 cells pretreated with EVs from 
the CDT-lacking strain formed larger tumors in vivo. Inter-
estingly, our recent in vitro findings revealed that HSC-3 cell 
proliferation was not affected by EVs from the D7SS-cdt 
strain; while only the wild strain EVs significantly reduced 
the proliferation of the metastatic tumor cells [26]. However, 
despite their larger sizes, they did not exhibit a higher metas-
tasis rate. In this regard, OSCC tumor size does not always 
correlate with metastasis [58] but rather with the depth of 
invasion and tumor budding [58, 59].

The periodontopathogen P. gingivalis has been shown to 
mainly promote pro-tumorigenic effects in OSCC [25, 26, 
30, 60]. Importantly, P. gingivalis promoted key features 
for metastasis including oral epithelial cell “stemness” and 
epithelial-mesenchymal transition (EMT) [61–64]. Further-
more, P. gingivalis and its EVs promoted OSCC cell migra-
tion and invasion [27, 65, 66]. In agreement, P. gingivalis 
promoted OSCC tumor growth [31, 32] and metastasis [29] 
in mice. Our findings did not reveal any significant effects of 
P. gingivalis EVs on tumor growth or metastasis. The reason 
is not clear; however, this encourages further studies using 
different EV doses and treatment durations.

Metastasis is the main cause of morbidity and cancer-
related deaths in OSCC patients [67, 68]. Unlike its wild-
type equivalent, EVs from the A. actinomycetemcomitans 
strain lacking O-antigen in LPS showed reduced dissemina-
tion of the highly metastatic HSC-3 cells. The A. actinomy-
cetemcomitans O-antigen is an immunodominant, serotype-
specific polysaccharide of LPS [69]. One of the key benefits 
of using zebrafish larvae in cancer research is their compat-
ibility with xenograft transplantation. During the first 30 
dpf, the fish larvae have only innate immune cells and lack 
an adaptive immune response, thus eliminating concerns of 
immune rejection in larval xenografts [70, 71]. In this con-
text, considering the immunodeficient nature of this model, 
it is improbable that the findings are due to LPS-mediated 
immune modulation as commonly seen in other cancer stud-
ies [72]. Of note, only LPS from periodontopathogens, but 

not LPS from commensal bacteria, influenced oral cancer 
cells directly in vitro [32]. Thus, it is logical to assume that 
the structural variation of EVs, mediated by different LPS 
structure, could affect cell metastasis. LPS consists of hydro-
phobic lipid A, hydrophilic core polysaccharide and hydro-
philic O-antigen [73]. Lack of O-antigen reduces the hydro-
philicity of EVs and possibly affects EV properties in vivo.

In conclusion, we explored the feasibility of zebrafish 
larvae as a simple yet efficient model for studying bacterial 
EVs and OSCC in vivo. Our findings revealed both pro- and 
anti-tumorigenic effects of EVs from A. actinomycetemcomi-
tans strains, depending in part on their expression of CDT 
and LPS O-antigen. Given the promising utility of bacterial 
EVs as potential therapeutic targets in cancer, we encour-
age further research on these nanosized molecules using the 
zebrafish larvae, which overcome many limitations associ-
ated with the traditional murine models.
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