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Cross-Validation

New Hypothesis

ABSTRACT Genetic, colocalization, and biochemical studies suggest that the ankyrin
repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to
control tissue patterning and maintain organ physiology. It is unknown whether these three
proteins assemble into a static “Inversin complex” or one that adopts multiple bioactive
forms. Through the characterization of hyperactive alleles in C. elegans, we discovered that
the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto
the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function,
cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stim-
ulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate
the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-
2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for
function. We propose that dynamic switching between at least two functionally distinct
states – an active dimer and an inactive monomer – gates the output of the Inversin
complex.

SIGNIFICANCE STATEMENT

� Genetic and imaging data support the existence of an Inversin complex, but it has proven
difficult to determine how the components act together to arrange organs and maintain tissue
physiology.

� Using chemical mutagenesis, single-molecule imaging, and optogenetics in C. elegans, the
authors find that inducing dimerization of the Inversin complex favors a constitutively active
state required for viability. They propose the complex toggles between an inactive monomer
and an active dimer.

� These findings present the first molecular mechanism for how the Inversin complex functions,
offering a new route for determining its assembly, regulation, and potential downstream tar-
gets.
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INTRODUCTION
Genetic data suggest that the ankyrin repeat-containing protein In-
versin (INVS) functions with at least two other proteins, the never-in-
mitosis A-related kinase 8 (NEK8) and the ankyrin repeat and sterile
alpha motif-containing protein 6 (ANKS6). Loss of any one of the
three proteins results in similar pathologies in humans and verte-
brate models. INVS was initially identified at the genetic locus dis-
rupted in mice that exhibit neonatal mortality with reversal of left-
right asymmetry (situs inversus; Yokoyama et al., 1993; Mochizuki
et al., 1998; Morgan et al., 1998). INVS was later found to also be
mutated in human patients presenting with infantile nephronoph-
thisis – a disease characterized by situs inversus and end-stage re-
nal failure, with cysts and fibrosis affecting multiple organs (Otto
et al., 2003; Zhong et al., 2022). Two additional nephronophthisis
loci have been identified as having mutations in NEK8 and ANKS6;
vertebrate models confirm that loss of either of these proteins phe-
nocopies loss of INVS (Otto et al., 2008; Frank et al., 2013; Hoff
et al., 2013; Taskiran et al., 2014; Hassan et al., 2020; Kulkarni
et al., 2020; Zhong et al., 2022). In C. elegans, loss-of-function
mutations in the INVS homolog, MLT-4, result in a lethal-molting
phenotype, where worms fail to shed their collagen-based cuti-
cles (Lažetić and Fay, 2017). Mirroring the genetic data from verte-
brates, loss of NEKL-2 (NEK8) and MLT-2 (ANKS6) exhibit the same
molting-defective phenotype (Yochem et al., 2015; Lažetić and Fay,
2017). Thus, these three proteins appear to work together across
multiple metazoan species.

Although loss-of-function experiments have been crucial in re-
vealing the biological importance of INVS, NEK8, and ANKS6, it
has proven difficult to determine the precise mechanisms by which
these proteins are acting to control tissue patterning and maintain
organ physiology. In C. elegans, all three proteins have been shown
to function in endocytic trafficking to regulate molting (Joseph
et al., 2020, 2023). In vertebrates, a recent study proposed that
INVS signals originating from the cilia counteract a cyst-activating
pathway (Li et al., 2023). Previous studies have implicated INVS
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in non-canonical Wnt signaling (Simons et al., 2005; Jenny et al.,
2005; Feiguin et al., 2001), while NEK8 and ANKS6 have been pro-
posed to regulate Hippo signaling effectors (Grampa et al., 2016;
Airik et al., 2020; Schwarz et al., 2022). These mechanisms have
been difficult to clarify, in part, due to a lack of gain-of-function
analyses that could discriminate between direct actions of these
proteins and indirect pathologies associated with loss-of-function
lethality.

Cellular and biochemical data support the model that INVS,
NEK8, and ANKS6 constitute an ‘Inversin complex’; however, we
lack fundamental knowledge about how the components might
assemble into a functionally active state. Evidence from both ver-
tebrates and invertebrates demonstrates the interdependence of
the proteins for their localization. INVS appears to function as an
anchor for the other two members in cilia, where the complex is
observed to form a fibrillar structure by superresolution microscopy
(Shiba et al., 2010; Bennett et al., 2020). Similar to the vertebrate
proteins, the C. elegans homologues colocalize, albeit at epithe-
lial junctions rather than cilia (Lažetić and Fay, 2017). While these
localization patterns might not represent direct interactions, bio-
chemical analyses have revealed the potential for the individual
components to interact. For example, ANKS6 is reported to bind
and stimulate the kinase activity of NEK8 (Czarnecki et al., 2015;
Nakajima et al., 2018). It remains unclear whether the complex is
a single static arrangement of the three proteins or undergoes dy-
namic switching between multiple states to specify its activity.

