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Abstract 

Treatment planning for chronic diseases is a critical task in medical artificial intelligence, particularly in traditional 
Chinese medicine (TCM). However, generating optimized sequential treatment strategies for patients with chronic 
diseases in different clinical encounters remains a challenging issue that requires further exploration. In this study, we 
proposed a TCM herbal prescription planning framework based on deep reinforcement learning for chronic disease 
treatment (PrescDRL). PrescDRL is a sequential herbal prescription optimization model that focuses on long-term 
effectiveness rather than achieving maximum reward at every step, thereby ensuring better patient outcomes. We 
constructed a high-quality benchmark dataset for sequential diagnosis and treatment of diabetes and evaluated 
PrescDRL against this benchmark. Our results showed that PrescDRL achieved a higher curative effect, with the single-
step reward improving by 117% and 153% compared to doctors. Furthermore, PrescDRL outperformed the bench-
mark in prescription prediction, with precision improving by 40.5% and recall improving by 63%. Overall, our study 
demonstrates the potential of using artificial intelligence to improve clinical intelligent diagnosis and treatment 
in TCM.

Keywords  Deep reinforcement learning, Traditional Chinese medicine, Herbal prescription planning, Chronic disease, 
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Introduction
Intelligent diagnosis and automatic drug recommenda-
tion have become important topics in medical artificial 
intelligence[1]. The optimization problem of dynamic 

diagnosis and treatment scheme (DDTS) considers a 
patient’s treatment as a sequential decision-making pro-
cess[2], aiming to identify the best sequential treatment 
schema[3]. In the field of Traditional Chinese Medicine 
(TCM)[4], DDTS optimization typically requires consid-
eration of a patient’s status (e.g., symptoms and signs) at 
each stage, and generates an herbal prescription treat-
ment plan (HPTP). TCM doctors obtain a patient’s symp-
tom descriptions and corresponding syndromes through 
the “Four Examinations” method of “watching, listening, 
asking, and feeling” [5]. Unlike prescription recommen-
dation, which predicts the appropriate prescription based 
on a patient’s current situation, DDTS optimization 
focuses on providing the best treatment at each stage to 
maximize the treatment effect of the entire sequence and 
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identify the best sequential decision-making path. DDTS 
optimization prioritizes the outcome of a sequential 
treatment process rather than the outcome of a particular 
treatment.

With the explosive development of deep learning tech-
nology, it has gradually been applied to a variety of bio-
medical problems, such as disease gene prediction[6, 7], 
drug target prediction[8], drug repositioning[9]. Since 
the appearance of AlphaGO[10] in 2015, deep reinforce-
ment learning (DRL) has emerged as a research hotspot 
in medical artificial intelligence, combining the depth 
perception of deep learning[11] with the decision-making 
of reinforcement learning (RL) to achieve optimal deci-
sion-making control[12]. Many excellent diagnosis and 
treatment planning models based on RL have been pro-
posed by researchers in recent years[13–21]. For exam-
ple, Shamim et  al. proposed a circular decision-making 
framework based on RL, which provides personalized 
dose schemes for patients[13]. Liu et  al. constructed 
an RL model for the prevention and treatment of graft-
versus-host disease in leukemia patients[22]. Wang et al. 
proposed a supervised RL model based on cyclic neural 
networks to recommend dynamic diagnosis and treat-
ment schemes[23]. In the field of Traditional Chinese 
Medicine (TCM), Feng proposed the use of a partially 
observable Markov decision process (POMDP) model 
to mine the optimal DDTS[24]. Hu proposed a deep RL 
algorithm framework for optimizing the sequential diag-
nosis and treatment scheme of TCM[25].

With the intricate mechanisms of herb combinations 
in prescriptions, combined diseases in patients, and indi-
vidual differences among patients, designing an appropri-
ate DDTS optimization model remains a challenge[26]. 
Current RL-based DDTS optimization algorithms, on 
one hand, do not effectively learn from the medication 
rules of experienced TCM doctors and fail to achieve 
satisfactory results. On the other hand, they do not fully 
represent the patient’s state space and action space. Con-
sequently, there is a pressing need for more accurate and 
dependable models to enhance the practicality of auxil-
iary diagnosis and treatment and to recommend more 
reliable HPTP for patients.

With the availability of large-scale real-world clinical 
data[27] and advancements in artificial intelligence[28], 
it is now possible to construct robust computational 
models for recommending appropriate prescriptions[29]. 
Three main categories of prescription recommendation 
methods have emerged, including traditional machine 
learning-based[30, 31], topic model-based[32, 33], and 
deep learning-based methods[34–36].For instance, Li 
et al.[36] proposed an improved seq2seq model to gener-
ate herbal prescriptions, while Yu et  al.[37] developed a 
model based on CNN and topic model to predict TCM 

prescriptions. Liao et  al.[38] proposed a CNN-based 
model that extracts facial image features and maps the 
relationship between facial features and drugs to predict 
herbal prescriptions. Zhou et  al.[39] proposed an effec-
tive formula recommendation framework called FordNet, 
which integrates macro and micro information using 
deep neural networks. Dong et  al.[40] proposed a sub-
network-based symptom term mapping method (SSTM), 
and constructed a SSTM-based TCM prescription rec-
ommendation method TCMPR. Recently, Dong et  al.
[41] proposed a novel herbal prescription recommenda-
tion algorithm for real-world patients with integration 
of syndrome differentiation and treatment planning, 
which effectively integrated the embedding vectors of the 
knowledge graph for progressive recommendation tasks. 
Wang et  al.[42] proposed the feature fusion and bipar-
tite decision networks to leverage external knowledge 
and improve medication recommendation accuracy and 
drug-drug interaction rate. Tan et al.[43] proposed a log-
ically-pretrained and model-agnostic medical ontology 
encoders for medication recommendation that addressed 
data sparsity problem with medical ontologies. Mi et al.
[44] proposed an attention-guided collaborative deci-
sion network for medication recommendation, which 
effectively captured patient health conditions and medi-
cation records, utilizing the similarity between medica-
tion records and medicine representation to facilitate 
the recommendation process. Zheng et al.[45] proposed 
a novel end-to-end drug package generation framework, 
which developed a new generative model for drug pack-
age recommendation that considered the interaction 
effects between drugs that are affected by patient condi-
tions. Despite the growing number of studies on herbal 
prescription recommendation, a significant challenge 
remains in bridging the gap between treatment planning 
based on reinforcement learning and recommending spe-
cific prescriptions.