Here, we report that the Inversin complex is activated by dimer-
ization. We identified an overt, morphological, cyst-like phenotype
in C. elegans that signifies the complex is constitutively active.
Tagging MLT-4 or NEKL-2 with a red fluorescent protein (RFP) in-
duced this phenotype, and an unbiased genetic screen for pheno-
type suppression yielded monomerizing mutations in the fluores-
cent tag. We further demonstrate that optogenetic-induced dimer-
ization is sufficient to generate the gain-of-function phenotype.
Dimerization of the Inversin complex also appears to be required
for function, as we can rescue a lethal MLT-4 mutant with dimerized
NEKL-2. We propose that Inversin complex activity depends on
switching between inactive monomeric and active dimeric states.

RESULTS
Jowls phenotype reports a constitutively active inversin
complex
We reported previously that dominant, gain-of-function alleles of
mlt-4 cause a “jowls” phenotype in which fluid-filled pockets form
at the anterior ends of C. elegans (Beacham et al., 2022). The jowls
phenotype is distinct from null mutants, which are lethal (Lažetić
and Fay, 2017), and from hypomorphic mutants, which suppress
jowls (Joseph et al., 2020). One of our MLT-4 jowls alleles was
a missense mutation isolated in a forward genetic screen (MLT-4
E470K; Figure 1, A and B), whereas a stronger allele resulted from
attaching a tagRFP-T (henceforth referred to as “RFP tag”) to the
C-terminus of wild-type MLT-4 (MLT-4::RFP, Figure 1, A and B). In
contrast to MLT-4 E470K, MLT-4::RFP animals exhibit a severe fit-
ness deficit (Figure 1C; Beacham et al., 2022) and are shorter or
“dumpy” (Beacham et al., 2022). However, they are scored as ex-
hibiting a lower percentage of jowls compared with MLT-4 E470K
animals (Figure 1B; Beacham et al., 2022), suggesting that the MLT-
4::RFP jowls phenotype may be partially masked by the dumpy
phenotype. Curiously, the effect of the RFP tag appears to be spe-
cific, as no phenotype resulted from tagging MLT-4 with mScarlet,
GFP, or HaloTag (Beacham et al., 2022).
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FIGURE 1: Hyperactive MLT-4 allele exhibits gain-of-function jowls phenotype. (A) Images of worm heads. Red arrows
mark jowls. Scale bar = 20 μm. (B) Jowls assay. Percent of worms exhibiting jowls; gray boxes represent 95%
confidence intervals. n = 55–134. (C) Fitness assay. Number of days for the population to expand and consume food
source. Data represent the mean ± SD of 10 biological replicates. (D) Predicted penetrance of jowls for each allele
class. (E) Results of allele classification. Percent of worms exhibiting jowls; gray boxes represent 95% confidence
intervals. + = wild-type at indicated locus, − = mlt-4 deletion allele. n = 57–68. *** p < 0.001, **** p < 0.0001, ANOVA
analysis with Tukey’s post hoc test, as indicated (B and C) or compared with RFP/+ (E).

We hypothesized that the RFP tag might stimulate the Inversin
complex. To test this, we introduced a mutation into another mem-
ber of the complex. The R12I mutation in NEK8 is associated with
renal disease in humans and is hypothesized to reduce kinase ac-
tivity (Hassan et al., 2020). Indeed, engineering the analogous mu-
tation in NEKL-2 suppressed the jowls phenotype of both MLT-4
alleles (Figure 1, A and B) and the fitness defect of MLT-4::RFP an-
imals (Figure 1C). These results suggest that these MLT-4 alleles
represent a gain-of-function that is dependent on NEKL-2.

Gain-of-function alleles can result from increased protein activ-
ity (hypermorphic) or a new, unrelated activity (neomorphic). To
characterize the effect of the RFP tag, we generated heterozygous
strains containing one copy of MLT-4::RFP and one copy of either
a wild-type MLT-4 (referred to as MLT-4::RFP/+) or a deletion allele
(referred to as MLT-4::RFP/–). In this scheme (Figure 1D), hypermor-
phic alleles will exhibit a reduced phenotype in the presence of a
null allele, while the phenotype of hypomorphic alleles will be en-
hanced (Muller, 1932). Neomorphic alleles act independently and
will exhibit the same phenotype regardless of the presence of a
wild-type or null allele. We found that MLT-4::RFP/+ animals had

an increased penetrance of jowls as compared with MLT-4::RFP/–
animals (Figure 1E). This result is consistent with MLT-4::RFP being
a hypermorphic allele.

To test whether an RFP tag also induces a hyperactive form of
the kinase NEKL-2, we generated an inducible transgene of RFP-
tagged NEKL-2 (RFP::NEKL-2; Supplemental Figure 1A). While ex-
pression of this transgene was lethal to larval animals, expression
later in development induced jowls in adults (Supplemental Fig-
ure 1B). To test whether the jowls phenotype was dependent on
the kinase activity of NEKL-2, we generated a kinase-dead version
(D137N; Zalli et al., 2012), and found that this mutation suppressed
both the jowls phenotype and the fitness defect, as did the R12I
disease allele (Supplemental Figure 1, B and C). Altogether, these
results indicate that the jowls phenotype represents a biological
output of a constitutively active Inversin complex.