In our study, we present PrescDRL, a novel model for 
optimizing diagnosis and treatment schemes using deep 
reinforcement learning (Fig.  1A-1E). Initially, we con-
structed a high-quality benchmark dataset for sequential 
diagnosis and treatment of diabetes, and subsequently 
designed the PrescDRL framework for herbal prescrip-
tion treatment planning. Unlike traditional reward-
driven approaches, PrescDRL focuses on long-term 
effectiveness to ensure better outcomes for patients. We 
formulated the optimization of Diagnosis and Treatment 
Treatment Scheme (DDTS) as a reinforcement learn-
ing task, with patient symptom observations as inputs 
and High-Performance Treatment Plan (HPTP) as the 
optimization goal. We then employed a multi-layer neu-
ral network to predict TCM prescriptions using patient 
symptoms and recommended HPTP as inputs. Finally, 
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the recommended HPTP and herbal prescriptions are 
proposed to patients as a treatment scheme. Moreo-
ver, PrescDRL includes a prediction module for TCM 

prescription based on patient symptoms and HPTP. Our 
comprehensive experiments demonstrate that PrescDRL 
outperforms doctors in providing HPTP with better 

Fig. 1  Overall framework of PrescDRL. A Diagnose and treatment process of doctors and intelligence decision model. B The macro framework 
of PrescDRL. In this sub-figure, MLP represents multi-layer perception. C Reinforcement learning based prediction module of diagnose 
and treatment scheme. In this sub-figure, FC denotes a fully connect neural layer, and LSTM denotes a neural network of long short-term memory. 
D Transition network of patient states. In this sub-figure, S and P denotes the states and prescriptions of patient, respectively. E The prediction 
module of state transition. In this sub-figure, i and j denote i − th and  j − th iterations of the deep reinforcement learning model. s, a and r denote 
the state of patient, the action and reward of the model, respectively
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expected effectiveness and has a higher prediction per-
formance for TCM prescription.

Materials and methods
Clinical sequential data of diabetes
In this section, we present a benchmark dataset of clinical 
sequential diagnosis and treatment for diabetes, which 
serves as an example to train the optimization method of 
DDTS. (Ethics approval of this study has been obtained 
from ethics committee of institute of Clinical Basic Med-
icine of Traditional Chinese Medicine (NO. 2016NO.11-
01)). In this dataset, the symptom observations of 
patients are selected as the states, and herbal prescription 
prescribed by doctors as actions in reinforcement learn-
ing (RL) model.

To construct a standard dataset for sequential deci-
sion-making in TCM, we first extracted 10,666 medical 
records of 2,895 diabetic patients from Guang’anmen 
Hospital. As depicted in Fig.  2A, 49.6% of the patients 
had only one medical record and each patient had an 
average of 3.68 medical records. For each medical record, 
we extracted the patient’s symptoms and an herbal pre-
scription consisting of multiple herbs for treatment. With 
the exception of 334 medical records with over 40 symp-
toms, the number of symptoms per patient was normally 
distributed (Fig. 2B), with an average of 10.386 symptoms 
per medical record. Similarly, the number of herbs per 
prescription was normally distributed (Fig. 2C), with an 

average of 10.059 herbs per prescription. We screened 
1459 patients with more than one medical visit and 
obtained 5,638 medical records, which were arranged 
into diagnosis and treatment sequences based on clinic 
time.

A deep reinforcement learning framework to optimize 
herbal prescription treatment planning
The optimization of DDTS is essentially a Markov Deci-
sion Process (MDP, [46]). To tackle this problem, we 
propose an optimization model for herbal prescription 
treatment planning based on two high-performance deep 
RL models, namely, DRN [47] and DRQN [48]. DQN is 
a combination of Q-learning and convolutional neural 
network that can perform RL tasks. On the other hand, 
DRQN first extracts features using two fully connected 
layers, followed by a LSTM layer, and then predicts the 
action value using a final fully connected layer (Fig. 1C).

In the RL framework, the agent acts as a virtual intel-
ligent doctor, with the patient’s state serving as the envi-
ronment and prescribing herbal medication to the patient 
as the agent’s action. The key components of RL mod-
els are defined as follows: 1) The state space is denoted 
by S, where a state s ∈ S represents the observation of 
a patient’s symptoms; 2) The action space is denoted by 
A, where an action a ∈ A represents the herbal medica-
tion prescribed to the patient; 3) The reward function 
is denoted by R(s,  a), which returns a reward after the 

Fig. 2  Distribution of sequential diagnosis and treatment data. A Distribution of the number of patient visits. B Distribution of the number 
of patients’ symptoms. C Distribution of the number of the herbs in prescriptions. D P-values distribution of different number of herbal prescriptions 
clusters. E P-value distribution of 30 prescription clusters. F P-value distribution of 100 prescription clusters
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agent takes action in state s; 4) The virtual environment 
is denoted by E, which is an offline virtual environment 
based on sequential clinical data; 5) The state transition 
is denoted by T, where each transition is obtained using a 
prediction strategy.

The state observations of patients
In the DDTS optimization problem, the patient’s state is 
a key component of the reinforcement learning model. 
In TCM clinics, doctors obtain symptom descriptions of 
patients through “seeing, hearing, asking, and cutting” “
辨证论治”, summarize the syndrome type, and prescribe 
appropriate treatments. However, since the true state 
of the patient is not available, even experienced doctors 
cannot fully determine the specific conditions of patients. 
Therefore, the patient’s symptoms observed by the doc-
tors are used to approximate the patient’s state.

In the diabetes dataset, the distribution of patient 
symptoms (Fig.  2B) shows that the number of symp-
toms varies among patients (average of 10 symptoms 
per patient). The core symptoms for each disease typi-
cally differ, and different symptoms may have varying 
importance. However, it is challenging to obtain a pre-
cise symptom grading for diabetes, and thus different 
symptoms are typically considered to have equal weight. 
As a result, a patient’s state is represented by a symptom 
vector, where the symptoms present in the patient are 
marked as 1 and those that are not are marked as 0.

The action spaces of virtual doctor
In TCM diagnosis and treatment, doctors prescribe 
herbal prescriptions based on the patient’s symptoms. 
From all the medical records, we obtained 9,695 distinct 
herbal prescriptions. Considering all these prescriptions 
as actions of the RL model would greatly increase the dif-
ficulty of training and convergence of RL algorithms due 
to the large number of actions. Therefore, it is necessary 
to reduce the number of actions by converting prescrip-
tion numbers into a suitable discrete space. This will 
reduce the model complexity and improve the conver-
gence speed.

To reduce the number of prescriptions, we employed 
the K-means clustering algorithm[46] to cluster these 
prescriptions and used prescription’s herb information 
as the feature. We performed a parameter tuning experi-
ment to obtain a proper number of herbal prescription 
clusters (HPC) which is considered a hyperparameter. 
We tested different values of HPC ranging from 30 to 
150 with increments of every 10 categories. A good HPC 
result is expected to have different categories with sig-
nificantly different herbs. To achieve this, we used the 
Chi-square test[49] to calculate the statistical difference 

between any two clusters based on the composition of 
herbs prescribed in different clusters. The resulting HPC 
is used as the action of the RL models.

Design of reward function
The aim of RL-based DDTS optimization is to use a 
vast number of medical records to predict the optimal 
sequence of herbal prescriptions for patients. The objec-
tive is not only to maximize the treatment effect but also 
to ensure that the predicted prescriptions are reason-
able. This means that the efficacy of the predicted pre-
scriptions should be within a reasonable range, and they 
should not have side effects on patients or contradict 
drug indications.

Due to the absence of curative effect evaluation data in 
the diabetes dataset, we utilized the change in symptom 
scores between two consecutive visits before and after 
treatment as the immediate reward value for the current 
patient action. The symptom score is used to evaluate the 
severity of the patient’s disease state and is supposed to 
be the weighted sum of all the patient’s symptoms (the 
weight indicates the importance of the symptoms). How-
ever, the weight of symptoms is difficult to define, so we 
set the weight of all symptoms to 1, then the symptom 
score is simply defined as the number of symptoms of the 
patient. For example, the patient has 5 symptoms, then 
the symptom score is 5. Additionally, we calculated the 
Jaccard coefficient to measure the similarity between the 
predicted action and the actual prescription provided by 
the doctor. A higher reward value was assigned to actions 
that had a higher similarity to the doctor’s prescrip-
tion. Therefore, the reward function was formulated as 
follows:

where αi represents the weight of patient’s i − th symp-
tom, si represents the i − th symptom of the patient at the 
current visit, and s′i represents the i − th symptom of the 
patient at the next visit. γ denotes the weight of thera-
peutic effect of patients, β denotes the weight of risk, 
a denotes the prescription given by the doctor, and a′ 
denotes the prescriptions predicted by the model.

Virtual environment construction
To overcome the impossibility of training the proposed 
DDTS optimization model in the real diagnosis and treat-
ment process, we developed an off-line virtual environ-
ment based on the available medical records of patients. 

(1)R(s, a) = γ

n
∑

i=1

αi
(

si − s′i
)

+ βJac
(

a, a′
)

(2)Jac
(

a, a′
)

=

∣
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We constructed a tetrad, represented as (s1, a, r, s2) , using 
the symptom observation and prescriptions of each 
patient in the current and next diagnosis and treatment. 
In this tetrad, s1 denotes the current symptom obser-
vation of the patient, denotes the action based on s1 , r 
denotes the reward received after performing the action 
a, and s2 denotes the new symptom observation of the 
patient after the action a. We obtained 4,179 tetrads from 
the medical records, which served as a virtual environ-
ment to train the deep RL model.

State transition prediction and termination
In the optimization of DDTS with the deep RL model, 
one of the main challenges is obtaining the next symp-
tom observations after conducting an action based on the 
current symptoms due to the lack of tetrads constructed 
in the training stage. To address this issue, we utilized 
the state transition network, which includes states and 
actions (Fig. 1D), to predict the patient’s symptoms after 
treatment. Specifically, we developed a prediction strat-
egy that involves screening out all tetrads (s1, a, r, s2) with 
the same predicted action in the training set, calculating 
the Jaccard similarity between s1 the symptom obser-
vations in each tetrad and the current symptoms, and 
selecting the s1 tetrad with the highest similarity to the 
current symptoms. Finally, s2 in the same tetrad as s1 is 
selected as the state of the patient after treatment.

The distribution of symptoms in patients (Fig. 2B) indi-
cates that 94.7% of patients have between 1 and 20 symp-
toms. Based on TCM expert recommendations and the 
symptom distribution, we define the first sequence termi-
nation condition (STC) as a patient’s symptom score ≤ 3. 
According to the evaluation criteria of diabetes treatment 
effect, a 30% reduction in symptom score is considered 
effective, while a 70% reduction is considered markedly 
effective. Therefore, the second STC is defined as a 60% 
reduction in the patient’s symptom score. The distribu-
tion of consultations (Fig. 2A) shows that 93% of patients 
have between 1 and 10 consultations (average number is 
3.7). The last STC is number of iterations bigger than 15.

A multi‑layer neural network for herbal prescription 
recommendation
In clinical practice of TCM, the ultimate goal of intelli-
gent decision-making for diagnosis and treatment is to 
recommend effective herbal prescriptions to patients. 
By utilizing the trained deep RL models, we can obtain 
the sequential HPC for patients. In order to predict 
appropriate prescriptions, we model the prescription 

recommendation as a task of multi-label prediction. To 
achieve this, we constructed a multi-layer neural network 
(i.e., multi-layer perception), which takes the patient’s 
symptoms and the HPC predicted by the RL models as 
input features, and outputs the predicted herbal prescrip-
tion (Fig. 1B).

Experimental design
Parameter setting
In the DDTS optimization experiment, we used a total 
of 1,495 patient samples, of which 80% (1,203 samples) 
were used for training, and the remaining 20% (i.e., 
292 samples) were used for testing. Similarly, there are 
also 80% samples for training and 20% for testing in the 
experiment of prescription recommendation.

In our proposed PrescDRL, the DQN network frame-
work consists of three fully connected (FC) layers with 
400, 300, and 30 neurons, respectively. For the DRQN 
network, the first two layers are FC layers with 300 and 
512 neurons. The middle layer is an LSTM layer with 
512 neurons, and the final layer is a FC layer with 30 
neurons. Since there are 30 well-tuned HPCs, which 
correspond to 30 actions in modeling RL models, the 
DQN and DRQN layers have 30 neurons. During the 
training of these two models, the learning rate is 0.01, 
the discount coefficient of the reward value is 0.9, the 
random exploration probability is 0.1, and the batch 
size is 32. The parameters are copied to the Q-target 
network every 100 training batches.