Disruption of the RFP dimer interface suppresses jowls
To gain insight into how the RFP tag on MLT-4 acts as a hypermor-
phic allele, we conducted a chemical mutagenesis screen on the
MLT-4::RFP strain for animals with suppressed jowls, and isolated
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FIGURE 2: Characterization of missense mutations in RFP tag that suppress jowls. (A) Schematic of MLT-4::RFP. Fraction
of worms exhibiting red fluorescence at epidermal junctions indicated for each mutant. Fluorescent mutants (red,
>80%) were engineered de novo for B–E. (B) Jowls assay. Percent of worms exhibiting jowls; gray boxes represent 95%
confidence intervals. n = 46–138. (C) Fitness assay. Number of days for the population to expand and consume food
source. Data represents the mean ± SD of 10 biological replicates. (D) Imaging assay for MLT-4 localization at epithelial
junctions. Representative images of endogenously tagged MLT-4::RFP (top) and apical junction marker AJM-1::GFP
(bottom). Scale bar = 5 μm. (E) Quantification of MLT-4::RFP pixel intensity at junctions plotted as CV. Data represent
mean ± SEM of 10–13 biological replicates. (F) Mutated residues mapped onto the structure of RFP tag (PDB 5JVA;
note: residue numbers shifted - 5 in PDB). * Residue predicted to form a salt bridge; see Figure 3. For B and C, + =
wild-type at mlt-4 locus. n.s. (not significant) p > 0.05, **** p < 0.0001, ANOVA analysis with Tukey’s post hoc test, as
indicated (B and C) or compared with RFP (E).

17 independent amino acid changes in the RFP tag (Figure 2A). We
hypothesized that many of these mutations might destabilize the
fluorophore and result in loss of fluorescence. Indeed, our screen
selected a mutation in the key threonine residue (T163I) that is im-
portant for the photostability of tagRFP-T (Shaner et al., 2008); the
crystal structure (R. Liu et al., 2016) shows this residue hydrogen
bonding with the chromophore. As anticipated, our T163I mutant
did not appear to be fluorescent (Figure 2, A, D, and E). Because
it could be difficult to narrow down the precise molecular mecha-
nism by which the other nonfluorescent RFP mutants suppress the
jowls phenotype, we elected to focus on the missense mutants that

retained red fluorescence in order to explore how fusing the RFP
tag to MLT-4 causes jowls.

Three of the RFP missense mutants (R162K, E205K, and V221E)
retained red fluorescence (Figure 2A). To confirm that these three
mutations were indeed responsible for the suppression of the phe-
notype, we introduced them de novo using CRISPR. All three mis-
sense mutations suppressed both the jowls (Figure 2B) and the fit-
ness defect (Figure 2C) of the MLT-4::RFP animals. We also con-
firmed that these MLT-4::RFP mutant proteins were appropriately
localized to the apical junctions, which were demarcated by the
apical epithelial junction marker AJM-1::GFP (Z. Liu et al., 2005).
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Although the red fluorescent signals appeared slightly reduced,
all three retained a normal localization pattern (Figure 2, D and
E), suggesting these mutations might have specifically disrupted a
protein–protein interaction responsible for the jowls phenotype.

When we examined the positions of these mutated residues
(R162, E205, and V221) on the crystal structure of tagRFP-T (R.
Liu et al., 2016), we observed that all three mapped to the dimer
interface between two RFP molecules (Figure 2F). The residues
analogous to E205 and V221 were previously modified to engi-
neer monomeric forms of GFP (Zacharias et al., 2002; Pédelacq
et al., 2006; Costantini et al., 2012; Scott et al., 2018). The other
residue, R162, has previously been mutated to monomerize mKate
(Shemiakina et al., 2012) and mCardinal (Wannier et al., 2018). To
determine whether the R162K mutation isolated in our screen like-
wise favored MLT-4::RFP monomers, we employed single-molecule
TIRF microscopy coupled with stepwise photobleaching. We lysed
MLT-4::RFP worms and quantified the percentage of RFP-positive
molecules within the lysate that exhibited a single photobleach-
ing step. The R162K mutant consistently increased the monomeric
fraction even as we increased the particle density (Figure 3A), con-
sistent with an increase in RFP monomers.

In the crystal structure, R162 appears to bridge the dimer inter-
face via an electrostatic interaction with residue E102 (Figure 2F).
We hypothesized that mutating E102 in MLT-4::RFP animals should
reduce dimerization and suppress jowls, similar to the mutation
of R162. Indeed, an alanine mutant (E102A) suppressed both the
jowls (Figure 3B) and fitness defect (Figure 3C) of MLT-4::RFP ani-
mals, without overtly perturbing the fluorescence or localization of
MLT-4::RFP (Figure 3, D and E). Taken together, these data strongly
suggest that the RFP tag forces dimerization of MLT-4 to generate
a constitutively active Inversin complex.