Evaluation metrics
In clinical practice, evaluating the effectiveness of TCM 
treatment for chronic diseases, such as diabetes, can be 
challenging due to the long duration of treatment and 
the unsuitability of western medicine’s clinical mortal-
ity as an evaluation metric[50]. In this study, we evalu-
ated the performance of DDTS optimization results 
based on the improvement of symptom score, which 
is represented as the return values of RL models. To 
assess the effectiveness of the optimization models, 
we considered three commonly used metrics: single-
step return (SSR), single-step cumulative return (SCR), 
and multi-step cumulative return (MCR). For SSR, the 
optimization models are trained based on the symptom 
observations of the first visit of each patient, and the 
differential between the symptom observations before 
and after the models provide an HPC is defined as SSR. 
In contrast, SCR considers all visits of each patient, and 
the average of all returns is computed. MCR is a more 
comprehensive metric, where the models predict an 
HPC based on the first visit of each patient and then 
use the state transition function to generate follow-up 
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symptom observations until a set stopping condition is 
reached.

In addition, predicting prescriptions is considered a 
multi-label classification problem, for which precision, 
recall, F1 score, and IoU are used as evaluation metrics.

Results
Clustering and validation of diagnosis and treatment plan 
of diabetes
Based on the PMET information of the prescriptions 
used by patients, we utilized the K-means clustering algo-
rithm [46] to obtain prescription clusters. To determine 
the optimal number of HPCs, we conducted comprehen-
sive experiments for parameter tuning and calculated 
the distribution of statistical difference (i.e., the nega-
tive logarithm of P-value) for each clustering result. A 
higher difference between categories implies better HPC 
results and indicates that the HPC obtained by cluster-
ing is more personalized. Analytical results showed that 
as the number of categories increases, the statistical dif-
ference of clustering results decreases (Fig. 2D). We used 
a heatmap to illustrate the − log10 P distributions of the 
results of 10 and 150 categories, respectively  (Fig.  2E 
and Fig.  2F). The statistical results indicated that the 
result of 30 categories had the highest statistical differ-
ence 

(

− log10 P = 23.27± 8.27
)

 . We ultimately chose to 
cluster herbal prescriptions into 30 clusters as the action 
space of the deep RL model.

Prescription treatment planning optimization of PrescDRL
In this study, we proposed a deep RL-based method for 
predicting DDTS. To evaluate the performance of our 
proposed PrescDRL in predicting sequential HPCs, we 
compared the multiplex return values of the HPCs pre-
dicted by our model with those given by clinical doctors. 
In this experiment, we considered the results of 30 HPCs 
as the action space of PrescDRL. The comparison results 
(Fig.  3A-3C and Table  1) reveal that PrescDRL obtains 
higher return values than clinical doctors on three evalu-
ation metrics.

In terms of the single-step return (SSR), the clinical 
doctors achieved a score of 1.39, while PrescDRLDQN and 
PrescDRLDRQN improved by 117% and 153% compared to 
doctors, respectively. From the term of single-step cumu-
lative return (SCR), compared to doctors, PrescDRLDQN 
and PrescDRLDRQN improved by 269% and 292% respec-
tively. And for the multi-step cumulative return (MCR), 
PrescDRLDQN and PrescDRLDRQN improved by 387% and 
402% than doctors respectively. Meanwhile, the results 
also showed PrescDRLDRQN obtain higher rewards than 
than PrescDRLDQN , improved by 16.2% for SSR, 6.48% 
for SCR and 3.16% for MCR.

We compared the length of diagnosis and treatment 
sequences of the PrescDRL model with that of doctors 
(Fig. 3D). The results showed that doctors had the short-
est sequence length, while both the PrescDRLDQN and 
PrescDRLDRQN models had longer sequence length than 
doctors. This indicates that although PrescDRL has high 
diagnostic performance, it increases the number of diag-
nosis and treatment. Additionally, we also compared 
the performance differences between PrescDRLDQN and 
PrescDRLDRQN models with different numbers of HPCs 
(Fig. 3E and 3F). The results showed that the number of 
HPCs has little influence on the prediction performance 
of PrescDRL. However, with the increase of HPC num-
ber, the PrescDRLDRQN model showed better stability 
than the PrescDRLDQN model.

The above results showed that our PrescDRL outper-
formed the doctors in terms of rewards, indicating better 
curative effects. Additionally, the sequential HPCs pre-
dicted by PrescDRL have shorter curative periods com-
pared to those given by doctors. These results indicated 
that PrescDRL, based on RL, has significant advantages 
in DDTS optimization.

Prescription prediction of PrescDRL
In clinical practice, a prescription recommendation sys-
tem needs to provide specific recommended prescrip-
tions for each patient. However, PrescDRL provides an 
herbal prescription cluster rather than an actual herbal 
prescription. Therefore, we need to combine the HPC 
given by PrescDRL with the symptom observations of 
patients to make prescription predictions. The previous 
experimental results showed that the HPC provided by 
PrescDRL obtains higher rewards than those provided by 
clinicians. Therefore, the model that combines the HPC 
given by PrescDRL with symptom observations should 
recommend better prescriptions than doctors. Thus, it 
is not possible to evaluate the performance of PrescDRL 
using doctors’ prescriptions as a benchmark. To address 
this, we conducted a degradation experiment by com-
bining the original HPC with symptom observations and 
used prescriptions given by doctors as a benchmark. If 
the prediction performance of this method is better than 
that using only symptom observation, it can be con-
cluded that the prescription recommendation based on 
symptom observations and the HPC is better than that of 
doctors. Therefore, PrescDRL should have higher predic-
tive performance.

In the experiment, we constructed a three-layer fully 
connected neural network to compare prescription rec-
ommendation models. The first model considered both 
the patient’s symptom information and the HPC given 
by PrescDRL, while the second model only considered 
the patient’s symptom information and served as the 



Page 8 of 13Yang et al. Chinese Medicine          (2024) 19:144 

benchmark. We evaluated the performance of these 
models under different filter thresholds and evaluation 
metrics (Fig. 3G-3J and Table 2). It’s important to note 
that the filter threshold is a hyperparameter given to the 
neural network. The size of this parameter is inversely 
proportional to the strictness of the screening, meaning 
that smaller values correspond to stricter screening and 
larger values correspond to looser screening.