Optogenetic dimerization of MLT-4 and NEKL-2 causes
jowls
To test the differential effects of dimerization on Inversin complex
subunits, we utilized the fungal photoreceptor Vivid, which has
been shown to dimerize in a light-inducible manner (Shrode et al.,
2001; Zoltowski and Crane, 2008). We fused Vivid to each of the
Inversin complex members using CRISPR, and induced dimeriza-
tion of the Vivid tag with ambient light. When we attached Vivid
to the C-terminus of either MLT-4 or NEKL-2, worms exposed to
light exhibited jowls as adults, while worms grown in the dark did
not (Figure 4, A–C). However, we did not see a robust fitness de-
fect associated with fusing Vivid to NEKL-2 or MLT-4 (Figure 4D),
in contrast to the RFP tags. Perhaps Vivid dimerization is not as
robust as RFP at overcoming potential steric barriers or regulatory
mechanisms that stabilize Inversin complex monomers, or it could
be that the jowls and fitness defects are due to differential out-
puts of the Inversin complex. Interestingly, we failed to observe a
phenotype when we fused Vivid to either the N- or C-terminus of
MLT-2. These results could suggest that steric hindrance prevents
Vivid-dependent dimerization of MLT-2, or that MLT-2 regulates the
complex through a different mechanism. Altogether, these optoge-
netic studies show that dimerization of either MLT-4 or NEKL-2 is
sufficient to activate the complex.

Dimerization of NEKL-2 rescues a functionally inactive
MLT-4 mutant
Our screen for suppressors of the MLT-4::RFP phenotype also
yielded mutations in MLT-4 itself (T94P, E291A, and N442K; Figure
5A). To determine whether any of these mutations specifically
counteract dimerization, we followed the same strategy that we

used to identify monomerizing mutants in the RFP tag. We engi-
neered these MLT-4 mutations de novo to confirm that they sup-
pressed MLT-4::RFP animals. While all three mutations fully sup-
pressed the fitness defect caused by MLT-4::RFP (Figure 5B), only
two (T94P and E291A) fully suppressed the jowls (Figure 5C). While
the E291A mutant localized appropriately, both the N442K and
T94P mutants exhibited significantly reduced fluorescent signals
at the junctions (Figure 5, D and E). All three mutants appear to
be stably expressed by Western blot analysis (Figure 5F), suggest-
ing that N442K and T94P may result in diffuse mislocalization in
the cytosol. Because the E291A mutation appeared to be a strong
suppressor that is stably expressed and correctly localized, we hy-
pothesized that E291A could be disrupting the dimerization of the
complex and favoring a monomeric state.

If dimerization of the Inversin complex is required for its func-
tion, a monomerizing mutant should phenocopy a lethal null mu-
tant in the absence of a dimerization tag (Figure 6A). To test this,
we generated the E291A mutant in an untagged MLT-4 strain and
compared the phenotype to that of a MLT-4 deletion. Because mlt-
4 nulls are lethal, we generated the MLT-4 deletion and the E291A
mutation in worms rescued by extrachromosomal arrays of MLT-4.
We then evaluated the phenotype of offspring that did not inherit
the array. For both the homozygous MLT-4 null and E291A strains,
0% of the array-negative worms survived, compared with ∼95% of
their array-positive siblings (Figure 6B).

We further reasoned that a monomerizing mutant should be res-
cued by inducing dimerization of the complex (Figure 6A), whereas
a null would not. Presumably, dimerization of MLT-4 by the RFP
tag enabled us to isolate the E291A mutation from our screen.
To test whether dimerization of another member of the complex
could similarly rescue the lethality of this mutant, we generated the
E291A mutation in the NEKL-2::Vivid strain. We found that light-
induced dimerization of NEKL-2 rescued E291A lethality (84% of
offspring survived, Figure 6B). Importantly, a MLT-4 deletion was
not rescued by dimerization of NEKL-2 (0% of offspring survived,
Figure 6B), suggesting that the E291A mutation specifically coun-
teracts dimerization of the Inversin complex.

DISCUSSION
Loss-of-function analyses and colocalization studies of Inversin
complex proteins from both vertebrates and invertebrates show
that INVS, NEK8, and ANKS6 work together, but how the activ-
ity of the Inversin complex is regulated to produce a functional
output is largely unknown. Our results suggest that there are at
least two functionally distinct states of the complex: an inactive
monomer and an active dimer (Figure 6C). We hypothesize that the
hyperactive jowl alleles stabilize the active dimer state; we can in-
duce dimerization optogenetically and recapitulate the phenotype.
We further hypothesize that a missense mutation isolated from our
suppressor screen appears to favor the inactive monomer state;
the lethality of the mutation is bypassed by forcing dimerization of
NEKL-2. Thus, we propose dynamic switching between these two
states as a new model for how the Inversin complex functions.

A new functional assay for Inversin complex activity
Previous work has shown that loss of the Inversin complex in C. ele-
gans results in a lethal molting defect (Yochem et al., 2015; Lažetić
and Fay, 2017). In vertebrates, many of the nephronophthisis
disease-associated mutations in INVS, ANKS6, and NEK8 result in
early stops or frameshifts, suggesting that they also result in loss-of-
function (Otto et al., 2003; Frank et al., 2013; Kulkarni et al. 2020).
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FIGURE 3: Perturbation of RFP dimerization reverses jowls phenotype. (A) Single-molecule photobleaching assay. Left:
Representative TIRF image of MLT-4::RFP single molecules (average intensity projection of frames 6–50). Middle:
Representative fluorescence intensity traces of MLT-4::RFP monomer (top) and dimer (bottom). Right: Percent of
MLT-4::RFP spots exhibiting a single bleaching step. Data collected from five to eight images (circles) across three
comparable particle densities (shaded clusters, mean indicated). (B) Jowls assay. Percent of worms exhibiting jowls;
gray boxes represent 95% confidence intervals. n = 35–92. (C) Fitness assay. Number of days for the population to
expand and consume food sources. Data represent the mean ± SD of 10 biological replicates. (D) Imaging assay for
MLT-4 localization at epithelial junctions. Representative images of endogenously tagged MLT-4::RFP (top) and apical
junction marker AJM-1::GFP (bottom). (E) Quantification of MLT-4::RFP pixel intensity at junctions plotted as CV. Data
represent the mean ± SEM of 11–13 biological replicates. + = wild-type at mlt-4 locus. n.s. p > 0.05, **** p < 0.0001,
ANOVA analysis with Tukey’s post hoc test, as indicated (B and C) or compared with RFP (E). All scale bars = 5 μm.