Our experimental results showed that the recom-
mendation performance of our model was significantly 
higher than that of the benchmark model. For instance, 
with a filter threshold of 0.2, our model achieved 
higher precision (improved by 40.5%), recall (improved 

Fig. 3  Experimental results of PrescDRL. A Performance comparison of single-step return. B Performance comparison of single cumulative return. 
C Performance comparison of multi-step cumulative return. D Comparison of iterations, i.e., the sequence length of diagnosis and treatment 
plan. E Reward distribution of PrescDRLDQN with different HPCs. F Reward distribution of PrescDRLDQN with different HPCs. G Precision comparison 
of prescription recommendation. H Recall comparison of prescription recommendation. I F1-score comparison of prescription recommendation. 
J LoU comparison of prescription recommendation. K Number distribution of the predicted herbs given by PrescDRL that considers symptom 
and scheme. L Number distribution of the predicted herbs given by PrescDRL that only considers symptom

Table 1  Reward comparison of DDTS optimization

The rate of improvement of our method compared to the doctor is shown in 
parentheses

Models Single-step return Single-step 
cumulative 
return

Multi-step 
cumulative 
return

Doctor 1.39 1.59 1.42

PrescDRLDQN 3.03 (117%) 5.86 (269%) 6.96 (387%)

PrescDRLDRQN 3.52 (153%) 6.24 (292%) 7.18 (402%)
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by 63%), and F1-score (improved by 51.5%) than the 
benchmark model. Additionally, we compared the num-
ber of herbs recommended by the two models under 
different filter thresholds (Fig.  3K-3L). The results 
showed that, as the filter threshold increased, the num-
ber of herbs recommended by both models increased. 
However, the number of herbs recommended by our 
model was lower than that of the benchmark model. 
When the filter threshold was set to 0.3, our model pre-
dicted an average of 9.72±2.80 herbs, while the bench-
mark model predicted an average of 10.12±1.77 herbs. 
Notably, in the real prescription data set, the mean and 
standard deviation of drugs in each prescription were 
9.84±2.96. Thus, our model’s predictions were closer 

to the true number of herbs in prescriptions when the 
appropriate filter threshold was selected.

Case study of the diagnosis and treatment sequence 
of PrescDRL
In the case study section, we first presented the dis-
tribution of herb occurrence frequency predicted by 
PrescDRL, with a filter threshold of 0.22, and compared 
the frequency of these herbs with those in the original 
prescriptions (Fig.  4). The results showed that the pre-
dicted herbs had a similar frequency distribution to the 
original herbs, which indirectly confirmed the reliability 
of the predictive results generated by PrescDRL.

Table 2  Performance comparison of prescription recommendation

1  “Symptom” denotes that the input of the recommendation algorithm is the patient’s symptoms
2  “ Symptom+ scheme ” denotes that the input of the recommendation algorithm includes the patient’s symptoms and the diagnosis and treatment plan provided by 
PrescDRL

The bold numbers represent the highest performance

Inputs of model Filter threshold No.of predicted herbs Precision Recall F1-score loU

Symptom 1 0.1 3.77±1.34 0.49 0.20 0.28 0.17

0.2 6.07±1.48 0.42 0.27 0.33 0.20

0.3 10.12±1.77 0.34 0.37 0.36 0.22

0.4 20.52±2.63 0.25 0.55 0.35 0.21

Symptom + scheme 2 0.1 5.44±2.39 0.65 0.38 0.48 0.33

0.2 7.04±2.60 0.59 0.44 0.50 0.34

0.3 9.72±2.80 0.50 0.51 0.50 0.34

0.4 16.00±3.03 0.37 0.61 0.46 0.30

Fig. 4  Frequency distribution of top herbs predicted by PrescDRL
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To illustrate the predictive performance of PrescDRL, 
we showed a real diagnosis and treatment sequence 
(Table  3 and 4) and a predicted sequence given by 
PrescDRL based on the first diagnosis of the real 
sequence. It is important to note that the two sequences 
are based on the results of 100 HPCs. Based on the doc-
tor’s sequence, the patient had a total of four visits with 
an initial symptom score of 13 and a symptom score of 11 
for the last visit, indicating that the treatment effect was 
not optimal and there were recurrent conditions. This 
could be due to variations in patients’ physical quality 
and medication, as well as differences in doctors’ experi-
ence. Therefore, even if the same patient is at the same 
stage of disease, each doctor may prescribe different pre-
scriptions according to their own experience.

After analyzing the diagnosis and treatment sequence 
provided by the PrescDRL algorithm, it was found 

that the patient had undergone a total of five visits and 
his symptom score had gradually decreased through-
out the treatment, indicating a gradual improvement in 
the patient’s condition. At the end of the sequence, the 
patient’s symptom score was 2, which suggests that the 
patient’s disease had significantly improved through the 
entire diagnosis and treatment process.

Through a comparison of the diagnosis and treatment 
sequences provided by the doctor and the PrescDRL 
algorithm, we observed that patient symptoms tend to 
improve in repeated fluctuations rather than directly. 
In the doctor’s sequence, the symptom score gradu-
ally decreases in the first three visits, but then increases 
in the fourth visit, indicating that the fourth prescrip-
tion may not have been appropriate. In contrast, the 
PrescDRL model aims to maximize long-term effec-
tiveness by selecting the best medicine based on the 

Table 3  Diagnosis and treatment sequence of doctors

Treatment number Symptom of patients Treatment plan Prescription Symptom 
score

1 Tongue or coating with blood stasis, 67 Coptis chinensis, donkey-hide gelatin 13

dark tongue or coating, rapid pulse, beads, chicken yellow, white peony

irregular stool, ... root, skullcap, jujube seed, ...

2 Thick and greasy tongue or coating, 37 Dried ginger, Coptis chinensis, 10

stasis of tongue or coating, dark Scutellaria baicalensis, American

tongue or coating, aversion to cold, ... ginseng, Poria, Panax notoginseng

3 The whole body is heavy, the tongue 67 Angelica, Astragalus, Coptidis, 8

or fur is stagnated, the tongue or fur Cinnamon, Anemarrhena, Golden

is dark, the whole body is weak, ... Cherry, Ginger, ...

4 Loose stools, stagnant tongue 36 wine rhubarb, aconite, 11

or coating, fluttering tongue Alisma, fenugreek, Gorgon,

or coating, thin tongue or coating, ... yam, ...

Table 4  Diagnosis and treatment sequence given by PrescDRL

Treatment
number

Symptom of patients Treatment plan Prescription Symptom 
score

1 Tongue or coating with blood 81 Pueraria Root, Helichrysum, 13

stasis, dark tongue or coating, Trichosanthes, Ginger,

rapid pulse, irregular stool, ... Leeches, ...

2 Thick and greasy tongue or fur, 81 Astragalus, Salvia, Zhigancao, 8

stasis of tongue or fur, aversion Leech, Sophora Radix,

to cold,dry or secretive stool, ... Rhizoma Coptidis, ...

3 Swelling of lower extremities, thick 12 Treats, Astragalus, 11

and greasy tongue or coating, stasis Suanzaoren, Dilong,

of tongue or coating, rapid pulse, ... Sophora japonica, ...

4 Tinnitus, dark tongue or coating, 71 Pueraria, Monascus, 7

sweating, yellow tongue or coating, Dilong, Trichosanthes,

urination and nocturia, ... Dried Ginger, Achyranthes, ...

5 tinnitus, general fatigue – – 2
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patient’s current symptoms, without necessarily expect-
ing maximum reward at every step. As demonstrated in 
the sequence provided by PrescDRL, the symptom score 
does increase in the third visit, but ultimately drops to 2 
in the fifth visit, suggesting that the diagnosis and treat-
ment plan generated by the PrescDRL model based on 
reinforcement learning is more reasonable and effective.

In addition to the above example, we also provide three 
additional examples of treatment process comparison 
given by doctors and PrescDRL algorithm in Section  1 
of supplemental file 1. In the first example, the algorithm 
performed better than the doctor. In the second exam-
ple, the doctor performed better than the algorithm, and 
in the third example, both the doctor and the algorithm 
performed better. These comparison examples show that 
compared with doctors, most of the treatment plans 
given by PrescDRL can reduce the symptom score of 
patients, thereby improving the disease status and treat-
ing the disease of patients.

Discussion
With the advancement of real-world clinical medicine, a 
significant amount of diagnosis and treatment data from 
famous and experienced TCM doctors have been accu-
mulated. As a result, how to extract medication rules 
from this data and develop an effective model for recom-
mending reasonable prescriptions has become a research 
hotspot in TCM intelligence. In light of this, we propose 
a RL-based prediction model for optimizing diagnosis 
and treatment schemes. This model is a sequential opti-
mization approach that prioritizes long-term effective-
ness to provide rational TCM prescriptions. We designed 
the comprehensive experiments following the algorithm 
evaluation guidelines in the network pharmacology [51], 
and the experimental results indicated that HPTP given 
by PrescDRL have better curative effect than doctors and 
higher performance on prescription prediction.

Although our proposed PresDRL algorithm have 
achieved the excellent performance, prescription opti-
mization and recommendation algorithm still faces some 
challenges in clinical application. For example, first, 
incompleteness, inconsistency, or errors in clinical data 
may affect the accuracy and reliability of drug recom-
mendation algorithms. Second, algorithms need to be 
able to process data across different patient populations 
and disease states to ensure effective recommendations 
in multiple clinical settings. Third, treatment recommen-
dation algorithms should aid clinical decision-making, 
not replace the professional judgment of doctors, and it is 
necessary to ensure the transparency and interpretability 
of algorithms to gain the trust of medical professionals.

There are still some areas that require further explo-
ration in the future. First, the diagnosis and treatment 

sequences generated by PrescDRL are longer compared 
to those provided by doctors. In the future, it would be 
necessary to investigate a diagnosis and treatment opti-
mization model that can provide shorter sequences while 
maintaining high efficacy. Second, all the experimen-
tal results presented in this study are based on simula-
tion experiments. To validate the effectiveness of our 
proposed PrescDRL model, it is crucial to apply it in 
real-world clinical diagnosis and treatment systems to 
evaluate the specific effects. Finally, with the explosive 
development of large language model (LLM) technol-
ogy [52], LLMs has been applied to the medical field 
[53]. Due to the advantages of strong model generaliza-
tion ability and knowledge reasoning of LLMs, relevant 
scholars have focused on the field of TCM and proposed 
several LLMs of TCM, such as ShenNong-TCM [54] and 
HuaTuo [55]. However, there are currently no LLMs opti-
mized specifically for TCM treatment planning. There-
fore, in the future, we will collect more data of clinical 
sequential diagnosis and treatment in order to train LLM 
for treatment planning optimization, improving the effi-
ciency of clinical diagnosis and treatment.

Conclusions
In this study, we proposed PrescDRL, a deep RL-based 
optimization model for herbal prescription treatment 
planning, that prioritizes long-term effectiveness to pro-
vide reasonable TCM prescriptions. The experimental 
results demonstrated that PrescDRL generated herbal 
prescription treatment plans with better curative effects 
than doctors and achieved higher performance in herbal 
prescription recommendation. Overall, PrescDRL pro-
vides an exemplary approach to employ RL to learn the 
patient’s optimal treatment path, which can help mini-
mize medication errors, reduce the patient’s treatment 
cost, and improve treatment effectiveness.

Abbreviations
TCM	� Traditional Chinese medicine
DDTS	� Dynamic diagnosis and treatment scheme
PrescDRL	� Herbal prescription planning based on deep reinforcement 

learning
RL	� Reinforcement learning
MDP	� Markov decision process
STC	� Sequence termination condition
SSR	� Single-step return
SCR	� Single-step cumulative return
MCR	� Multi-step cumulative return
HPC	� Herbal prescription cluster
HPTP	� Herbal prescription treatment planning

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13020-​024-​01005-w.

Supplementary File 1.

https://doi.org/10.1186/s13020-024-01005-w
https://doi.org/10.1186/s13020-024-01005-w


Page 12 of 13Yang et al. Chinese Medicine          (2024) 19:144 

Acknowledgements
This work is partially supported by the Fundamental Research Funds for 
the Central Universities (No. 2022RC022), the National Key Research and 
Development Program (Nos. 2023YFC3502604 and 2021YFC1712901), the 
National Natural Science Foundation of China (Nos. 82174533, 82374302, 
82204941, and U23B2062), the Natural Science Foundation of Beijing (No. 
L232033), and Key R& D Program Project of Ningxia Hui Autonomous 
Region(2022BEG02036).

Author contributions
K.Y., X.Z. were involved in the conception and design of the work. Z.Y., X.H. and 
N.W. were involved in data collection and model construction. K.Y., Z.Y., X.H., 
Q.Z., F.Y. and X.S. were involved in data analysis and interpretation. K.Y., F.Z., T.W. 
and X.Z. were involved in the drafting and revision of the article. K.Y. and X.Z. 
approved the final version to be published.

Data Availability
The data of case study presented in the study are included in the Supplemen-
tary Material. Further inquiries about data can be directed to the correspond-
ing author.

Received: 6 April 2024   Accepted: 14 September 2024

References
	1.	 Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, Berthold MR, Bellazzi R, 

Abu-Hanna A. The coming of age of artificial intelligence in medicine. 
Artif Intell Med. 2009;46(1):5–17.

	2.	 Alagoz O, Hsu H, Schaefer AJ, Roberts MS. Markov decision processes: a 
tool for sequential decision making under uncertainty. Med Decis Mak-
ing. 2010;30(4):474–83.