Despite the characterization of how these loss-of-function alleles
affect localization, ciliogenesis, and cyst formation (Otto et al.,
2008; Zalli et al., 2012), we lack a comprehensive understanding of
the normal activity of the complex due to the absence of gain-of-
function analyses, which could identify potential downstream tar-
gets. In this paper, we conclude that the MLT-4::RFP allele is likely
hyperactive because it is dominant and modulated by the dosage
of the wild-type gene (Figure 1, D and E). This allele enabled us
to characterize a recessive point mutation in the NEK8 kinase do-
main (R12I) associated with end-stage renal failure (Hassan et al.,
2020). In our animals, the R12I disease allele suppressed the gain-

of-function jowls phenotype, but is not lethal (Figure 1, A and C).
These results are consistent with the R12I mutation being a hypo-
morphic allele, as opposed to a loss-of-function allele. Thus, our
jowls assay can be used to assess additional disease-associated
missense mutations as they are discovered.

Our results show that constitutive dimerization of MLT-4 or
NEKL-2 causes jowls. Although we looked specifically at dimeriza-
tion in this paper, we cannot rule out that a higher-order oligomer
is the true active state. Indeed, superresolution microscopy data
suggest that the Inversin complex forms fibril-like structures in
cilia (Bennett et al., 2020), but the functional significance of these
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FIGURE 4: Optogenetic dimerization of MLT-4 or NEKL-2 causes jowls. (A) Diagram of light-dependent dimerization of
Vivid tag fused to Inversin complex protein. (B) Images of worm heads. Red arrows indicate jowls. Scale bar = 20 μm.
(C) Jowls assay. Percent of worms exhibiting jowls; gray boxes represent 95% confidence intervals. n = 29–72. (D)
Fitness assay. Number of days for the population to expand and consume food sources. Data represent the mean ± SD
of 10 biological replicates. WT = wild-type Bristol N2. n.s. p > 0.05,** p < 0.01, *** p < 0.001, **** p < 0.0001, ANOVA
analysis with Tukey’s post hoc test, compared with + within respective light/dark conditions.

structures remains unclear. Interestingly, we did not observe jowls
when we attempted to dimerize MLT-2 by fusing Vivid to either
terminus (Figure 4). Several studies in both C. elegans and verte-
brates suggest that MLT-2/ANKS6 is part of the same complex as
NEKL-2/NEK8 and MLT-4/INVS, and is required for activation of the
kinase (Hoff et al., 2013; Czarnecki et al. 2015; Lažetić et al., 2018).
The simplest explanation for our result is that steric hindrance pre-
vents dimerization of MLT-2 when fused to Vivid. Alternatively, MLT-
2 could be functioning differently from MLT-4 and NEKL-2 in our an-
imals to regulate the complex through a mechanism independent
of dimerization. Differential impact of dimerization on the individ-
ual subunits could also point to the hierarchical assembly of Inversin
complex components that can be explored in future studies.

Why does the Inversin complex require dimerization to be
active? NEK8 is thought to act downstream of INVS (Fukui et

al., 2012), and many kinases are known to become active via
autophosphorylation in response to dimerization (Hubbard and
Miller, 2007). A previous study suggests that NEK8 activity is
dependent on autophosphorylation (Zalli et al., 2012). Our results
support a model whereby dimerization could promote autophos-
phorylation. However, if the kinase were strictly downstream of
INVS, then dimerization of the kinase with Vivid should bypass a
MLT-4 deletion – it does not (Figure 6B). Instead, this result is con-
sistent with data from multiple systems showing that MLT-4/INVS,
along with MLT-2/ANKS6, is required for the localization of NEKL-
2/NEK8 (Hoff et al., 2013; Lažetić and Fay, 2017; Bennett et al.,
2020). Indeed, we find that a properly localized, yet lethal, MLT-4
mutant (E291A) is rescued by dimerization of NEKL-2 (Figure 6B).
However, the animals did not exhibit jowls, indicating that the
E291A mutant reduces dimerization of the kinase. Altogether,
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FIGURE 5: Characterization of missense mutations in MLT-4 that suppress jowls. (A) Schematic of MLT-4::RFP indicating
mutations in MLT-4 isolated from mutagenesis screen. (B) Jowls assay. Percent of worms exhibiting jowls; gray boxes
represent 95% confidence intervals. n = 51–88. (C) Fitness assay. Number of days for the population to expand and
consume food sources. Data represent means ± SD of 10 biological replicates. (D) Imaging assay for MLT-4 localization
at epithelial junctions. Representative images of endogenously tagged MLT-4::RFP (top) and apical junction marker
AJM-1::GFP (bottom). Scale bar = 5 μm. (E) Quantification of MLT-4::RFP pixel intensity at junctions plotted as CV. Data
represent means ± SEM of 10–12 biological replicates. (F) Western blot dual-labeled for HA tag on MLT-4::RFP (top)
and loading control (bottom). + = wild-type at mlt-4 locus. n.s. p > 0.05, * p ≤ 0.05, ** p < 0.01, *** p < 0.001,
**** < 0.0001, ANOVA analysis with Tukey’s post hoc test, as indicated (B and C) or compared with MLT-4::RFP (E).

these results suggest that the Inversin complex proteins are acting
as interdependent subunits.

An in vivo strategy to assess the monomeric character of
fluorescent proteins and other genetically encodable tags
Most genetically encodable fluorophores descend from dimeric or
tetrameric proteins. Thus, a central focus of fluorescent protein (FP)
engineering is generating monomeric versions. The standard in

vitro assays for determining the oligomeric state of FPs include gel
filtration, ultracentrifugation, and structural analyses. However, the
propensity of an FP to dimerize often depends on its cellular en-
vironment. Currently, the standard in vivo assay of FP oligomeriza-
tion is the OSER assay, which assesses FPs fused to ER-membrane
proteins. If the FP oligomerizes, it will deform the ER and create
whorl-like structures (Snapp et al., 2003). Using this assay, TagRFP
has been shown to dimerize in cells (Costantini et al., 2012), even
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FIGURE 6: Dimerization of NEKL-2 rescues a functionally inactive MLT-4 mutant. (A) Graphic summary of phenotype
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represent 95% confidence intervals. n = 89–271. Percent jowls are indicated for the strains that were viable. (C) Model
for dimerization-dependent activation of the Inversin complex. + = wild-type at nekl-2 locus. n.s. p > 0.05, ** p < 0.01,
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though it appears monomeric in vitro (Merzlyak et al., 2007). Our
results are consistent with tagRFP-T having a propensity to dimer-
ize in vivo (Figures 2, 3, and 4). We previously found that tagging
MLT-4 with mScarlet does not cause jowls (Beacham et al., 2022),
which is also consistent with results from the OSER assay where
mScarlet exhibited 75% normal cells (Bindels et al., 2017).

Interestingly, our suppressor screen generated mutations in
tagRFP-T that have previously been shown to monomerize FPs.
Two of the residues mutated in our screen that retain red fluores-
cence (E205 and V221, Figure 2A) have been previously shown to
be important for the monomerization of GFP according to both in
vitro methods and the OSER assay (Zacharias et al., 2002; Pédelacq
et al., 2006; Costantini et al., 2012; Scott et al., 2018). The R162
residue in tagRFP-T arose in tagRFP from random mutagenesis,
and then later was mutated to reduce dimerization in the develop-
ment of mKelly2 (Wannier et al., 2018) and fusionRed (Shemiakina
et al., 2012). Several other residues that were identified in our sup-
pressor screen as nonfluorescent mutants have also been modified
to monomerize other FPs. For example, T110 was mutated to a
proline in our screen but to a lysine in order to generate mCarmine
(Fabritius et al., 2018). Similarly, V200E was isolated in our screen

but was mutated to isoleucine in the development of mMaroon
(Bajar et al., 2016). Although these particular mutations (T110P and
V200E) resulted in a loss of fluorescence in our screen, it is possible
that they disrupt dimerization by destabilizing the fluorophore. Our
results suggest a novel strategy to evaluate the monomeric nature
of any FP or other genetically encodable tags in vivo.

MATERIALS AND METHODS
Worm strains, maintenance, and CRISPR-Cas9 transgenics
Strains were maintained at room temperature (or 15°C for Figure
2A) on nematode growth medium (NGM) plates seeded with a bac-
terial food source (strain OP50). CRISPR-Cas9 edits were generated
by injecting C. elegans gonads with ribonucleoprotein (RNP) com-
plexes as described in (Ghanta and Mello, 2020), using unmodified
oligonucleotides and slight modifications to the annealing strategy
as described in (Beacham et al., 2022). For a complete list of com-
ponents of the RNP complexes, including crRNAs, accompanying
repair strategies, and resulting strains and alleles, see Supplemen-
tal File 1. Alleles generated by CRISPR were confirmed by sequenc-
ing a PCR amplicon of the modified locus.
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MLT-4::RFP suppressor screen
MLT-4::RFP mutants (GUN405) were mutagenized as described
in (Beacham et al., 2022). Briefly, worms were incubated for 4 h
at 22°C in 0.5 mM N-nitroso-N-ethylurea (ENU, Sigma Aldrich
N3385), washed thoroughly in M9 buffer (22 mM KH2HPO4,
42.3 mM Na2HPO4, 85.6 mM NaCl, 1 mM MgSO4), distributed
across NGM growth plates seeded with concentrated OP50 bac-
terial culture, and passaged several times to select for worms with
increased fitness. One suppressed animal per culture plate was
selected to ensure the isolation of independent suppressors. Ge-
nomic regions corresponding to the RFP tag and mlt-4 gene were
amplified and sequenced to identify mutations.