	3.	 Deng N, Zhang Q. The application of dynamic uncertain causality graph 
based diagnosis and treatment unification model in the intelligent diag-
nosis and treatment of hepatitis b. Symmetry. 2021;13(7):1185.

	4.	 Li S. Mapping ancient remedies: applying a network approach to tradi-
tional Chinese medicine. Science. 2015;350(6262):S72–4.

	5.	 Cui J. Diagnosis and treatment technologies of traditional Chinese medi-
cine: application and prospect in context of artificial intelligence. Acad J 
Second Mil Univ. 2018;15:846–51.

	6.	 Yang K, Zheng Y, Lu K, Chang K, Wang N, Shu Z, Yu J, Liu B, Gao Z, 
Zhou X. PDGNet: predicting disease genes using a deep neural 
network with multi-view features. IEEE/ACM Trans Comput Biol Bioinf. 
2020;19(1):575–84.

	7.	 Yang K, Wang N, Liu G, Wang R, Yu J, Zhang R, Chen J, Zhou X. Heteroge-
neous network embedding for identifying symptom candidate genes. J 
Am Med Inform Assoc. 2018;25(11):1452–9.

	8.	 Zhang S, Yang K, Liu Z, Lai X, Yang Z, Zeng J, Li S. DrugAI: a multi-view 
deep learning model for predicting drug-target activating/inhibiting 
mechanisms. Brief Bioinform. 2023;24(1):526.

	9.	 Yang K, Yang Y, Fan S, Xia J, Zheng Q, Dong X, Liu J, Liu Q, Lei L, Zhang 
Y, et al. DRONet: effectiveness-driven drug repositioning frame-
work using network embedding and ranking learning. Brief Bioinf. 
2023;24(1):bbac518.

	10.	 Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, 
Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. Master-
ing the game of go with deep neural networks and tree search. Nature. 
2016;529(7587):484–9.

	11.	 Lei Y, Li S, Liu Z, Wan F, Tian T, Li S, Zhao D, Zeng J. A deep-learning frame-
work for multi-level peptide-protein interaction prediction. Nat Commun. 
2021;12(1):5465.

	12.	 Li H, Kumar N, Chen R, Georgiou P (2018) A deep reinforcement learning 
framework for identifying funny scenes in movies,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 
3116–3120

	13.	 Nemati S, Ghassemi M M, Clifford G D. Optimal medication dosing 
from suboptimal clinical examples: A deep reinforcement learn-
ing approach[C]//2016 38th annual international conference of the 

IEEE engineering in medicine and biology society (EMBC). IEEE, 2016: 
2978-2981.

	14.	 Padmanabhan R, Meskin N, Haddad WM. Optimal adaptive control 
of drug dosing using integral reinforcement learning. Math Biosci. 
2019;309:131–42.

	15.	 Ghassemi MM, Alhanai T, Westover MB, Mark RG, Nemati S, Personalized 
medication dosing using volatile data streams, in Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

	16.	 Lin R, Stanley MD, Ghassemi MM, Nemati S, A deep deterministic policy 
gradient approach to medication dosing and surveillance in the icu, in,. 
40th Annual International Conference of the IEEE Engineering in Medi-
cine and Biology Society (EMBC). IEEE. 2018; 2018:4927–31.

	17.	 Raghu A, Komorowski M, Ahmed I, Celi L, Szolovits P, Ghassemi 
M, Deep reinforcement learning for sepsis treatment, arXiv pre-
printarXiv:1711.09602, 2017.

	18.	 Raghu A, Komorowski M, Celi LA, Szolovits P, Ghassemi M, Continuous 
state-space models for optimal sepsis treatment: a deep reinforcement 
learning approach, in Machine Learning for Healthcare Conference. 
PMLR, 2017; 147–163.

	19.	 Raghu A, Komorowski M, Singh S, Model-based reinforcement learning 
for sepsis treatment, arXiv preprint arXiv:​1811.​09602, 2018.

	20.	 Futoma J, Lin A, Sendak M, Bedoya A, Clement M, O’Brien C, Heller K, 
Learning to treat sepsis with multi-output gaussian process deep recur-
rent q-networks, 2018.

	21.	 Lopez-Martinez D, Eschenfeldt P, Ostvar S, Ingram M, Hur C, Picard R, 
Deep reinforcement learning for optimal critical care pain management 
with morphine using dueling double-deep q networks, in,. 41st Annual 
International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBC). IEEE. 2019; 2019:3960–3.

	22.	 Liu Y, Logan B, Liu N, Xu Z, Tang J, Wang Y, Deep reinforcement learning 
for dynamic treatment regimes on medical registry data, in,. IEEE interna-
tional conference on healthcare informatics (ICHI). IEEE. 2017;2017: 380–5.

	23.	 Wang L, Zhang W, He X, Zha H, Supervised reinforcement learning with 
recurrent neural network for dynamic treatment recommendation, in 
Proceedings of the 24th ACM SIGKDD international conference on knowledge 
discovery & data mining, 2018; 2447–2456.

	24.	 Feng Q, Combining mortality and longitudinal measures in clinical trials. 
Ph.D. dissertation, Beijing Jiaotong University, 2011.

	25.	 Hu X, “Research on optimization method of traditional chinese medicine 
sequential diagnosis and treatment scheme based on deep reinforce-
ment learning.” Master’s thesis, Beijing Jiaotong University, 2019.

	26.	 Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den 
Bos GA. Causes and consequences of comorbidity: a review. J Clin Epide-
miol. 2001;54(7):661–74.

	27.	 Zhang X, Zhou X, Zhang R, Liu B, Xie Q, Real-world clinical data mining 
on tcm clinical diagnosis and treatment: a survey, in 2012 IEEE 14th 
International Conference on e-Health Networking, Applications and Services 
(Healthcom). IEEE, 2012;88–93.

	28.	 Russell S, Norvig P, Artificial Intelligence: A Modern Approach, (2016)[J]. 
doi, 10: 363.

	29.	 Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, 
Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction 
from non-small cell lung cancer histopathology images using deep learn-
ing. Nat Med. 2018;24(10):1559–67.

	30.	 Wang Z, Poon J, Poon S, TCM Translator: A sequence generation approach 
for prescribing herbal medicines, in 2019 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM). IEEE, 2019; 2474–2480.

	31.	 Wu Y, Pei C, Ruan C, Wang R, Yang Y, Zhang Y. Bayesian networks and 
chained classifiers based on svm for traditional Chinese medical prescrip-
tion generation. World Wide Web. 2022;25(3):1447–68.