DIC and live fluorescent imaging
For DIC imaging, worms were mounted on 2% agarose pads on
glass slides in 20% sodium azide and imaged using a 40x DIC ob-
jective 10–20 min after overlay of a No. 1.5 glass coverslip. For flu-
orescent imaging, adult worms were mounted on 8–10% agarose
pads on glass slides and immobilized using 0.1 μm polystyrene
beads (Polysciences, Warrington, PA, 2.5% by volume) diluted 2-
fold in PBS (pH 7.4) followed by an overlay of a No. 1.5 glass cov-
erslip (Kim et al., 2013). For the initial screening of fluorescent sig-
nal in the RFP tag mutants (Figure 2A), the focal planes between
the alae and gonad were identified using brightfield microscopy.
Then, a Z-stack of the red fluorescent channel was collected us-
ing a 60x oil immersion objective on a BZ-X810 Keyence micro-
scope. Worms exhibiting fluorescent signals at epidermal junctions
were scored for each strain. For quantification of junctional fluores-
cent signal (Figures 2, 3, and 5), Z-stacks flanking the AJM-1::GFP
junctional marker were collected in both the green and red chan-
nels using a custom-built RM21 TIRF microscope (MadCity Labs)
equipped with a 60x oil immersion TIRF objective (Nikon), 488-
and 552 nm lasers (Coherent OBIS), and an Orca Fusion BT sC-
MOS camera (Hamamatsu). For image analysis, the AJM-1::GFP
signal was used to select the single focal plane corresponding to
the apical junctions. A segmented line (5 pixels wide) was drawn
along the AJM-1::GFP signal and transformed into the red chan-
nel using Fiji (Schindelin et al., 2012). The mean pixel intensity and
standard deviation (SD) were measured to calculate the coefficient
of variance (CV = SD/mean) for each segmented line in the red
channel only.

Jowls assays
Synchronized populations of adult worms were scored for the pres-
ence of jowls under a dissecting microscope (Nikon SMZ800N).
For allele classification in Figure 1E, MLT-4::RFP/– was gener-
ated by CRISPR as indicated in Supplemental File 1, resulting
in a balanced heterozygous strain (GUN2180). MLT-4::RFP/+ het-
erozygous worms were generated by crossing N2 males with
GUN350 hermaphrodites and selecting F1 animals. Offspring of
MLT-4::RFP/+ and MLT-4::RFP/– heterozygotes were scored for
jowls and genotyped post hoc. Only the confirmed heterozygous
offspring were included in the analysis. For phenotypic analysis fol-
lowing induction of RFP::NEKL-2 expression in Supplemental Fig-
ure 1, jowls were scored 6 h post heatshock (34°C, 1 h).

Starvation assays
Three L4 worms were placed on each of 10 culture plates per strain
and allowed to reproduce and expand. Plates were evaluated daily
and marked as starved when all food was consumed.

Statistical analysis
Jowls assay and the survival assay in Figure 6 was analyzed in RStu-
dio as described previously (Beacham et al., 2022). Briefly, gener-
alized linear models were fit to a binomial distribution. Starvation
assays and imaging assays were analyzed in GraphPad. For all sta-
tistical comparisons, ANOVA analysis was performed using Tukey’s
method to adjust for multiple comparisons.

Western blot analysis
For each sample, 100 L4 worms were lysed in PBS with 1x Bolt
LDS Sample Buffer (Invitrogen) containing 0.01% Triton X-100 and
25 mM DTT. Samples were frozen in liquid nitrogen before soni-
cating at 70% power for 3 min total (1 s on, 1 s off) in a cup horn
sonicator. Samples were then incubated at 70°C for 10 min. Soni-
cation and heating steps were repeated two to three times to en-
sure complete lysis. SDS–PAGE was performed using Bolt 4–12%
Bis-Tris Plus precast gels (Invitrogen). Proteins were transferred to
PVDF Immobilon-FL membranes (Merck Millipore) using the Power
Blotter Semi-dry Transfer System (Thermo Fisher Scientific) accord-
ing to product instructions. After transferring, membranes were
blocked using EveryBlot Blocking Buffer (Biorad) for 10 min. Mem-
branes were incubated in primary antibody diluted in blocking
buffer [rat anti-HA HRP 1:500 (Roche 12013819001), mouse anti-
tubulin 1:1000 (Sigma, T5168)] for 1 h at room temperature with
orbital shaking, washed three times in TBST for 5 min each, and in-
cubated in secondary antibody diluted in blocking buffer [goat an-
timouse 488 1:4000 (Thermo Fisher Scientific A11029)] for 30 min
at room temperature with orbital shaking. Before imaging, mem-
branes were washed three to four times in TBST for at least 5 min
each. HRP was detected using SuperSignal West Dura Extended
Duration Substrate (Thermo Fisher Scientific). Blots were imaged
using the BioRad ChemiDoc MP imaging system, and band inten-
sities were quantified using ImageLab software.

Molecular visualization
The structural representation of the tagRFP-T dimer (chains A and
B of PDB 5JVA) in Figure 2F was prepared in ChimeraX (Goddard
et al., 2018; Pettersen et al., 2021).

TIRF single molecule imaging
Coverslip PEGylation. Glass coverslips were placed in a glass
Coplin jar containing acetone and sonicated using a water bath
sonicator for 10 min. Coverslips were then rinsed five times with
reverse osmosis (RO) water, sonicated in methanol for 10 min,
washed five times with RO water, sonicated in 3N KOH for 40 min,
washed five times with RO water, and rinsed in methanol. After dry-
ing, the coverslips were PEGylated by incubating in a 1:100 mixture
of 1% biotin-PEG-silane in ethanol (Laysan Bio Biotin-PEG-SIL-2K-
1g) and PEG-silane (85%, VWR 77035-498) for 1 h in the dark at
room temperature. Coverslips were rinsed thoroughly in RO wa-
ter and dried with nitrogen gas before storing them in the dark at
room temperature in a Tupperware container with Drierite desic-
cant (VWR).

C. elegans lysate preparation. Worms were cultured at room
temperature on 15 cm NGM plates seeded with concentrated
OP50 E. coli culture mixed with chicken egg. When plates were
confluent but not yet starved, worms were harvested using TBS
and centrifuged at 180 × g at 4°C for 2 min. The supernatant
was removed, and the pelleted worms were washed two times
with TBS. Worms were resuspended in an equal volume of 2x ly-
sis buffer (2x TBS, 0.2% TX-100, and 10% glycerol with protease
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inhibitors [Roche, 1 tablet per 25 ml lysis buffer]). The resulting
worm slurry was frozen dropwise in liquid nitrogen and stored at
−80°C until lysis. Frozen worm pellets were ground in a coffee
grinder prechilled with liquid nitrogen. When the ground sample
lacked intact worms, as verified by thawing an aliquot on a slide un-
der a dissecting scope, the remaining powdered sample was stored
at −80°C. Immediately before slide preparation for imaging, an
aliquot was thawed on ice and spun at 17,000 × g for 2 min at
room temperature. The supernatant was collected and applied to
PEGylated coverslips for imaging (described below).

Slide preparation for imaging. Before imaging, multichannel de-
vices were assembled by adhering a coated coverslip to an un-
coated glass slide using ∼4 mm strips of double-sided tape placed
orthogonally to the long axis. Each channel was filled by capillary
action with wash buffer (10 mM Tris, pH 8.0, 50 mM NaCl, 0.01%
BSA, 0.01% TX-100). Channels were washed two times before each
of the following steps: 10-min incubation with 0.2 mg/ml neutra-
vidin (Thermo Fisher Scientific) in wash buffer, 10-min incubation
with biotinylated antibody [anti-HA biotin (Roche 12158167001) di-
luted 1:100 in wash buffer], 10-min incubation with blocking buffer
(10 mM Tris, pH 8.0, 50 mM NaCl, 2% BSA, 0.01% TX-100), and
15-min incubation with C. elegans lysate. Channels were washed
three times before imaging. Samples were imaged using an RM21
TIRF microscope (MadCity Labs) equipped with a 60x oil immer-
sion TIRF objective (Nikon), a 552-nm laser (Coherent OBIS), and
an Orca Fusion BT sCMOS camera (Hamamatsu).

Data analysis. Single-molecule detection and analysis of pho-
tobleaching steps were performed automatically using SimPull
Analysis Software https://github.com/dickinson-lab/SiMPull-
Analysis-Software (Dickinson et al., 2017; Stolpner and Dickinson,
2022). Samples were excluded if particle densities precluded
accurate single-molecule spot detection. Single molecules that
were rejected by the SimPull Analysis Software (molecules that
did not photobleach or molecules that exhibited an increase in
intensity over the course of imaging) were excluded from the final
analysis.

Vivid transgenes and light exposure
The sequence of Neurospora crassa Vivid (Uniprot entry
Q1K5Y8_NEUCR) was synthesized as a gBlock (IDT) with the
following modifications: the first 36 amino acids were removed
(Zoltowski and Crane, 2008; Vaidya et al., 2011), a point mutation
(I52C) that has previously been shown to stabilize the dimer state
was introduced (Nihongaki et al., 2014), and a C. elegans intron
was added using C. elegans Codon Adapter (Redemann et al.,
2011). The resulting synthetic gene (gbEB3) was amplified for
CRISPR repairs. Although Vivid is most sensitive to blue light,
culture plates were exposed to ambient light because long-term
exposure to blue light induces C. elegans embryonic lethality.

Array rescue experiments
Homozygous MLT-4 null and MLT-4 E291A worm strains rescued by
MLT-4 extrachromosomal arrays (GUN2409 and GUN2407, respec-
tively) were generated by injecting a MLT-4::GFP plasmid (along
with neuronal marker pGH5) into MLT-4::RFP/MLT-4 null and MLT-
4::RFP/MLT-4 E291A heterozygotes. Array-rescued MLT-4 null or
E291A homozygous candidates (array-positive offspring lacking
jowls) were isolated and confirmed by genotyping. The NEKL-
2::Vivid; MLT-4 null strain rescued by an MLT-4 array (GUN2413)
was generated by crossing heterozygous NEKL-2::Vivid males with

GUN2409. The NEKL-2::Vivid; MLT-4 E291A strain (GUN2411) was
generated by CRISPR, as indicated in Supplemental File 1. For the
survival assay in Figure 6, 6-h broods were collected from array-
positive adults. Upon hatching, siblings were separated into array-
positive and array-negative pools and scored for viability once the
array-positive cohort reached adulthood.
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