	32.	 Yao L, Zhang Y, Wei B, Zhang W, Jin Z. A topic modeling approach for 
traditional Chinese medicine prescriptions. IEEE Trans Knowl Data Eng. 
2018;30(6):1007–21.

	33.	 Zhang X, Zhou X, Huang H, Feng Q, Chen S, Liu B. Topic model for Chi-
nese medicine diagnosis and prescription regularities analysis: case on 
diabetes. Chin J Integr Med. 2011;17(4):307–13.

	34.	 Jin Y, Ji W, Zhang W, He X, Wang X, Wang X, A KG-enhanced multi-graph 
neural network for attentive herb recommendation, IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 2021.

	35.	 Li S, Wang W, He J, KGAPG: Knowledge-aware neural group representa-
tion learning for attentive prescription generation of traditional Chinese 

http://arxiv.org/abs/1811.09602


Page 13 of 13Yang et al. Chinese Medicine          (2024) 19:144 	

medicine, in 2021 IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM). IEEE, 2021;450–455.

	36.	 Li W, Yang Z, Exploration on generating traditional chinese medicine 
prescriptions from symptoms with an end-to-end approach, in CCF 
International Conference on Natural Language Processing and Chinese 
Computing. Springer, 2019; 486–498.

	37.	 Hu Y, Wen G, Liao H, Wang C, Dai D, Yu Z. Automatic construction of chi-
nese herbal prescriptions from tongue images using cnns and auxiliary 
latent therapy topics. IEEE Trans Cybernet. 2019;51(2):708–21.

	38.	 Liao H, Wen G, Hu Y, Wang C, Convolutional herbal prescription building 
method from multi-scale facial features, Multimedia Tools and Applica-
tions, vol. 78, no. 24, pp. 35 665–35 688, 2019.

	39.	 Zhou W, Yang K, Zeng J, Lai X, Wang X, Ji C, Li Y, Zhang P, Li S. FordNet: 
recommending traditional Chinese medicine formula via deep neural 
network integrating phenotype and molecule. Pharmacol Res. 2021;173: 
105752.

	40.	 Dong X, Zheng Y, Shu Z, Chang K, Yan D, Xia J, Zhu Q, Zhong K, Wang 
X, Yang K, et al., TCMPR: TCM prescription recommendation based on 
subnetwork term mapping and deep learning, in 2021 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 
2021;3776–3783.

	41.	 Dong X, Zhao C, Song X, Zhang L, Liu Y, Wu J, Xu Y, Xu N, Liu J, Yu H, et al. 
PresRecST: a novel herbal prescription recommendation algorithm for 
real-world patients with integration of syndrome differentiation and 
treatment planning. J Am Med Inform Assoc. 2024;31(6):1268–79.

	42.	 Wang Z, Liang Y, Liu Z, FFBDNet: Feature fusion and bipartite decision 
networks for recommending medication combination, in Joint European 
Conference on Machine Learning and Knowledge Discovery in Data-
bases.Springer, 2022;419–436.

	43.	 Tan W, Wang W, Zhou X, Buntine W, Bingham G, Yin H. OntoMedRec: 
Logically-pretrained model-agnostic ontology encoders for medication 
recommendation. World Wide Web. 2024;27(3):28.

	44.	 Mi J, Zu Y, Wang Z, He J. ACDNet: Attention-guided Collaborative Deci-
sion Network for effective medication recommendation. J Biomed 
Inform. 2024;149: 104570.

	45.	 Zheng Z, Wang C, Xu T, Shen D, Qin P, Zhao X, Huai B, Wu X, Chen E. 
Interaction-aware drug package recommendation via policy gradient. 
ACM Trans Inf Syst. 2023;41(1):1–32.

	46.	 Bellman R. A Markovian decision process. J Math Mech. 1957;20:679–84.
	47.	 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Ried-

miller M, Playing atari with deep reinforcement learning, arXiv preprint 
arXiv:​1312.​5602, 2013.

	48.	 Hausknecht M, Stone P, Deep Recurrent Q-Learning for Partially Observ-
able MDPs, in 2015 aaai fall symposium series, 2015.

	49.	 Pearson K. X. On the criterion that a given system of deviations from the 
probable in the case of a correlated system of variables is such that it can 
be reasonably supposed to have arisen from random sampling. Lond 
Edinburgh Dublin Philos Mag J Sci. 1900;50(302):157–75.

	50.	 Finkelstein DM, Schoenfeld DA. Combining mortality and longitudinal 
measures in clinical trials. Stat Med. 1999;18(11):1341–54.

	51.	 Li S, et al. Network pharmacology evaluation method guidance-draft. 
World J Tradit Chin Med. 2021;7(1):146.

	52.	 Wu T, He S, Liu J, Sun S, Liu K, Han Q-L, Tang Y. A brief overview of Chat-
GPT: The history, status quo and potential future development. IEEE/CAA 
J Auto Sinica. 2023;10(5):1122–36.

	53.	 Singhal K, Tu T, Gottweis J, Sayres R, Wulczyn E, Hou L, Clark K, Pfohl 
S, Cole-Lewis H, Neal D et al., Towards expert-level medical question 
answering with large language models, arXiv preprint arXiv:​2305.​09617, 
2023.

	54.	 Zhu W, Wang X, Wang L, Chatmed: A Chinese medical large language 
model, Retrieved September, vol. 18, p. 2023, 2023.

	55.	 Wang H, Liu C, Xi N, Qiang Z, Zhao S, Qin B, Liu T, HuaTuo: Tuning LLaMA 
model with Chinese medical knowledge, arXiv preprint arXiv:​2304.​06975, 
2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/2305.09617
http://arxiv.org/abs/2304.06975

	PrescDRL: deep reinforcement learning for herbal prescription planning in treatment of chronic diseases
	Abstract 
	Introduction
	Materials and methods
	Clinical sequential data of diabetes
	A deep reinforcement learning framework to optimize herbal prescription treatment planning
	The state observations of patients
	The action spaces of virtual doctor
	Design of reward function
	Virtual environment construction
	State transition prediction and termination

	A multi-layer neural network for herbal prescription recommendation
	Experimental design
	Parameter setting
	Evaluation metrics


	Results
	Clustering and validation of diagnosis and treatment plan of diabetes
	Prescription treatment planning optimization of PrescDRL
	Prescription prediction of PrescDRL
	Case study of the diagnosis and treatment sequence of PrescDRL

	Discussion
	Conclusions
	Acknowledgements
	References


